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Abstract

Most of the few-shot learning methods learn to transfer
knowledge from datasets with abundant labeled data (i.e.,
the base set). From the perspective of class space on base
set, existing methods either focus on utilizing all classes un-
der a global view by normal pretraining, or pay more atten-
tion to adopt an episodic manner to train meta-tasks within
few classes in a local view. However, the interaction of the
two views is rarely explored. As the two views capture com-
plementary information, we naturally think of the compati-
bility of them for achieving further performance gains. In-
spired by the mutual learning paradigm and binocular par-
allax, we propose a unified framework, namely Binocular
Mutual Learning (BML), which achieves the compatibility
of the global view and the local view through both intra-
view and cross-view modeling. Concretely, the global view
learns in the whole class space to capture rich inter-class
relationships. Meanwhile, the local view learns in the lo-
cal class space within each episode, focusing on matching
positive pairs correctly. In addition, cross-view mutual in-
teraction further promotes the collaborative learning and
the implicit exploration of useful knowledge from each oth-
er. During meta-test, binocular embeddings are aggregated
together to support decision-making, which greatly improve
the accuracy of classification. Extensive experiments con-
ducted on multiple benchmarks including cross-domain val-
idation confirm the effectiveness of our method1.

1. Introduction
Conventional classification methods heavily rely on mas-

sive labeled data [32] with diverse visual variations. How-
ever, in many realistic scenarios, only limited labeled data
is available [43, 26], thereby giving rise to the investigation
of few-shot classification (FSC), where only few available
training data is given for the learning of new visual con-
cepts. Such a setting makes FSC a challenging problem,
since novel classes are unpredictable and the sampling of

∗Xi Qiu (qiuxi@megvii.com) is the corresponding author.
1https://github.com/ZZQzzq/BML

Table 1. Comparison of BML with several representative methods
from the view of base class space. Accuracy (Acc.) from mi-
niImageNet [39]. Obviously, the unified perspective of BML is
more effective.

w/global w/ local strategy Acc.
MAML [10]

% "

one-stage 63.1
MatchingNet [39] one-stage 55.3
RelationNet [35] one-stage 65.3
ProtoNet [33] one-stage 68.2
Rethink [36]

" %
one-stage 82.1

DC [24] one-stage 79.0
CloserLook [6] one-stage 75.7
DeepEMD [45]

" "

two-stage 82.4
FEAT [44] two-stage 82.1
Meta-Baseline [7] two-stage 79.3
Neg-Cosine [25] two-stage 81.6
Our BML " " one-stage 83.6

few shots is also biased. In order to overcome those d-
ifficulties, many effective approaches have been proposed
in recent years, which can be mainly summarized into t-
wo categories according to training strategies. The first
category is fine-tuning based paradigms [29, 24, 6, 7, 36],
which learn classifiers in the whole base class space with
a straightforward purpose of maximize differences between
classes. Since all base classes are visible under each iter-
ation, we refer to this kind of methods as the global view.
The other promising strategy is metric-based meta-training
schemes [9, 39, 33, 35, 27, 44, 18, 13], which only tune on
a few classes in each episode. The main idea comes from
metric learning and the purpose is to match unlabeled query
to its correct class with a small labeled support set. Because
the visible range of base classes for each meta-task is limit-
ed, we oppositely call them the local view.

Considering that single view (whether global or local) is
relatively weak, it is not enough to provide adequate knowl-
edge for accurate classification. What’s more, the com-
bination of dual views fits well with the characteristics of
“people deepen their perception through two eyes”. To this
end, we propose this new Binocular Mutual Learning (BM-
L) paradigm, which equips the network with a global view
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and a local view simultaneously. The combination of t-
wo complementary views works like a binocular system,
and the mutual interaction [47] through two views further
promotes their cooperation and calibrates the inappropri-
ate expression caused by single “biased” view. Concretely,
BML generates better expression through both intra-view
and cross-view modeling. The intra-view training captures
view-specific knowledge, where two balanced feature space
are built, one focuses on inter-class relationship perception
(global view) and the other pays attention on matching de-
tails (local view). Meanwhile, the cross-view mutual inter-
action facilitates the implicit knowledge transfer from each
other. To balance “binocular parallax”, we enlarge the opti-
mization difficulty of the local view, so that the global view
can learn more useful knowledge from mutual interaction
(For more details, please refer to Section.3.2.2).

Clearly, BML paradigm has two advantages: strong
transferability and high time-efficiency, which are manifest-
ed from the following comparisons. Concretely, compared
with single view based methods mentioned above, BML
has two complementary views, so that more transferable
and reliable knowledge can be learned. In contrast, sin-
gle global training lacks additional constraints, making it
easy to over-fit on base patterns [12]. Meanwhile, single
local training is restricted by local perspectives, whose per-
formance is heavily depend on the configuration of tasks,
not to mention the complex structures. Moreover, compared
with two-stage methods which firstly excute global training
and then tune the embedding with local training, BML u-
nifies the two views in a one-stage framework and enables
the promotion of each other. By contrast, two-stage meth-
ods [34, 6, 45, 44, 25] are time-consuming. They focus on
how to better learn embedding in the first stage to provide
stronger features for the second stage of optimization [25],
but ignore that local view and global view can promote each
other in a unified manner.

We highlight the advantages of BML compared with sev-
eral typical approaches in Table 1. As the first batch of
methods to consider the combination of dual views, we pro-
pose an elegant compatibility strategy: binocular mutual
learning, which is inspired by the fact that human beings
usually perceive the world through two eyes (benefit from
appropriate binocular parallax). The two complementary
views simulate the binocular mode, and the mutual inter-
action calibrates deviation. Extensive experiments confirm
the effectiveness of BML, which is mainly reflected on the
stable performance under different granularity evaluation.
No matter facing coarse-grained (e.g., miniImageNet [39])
or fine-grained (e.g. CUB [40]) situation, BML performs
well. However, single view based methods cannot handle
all the situations. This confirm that the unified framework
does facilitate the mutual calibration of the two views. In
summary, the contributions of this paper are as follows:

• We closely analyze the status quo of FSC and pro-
pose an efficient one-stage Binocular Mutual Learning
paradigm: BML, which elegantly aggregate the global
view and the local view through both intra-view and
cross-view modeling.

• To enhance mutual learning, we propose an elastic loss
to readjust the optimization difficulty of the local view,
which promotes the bidirectional implicit knowledge
transfer.

• Extensive experiments on multiple benchmarks in-
cluding cross-domain validation verify the effective-
ness of our framework.

2. Related Works
2.1. Fine-Tuning based Methods (global view)

Researches represented by [29, 34, 24, 6, 36, 25] pay
more attention to global training by simply learning a class-
specific embedding with fully-connected (FC) layers. A-
mong them, FSIR [29] adapted the pretrained model to the
new categories by directly predicting the parameters from
activation, while DC [24] started from the perspective of
spatial information mining and performed dense classifi-
cation. MTL [34] further enhanced the pretrained mod-
el through a hard task meta-batch mechanism. And [6]
proposed two different classification layers, including a
conventional FC Layer (CloserLook) and a FC layer with
feature normalization (CloserLook++). To alleviate over-
fitting on base patterns, The authors in [36] employed self-
distillation strategy and data augmentation to constraint the
learning process.

2.2. Meta-Training based Methods (local view)

One of the promising branch of meta-training is metric-
based methods [39, 33, 35, 44, 27, 18, 20, 19, 42, 15, 13,
4, 28], which meta-learn an ideal metric space S(., .) to
bring homogeneous samples closer while push heteroge-
neous samples away. The classification process is carried
out under the guidance of the “Nearest Neighbor” princi-
ple. Specifically, Matching Networks [39] proposed a L-
STM [14]-based encoding module to re-code the context
of support feature, and computed attention scores using co-
sine distance. Similar variants include FEAT [44], which re-
placed LSTM with transformer [38]. Prototypical Network-
s [33] employed prototype to identify each class and calcu-
lated the Euclidean distance. Relation Networks [35] fur-
ther adopted a learnable correlation calculation module to
measure pairwise similarity. Subsequent follow-uppers de-
rived many variants with incorporating cross-modal infor-
mation [18], introducing adversarial noise [20], employing
local descriptors [22] or mutual information [13, 4], mak-
ing pretext tasks [46], using attention mechanisms [8, 15]
or learning task-relevant metrics [27, 19].
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Figure 1. The framework of BML. For each task T , BML minimizes the global classification loss Lglobal, the local matching loss Llocal

and the distribution consistency loss Lmutual to capture discriminative expression. During test, the collaborative features from two views
are combined to support the final decision.

Besides, some studies started from optimization [10, 23,
16, 30, 17]. A typical literature is MAML [10], in which,
the parameters of a base learner were further optimized in
a few iterations for quickly adaption for new tasks. Subse-
quent variants further developed MAML by designing more
objectives [23], employing better classifiers [17] or dynam-
ically adjusting the weights of different tasks [16]. More
interestingly, the working mechanism of MAML was ana-
lyzed in detail in [30] and the experiments highlighted that
“Feature Reuse” is the key to its role. In other words, the
performance is majorly determined by the quality of the
learned features, which is revalidated by experiments con-
ducted in this paper.

We also found that some recent researches [25, 7, 45, 44]
have realized the promotion role of two views. Some of
them [25, 7, 45, 44] employed a two-stage training scheme.
They firstly pretrained under global mode, and then tuned
the parameters using local mode. Others [5, 15, 27] pro-
moted local training by learning additional global classifier-
s. All of them focus on the promotion of global to local but
ignore the bidirectional cross-view interaction (which plays
an important role in BML).

2.3. Mutual Learning

Mutual learning [47] is a new distillation modal that has
shined in many fields recently, which breaks the conven-
tional “teacher-student” structure which has fixed direction
of supervision. In mutual learning, a group of students are
collaboratively learned from each other, which helps to ob-
tain more general models without pretrained teachers. Sim-
ilar ideas have been employed in person re-ID [11], but not
effectively applied in FSC. Literatures like [36, 21] are close
to this topic, but the training process is N -staged with fixed
pretrained teachers.

Inspired by mutual learning [47] and binocular parallax,
we propose this unified BML framework with two comple-
mentary views. Each of them can be regarded as a “studen-
t”. During training, besides their offline hard supervision,

two “students” also learn collaboratively and implicitly ex-
plore useful knowledge from each other.

3. Methodology

3.1. Preliminary

In the standard FSC scenario, we are given a base set
with Cbase classes and a novel set with Cnovel classes, where
Cbase ∩Cnovel = ∅. Training is usually performed on Cbase
classes and the optimization goal is to transfer the learned
knowledge to new tasks built on Cnovel. During meta-test, a
family of tasks {T }n1 are constructed for evaluation. Con-
cretely, each task T has a support set S and a query set Q.
The support set S contains N classes and each class has K
images (i.e., the N -way K-shot setting). The query set Q
includes N ×Q unlabeled images. In most literature, N is
set to 5 and K is set to 1 or 5, so do we.

3.2. Binocular Mutual Learning

As shown in Figure 1, BML has two complementary
branches (views) based on shared blocks. In which, the
global branch learns in the whole class space for inter-class
relationship mining, and the local branch learns in each
episode within few classes, aiming at matching each query
sample to its support prototype. Besides, the two branch-
es implicitly explore useful knowledge from each other by
minimizing KL-Divergence based mimicry loss to match
the feature distribution of its peers.

3.2.1 Global Intra-view Training

For the global branch, the learned features are related to the
whole class space, which explicitly contain rich inter-class
relationships.

Specifically, given task T , we learn a global learner AG
φ

to map each image xi in T to a high-dimensional space,
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and then a 1× 1× Cbase convolution layer W is learned to
classify each point of the feature to its corresponding class.
Let w denotes the width of the feature and h denotes the
height, the probability estimate of point (p, q) is formulated
by:

P (yi = y|x(p,q)
i ) = σ(W(AG

φ (x
(p,q)
i ))) (1)

where σ : Rm → Rm is the softmax function, m represents
the dimension size which is 640 here.

The negative logarithm of P (yi = y|xi
(p,q)) is calculated

to represent the loss of current feature point (p, q) of input
data xi. The total global loss is the average value of all
images in T . Formulaically,

Lglobal = E
(xi,yi)∈T

1

w × h

w,h∑
p=1
q=1

−yilogP (yi = y|x(p,q)
i )

(2)
Meaningfully, classifying each feature point correctly is

helpful to capture spatial structure information of the fore-
ground. Since each point can be traced back to a local area
of the foreground, multiple points represents multiple local
areas that is equivalent to a memory-saving multi-crop op-
eration [24]. For fair comparison, we also apply point-wise
classification to the baselines we compared in this paper.

3.2.2 Local Intra-view Training

The local branch borrows the idea of metric learning and
learns to match each query sample with support prototypes
in embedding space.

For task T with N classes, we divide it into a support
set S = {(xj , yj) | j = 1, · · · , N × S)} and a query set
Q = {(xj , yj) | j = 1, · · · , N × Q)}. A local learner
AL

φ is learned to map all samples {xj | xj ∈ S ∪ Q} to
an embedding space, and the matching process is guided by
nearest neighbor strategy, where N prototypes are calculat-
ed, i.e., Ci = 1

S

∑
j∈Si A

L
φ (xj). To metric the similarity

between query and each prototype, we simply employ Eu-
clidean distance indicated by M. The negative logarithm of
all query samples are calculated to get the local loss.

P (Ci = C|xi) =
exp[−M(Ci,AL

φ (xi))]∑N
j=1 exp[−M(Cj ,AL

φ (xi))]
(3)

Llocal = E
(xi,yi)∈Q

− CilogP (Ci = C|xi) (4)

Elastic constraint for magnifying optimization diffi-
culty. Moreover, we consider the following two points and
further optimize the local loss by applying an elastic con-
straint.

On the one hand, each task T is a collection of randomly
sampled data, resulting in randomness of difficulty. Treat-
ing all tasks equally during cross-epoch training like [33]

will lead to an “unhealthy” phenomenon: further perfor-
mance improvement is hard to obtain in the later training,
because the model is dynamically growing while the diffi-
culty is static [2]. On the other hand, the optimization diffi-
culty of the local branch is relatively simple compared with
the global one (since each query only has N − 1 negative
prototypes while global branch has Cbase − 1). The imple-
mentation of mutual promotion requires a seedbed, that is,
the two views can provide valuable knowledge to each oth-
er.

Push Pull

(a) (b) (c)

Figure 2. The process of elastic loss. All queries are pushed away
from their clusters to magnify the optimization difficulty, and the
network is forced to pull them back again.

Therefore, we propose this elastic loss to enhance the
training difficulty of the local branch. The complete pro-
cess is shown in Figure 2. Simply, we modify the po-
sition of each query sample xi in the embedding space
according to the difference between M(Cp,AL

φ (xi)) and
M(Cn,AL

φ (xi)), where Cp is the positive prototype and
Cn is the nearest negative prototype. The above operation
can be described as “push away”. Then we demand the
network to pull these pushed out samples back to the vicin-
ity of their positive prototypes, thus to learn more implicit
knowledge and get further performance improvement.

To better perceive the foreground from different patches
and learn rich relationship between Cp and patch-specific
C

(p,q)
n , similar to the global branch, instead of performing

global average pooling, we calculate elastic constraint from
different spatial position. Forcing the network to pull xi

to its positive prototype under different (C(p,q)
n , Cp) pairs

helps to mine more hard samples, and avoid over-fitting on
simple local tasks.

The updated local loss has a formulation as:

P̂ (Ci = C|x(p,q)
i ) =

exp−M(Ci,AL
φ (x

(p,q)
i ))− d

i(p,q)
EL∑N

j=1 exp−M(Cj ,AL
φ (x

(p,q)
i ))

(5)

L̂local = E
(xi,yi)∈Q

1

w × h

w,h∑
p=1
q=1

−CilogP̂ (Ci = C|x(p,q)
i )

(6)
where d

i(p,q)
EL is the patch-specific elastic constraint, whose

specific detail is described in Algorithm 1. α1 and α2 are
two scale factors, α1 adjusts the push degree cross-epochs
and α2 adjusts the push degree cross-tasks.
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Algorithm 1: Elastic Constraint d(p,q)EL on x
(p,q)
i .

Input: prototypes {C(p,q)
i }Ni ; query Al

φ(x
(p,q)
i );

current epoch e; total epoch E; α1, α2

Output: Elastic Constraint d(p,q)EL

1 Get logits L(p,q) of Al
φ(x

(p,q)
i ) using Eq.3;

2 Cal distance between Al
φ(x

(p,q)
i ) and Cp:

disP = Ic=CpL
(p,q);

3 Cal distance between Al
φ(x

(p,q)
i ) and C

(p,q)
n :

disN = sort(Ic ̸=CpL
(p,q))[0];

4 Cal ∆ = disP − disN ;
5 Return d

(p,q)
EL = α1·e/E

1+exp(−α2·∆) ;

3.2.3 Cross-view Mutual Learning

In addition to separate intra-view learning, the two views
also promote each other through cross-view mutual interac-
tion. Specifically, for each view, in addition to completing
its own offline hard tasks, it is also forced to minimize the
mimicry loss from another view (based on KL-divergence),
which encourage the implicit knowledge transfer. Clearly,
the mutual loss has two sub-items, which are formulated as:

Lmutual = DKL(Fl||Fg) +DKL(Fg||Fl) (7)

DKL(Fg||Fl) = Fglog
Fg

Fl
,DKL(Fl||Fg) = Fllog

Fl

Fg
(8)

where F(·) represents the feature distribution calculated by
σ(Aφ(x)). We consider the issue of interaction from the
perspective of feature distribution consistency, and only
learn relative relationships rather than hard constraints such
as mean squared error in Euclidean space. This is because
that too strong supervision signal is harmful to retain the
specificity of the two views.

In summary, the final loss has following formulation:

Ltotal = αLglobal + βLlocal + γLmutual (9)

where α, β and γ are weighting factors.

3.2.4 Inference

During meta-test, we integrate the results of the global and
local branches. We do not perform global average pooling
but directly flatten the features and calculate the Euclidean
distance (the same as ProtoNet [33]). The integration can
be done on the feature level or on the logits level. In this
paper, we simply integrate the global and local logits.

4. Experiments
In this section, we answer the following questions:

• How does our BML perform compared with SoTAs?
• Why is binocular learning better?
• How does the elastic loss work?
• Is BML less sensitive to image quality?
• Should the standards for validation be diverse?

4.1. Meta Datasets

We validate our BML on four commonly used bench-
marks, including miniImageNet [39], tieredImageNet [31],
CIFAR-FS [3] and CUB-200-2011 (CUB) [40]. Details of
those datasets are summerized in Table 2. All the input im-
ages are resized to 84 × 84 during comparison, and in the
ablation part, we further analyze the stability of BML when
enlarging the image size to 224 × 224 or introducing other
degraded components. In particular, for CUB, we crop the
test images with the bounding box provided by [37] to make
a fair comparison.

Table 2. Summarization of four benchmarks.
Images Classes Split

miniImageNet [39] 60,000 100 64/16/20
tieredImageNet [31] 779,165 608 351/97/160

CIFAR-FS [3] 60,000 100 60/16/20
CUB-200-2011 [40] 11,788 200 100/50/50

4.2. Implementation Details

Architecture. Following previous works [27, 36, 17],
we use ResNet12 as our backbone, which consists of 4
residual blocks. Each block has 3 convolutional layers with
3×3 kernel and a 2×2 max-pooling layer. We remove the
last global average pooling layer to preserve spatial infor-
mation. Similar to [17], we use Dropblock as a regularizer
and the number of filters are set to (64, 160, 320, 640). S-
ince BML have a binocular structure, we share the first three
blocks and assign an independent block-4 to each view.

Optimization setup. We use SGD optimizer with a mo-
mentum of 0.9 and a weight decay of 5e−4. The learning
rate is initialized as 0.1. For miniImageNet, CIFAR-FS and
CUB, we train 100 epochs. In the 50−th epoch, the learn-
ing rate is reduced to 6e−3, and further reduced to 1.2e−4
in the 70−th epoch. For tieredImageNet, we train 150 e-
pochs and decay the learning rate by 0.1 times per 40 e-
pochs. In particular, when organizing data, in order to adapt
to binocular requirements, we adopt a uniform sampling s-
trategy. The ratio in the loss is set to α:β:γ=4:2:1, and the
two scale factors α1 and α2 in the elastic loss are experi-
mentally set to 5.5 and 0.1, respectively. To ensure the sta-
bility of the evaluation results, for each benchmark, we test
2,000 episodes and report the average performance.
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Table 3. Comparison on miniImageNet, tieredImageNet and CIFAR-FS. Results with † are reported in [17].

Method Backbone miniImageNet tieredImageNet CIFAR-FS
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML† [10] ConvNet 48.70±1.84 63.11±0.92 51.67±1.81 70.30±1.75 58.90±1.90 71.50±1.00
TAML [16] ConvNet 51.77±1.86 65.60±0.93 - - - -
MetaOptNet [17] ResNet12 64.09±0.62 80.00±0.45 65.81±0.74 81.75±0.53 72.00±0.70 84.20±0.50
ProtoNet† [33] ConvNet 49.42±0.78 68.20±0.66 53.31±0.89 72.69±0.74 55.50±0.70 72.00±0.60
MatchingNet† [39] ConvNet 43.56±0.84 55.31±0.73 - - - -
RelationNet† [35] ConvNet 50.44±0.82 65.32±0.70 54.48±0.93 71.32±0.78 55.00±1.00 69.30±0.80
DeepEMD [45] ResNet12 65.91±0.82 82.41±0.56 71.16±0.80 86.03±0.58 46.47±0.70 63.22±0.71
FEAT [44] ResNet12 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16 - -
TADAM [27] ResNet12 58.50±0.30 76.70±0.30 - - - -
CTM [19] ResNet18 64.12±0.82 80.51±0.13 68.41±0.39 84.28±1.73 - -
LR+ICI [41] ResNet12 66.80±n/a 79.26±n/a 80.79±n/a 87.92±n/a 73.97±n/a 84.13±n/a
Rethink-Distill [36] ResNet12 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.49 73.90±0.80 86.90±0.50
DC [24] ResNet12 61.26±0.20 79.01±0.13 - - - -
MTL [34] ResNet12 61.20±1.80 75.50±0.80 - - - -
CloserLook++ [6] ResNet18 51.87±0.77 75.68±0.63 - - - -
Meta-Baseline [7] ResNet12 63.17±0.23 79.26±0.17 68.62±0.27 83.29±0.18 - -
Neg-Cosine [25] ResNet12 63.85±0.81 81.57±0.56 - - - -
AFHN [20] ResNet18 62.38±0.72 78.16±0.56 - - 68.32±0.93 81.45±0.87
Centroid [1] ResNet18 59.88±0.67 80.35±0.73 69.29±0.56 85.97±0.49 - -
Baseline-local ResNet12 58.96±0.45 77.07±0.34 64.46±0.51 82.21±0.36 67.60±0.49 84.78±0.34
Baseline-global ResNet12 61.71±0.48 81.21±0.32 63.27±0.52 82.22±0.36 69.74±0.49 87.37±0.34
BML ResNet12 67.04±0.63 83.63±0.29 68.99±0.50 85.49±0.34 73.45±0.47 88.04±0.33

4.3. Experimental Results

4.3.1 Comparison on Coarse-grained Benchmark

Comparison to prior works are shown in Table 3, our result-
s are highlighted in bold with gray background. Specific
structural details of ConvNet are reported as follows (filter
number of four blocks): MAML [10]: 32-32-32-32; TAM-
L [16], ProtoNet [33], MatchingNet [39]: 64-64-64-64; Re-
lationNet [35]: 64-96-128-256.

As is reported, compared with two baselines, the perfor-
mance of BML is remarkable, even 9% higher in some cases
(details is analyzed in Section.4.3.3). Compared with other
competitors, BML achieves a new SoTA on miniImageNet,
including the best metric-based method FEAT [44]. On
tieredImageNet, we also achieve good performance by sim-
ply using the nearest neighbor principle. As for CIFAR-FS,
we surpass all competitors and reach a new SoTA, including
LR+ICI [41] which is based on the transductive strategy.

4.3.2 Comparison on Fine-grained Benchmark

Within domain evaluation results is shown in Table 4 (Re-
sults with † are reported in [6]). BML outperforms the
runner-up DeepEMD [45] by 1.76% and 0.56% at 5-shot
and 1-shot setting respectively. Although DeepEMD [45]
adopts the similar idea of spatial information mining, but
the task-dependent patch-wise matching is time-luxurious,
while our BML shifts the attention to the bottom embed-

ding, which is time-efficient and valid.

Table 4. Within domain comparison on CUB-200-2011.

Method Backbone
CUB-200-2011

5-way 1-shot 5-way 5-shot
MAML† [10] ResNet18 68.42±1.07 83.47±0.62
ProtoNet† [33] ResNet18 72.99±0.88 86.64±0.51
MatchingNet† [39] ResNet18 73.49±0.89 84.45±0.58
RelationNet† [35] ResNet18 68.58±0.94 84.05±0.56
DeepEMD [45] ResNet12 75.65±0.83 88.69±0.50
CloserLook [6] ResNet18 47.12±0.74 64.16±0.71
CloserLook++ [6] ResNet18 60.53±0.83 79.34±0.61
Centroid [1] ResNet18 74.22±1.09 88.65±0.55
Baseline-local ResNet12 66.79±0.49 86.55±0.28
Baseline-global ResNet12 60.13±0.49 79.77±0.36
BML ResNet12 76.21±0.63 90.45±0.36

What’s more, comparing the performance of baseline-
global reported in Tables 3-4 and Figure 3, we find that
the performance of baseline-global is significantly reduced
on fine-grained benchmark CUB, which shows that single
global training loses its effect when the inter-class differ-
ence is relatively small. However, our BML performs well
on all granularities, which proves that binocular framework
is more robust against granularity change.

Cross domain evaluation results is reported in Table 5
(Results with † are reported in [1]), BML outperforms all
compared methods with a large margin. Among them, the
method in [36] which also employs online soft label to im-
prove the learning of inter-class relations, is 3.85% lower
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Figure 3. Effect of binocular learning on multiple benchmarks. The comparison result proves the superiority of our BML.

Table 5. Cross-domain comparison on CUB-200-2011.

Method miniImageNet → CUB
MatchingNet [39] 53.07±0.74
ProtoNet† [33] 62.02±0.70
MAML† [10] 51.34±0.72
RelationNet† [35] 57.71±0.73
CloserLook [6] 65.57±0.70
CloserLook++ [6] 62.04±0.76
Centroid [1] 70.37±1.02
Rethink-distill [36] 68.57±0.39
BML 72.42±0.54

than our binocular mutual learning mechanism. This shows
that bidirectional cross-view interaction is better than uni-
directional same-view interaction.

4.3.3 Ablation Study

Analyze of Binocular Learning: Specifically, our base-
lines are two typical single-view methods: baseline-global
and a stronger ProtoNet baseline-local. All the experimen-
tal configurations of the above two are the same as BML.
According to the results shown in Figure 3, we highlight
three observations:

1) Binocular mutual training can effectively integrate the
advantages of the two views and obtain complementary in-
tegrated features. For instance, under 1-shot and 5-shot set-
ting shown in subfigure.3(a) and 3(b), BML is significantly
better than the two single-view training methods on both
coarse-grained and fine-grained benchmarks.

2) Binocular mutual training makes the two views pro-
mote each other. As is shown in subfigure 3(c) and 3(d),
BML-local and BML-global based on binocular training
are better than baseline-local and baseline-global based on
single-view mode, where BML-local is 1.4%-9.7% higher
than baseline-local, and BML-global is 1.8%-13.3% higher
than baseline-global. Since the only difference is whether
the training is under binocular pattern, the results confirm
the effectiveness of binocular training.

3) Binocular mutual training is less sensitive to shot
count. By comparison, we find that BML-local and BML-
global show different advantages under different settings.

The global branch performs better when shot count is
greater than 1, indicating that global view captures richer
expressions; while under 1-shot setting, the local branch
exhibits a higher advantage, which shows that local view
is robust against sampling uncertainty, because local view
minimizes the variation of features within a class according
to the variation between classes [12]. Binocular aggregation
avoids the instability of single view and absorbs the advan-
tages of two branches.
Analyze of Mutual Interaction (Lmutual): Applying mu-
tual interaction loss Lmutual on the binocular framework,
the performance is further improved by 0.79% as follows:

w/o Lmutual w/ Lmutual

BML 82.84 83.63(↑ 0.79)

Besides, we separately analyze the impact of Lmutual on
single view. Taking the local branch as example, the perfor-
mance comparison with or without Lmutual is as follows:

w/o Lmutual w/ Lmutual

BML-Local 79.29 80.95(↑ 1.66)

Figure 4. t-SNE results on miniImageNet base classes.

Together with qualitative results in Figure 4, we find that
compared with the left one (w/o Lmutual), after introduc-
ing Lmutual (right), the cluster structure on base classes is
slightly broke but the performance on novel is significantly
improved, which shows that in addition to the single hard
label, minimizing the mimicry loss helps to alleviate the
over-fitting problem while improving transferability.
Analyze of Elastic Loss (ELloss): We simply update the
basic euclidean distance with the elastic loss, and keep the
other settings unchanged. Here is the comparison result (all
the experiments are conducted on miniImageNet):
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w/o ELloss w/ ELloss
baseline-Local 77.07 77.77(↑ 0.7)

Obviously, the introduction of ELloss has brought a great
performance improvement. Next, we made a further de-
tailed analysis:

Effect of α1 and α2: α1 and α2 in Algorithm.1 are two
factors controlling the push degree. Among them, α1 ∈[4,
6], this range is derived from the observation of normal
training: M(Cp, xq) stably falls in [6, 12] after conver-
gence. Therefore, we enlarge M(Cp, xq) about 50%. The
range of α2 is [0.05, 0.25], which controls push degree cross
tasks. As shown in Figure 5, simply employing ELloss on
baseline-local can obtain a significant improvement (best
configuration α1 = 5.5, α2 = 0.1), which shows that, com-
pare to equally treats all the tasks, redefining the difficulty
is beneficial to dig out more transferable knowledge.
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Figure 5. Effect of α1 and α2(train 100 epochs with N=5).

Effect of Elastic Loss under different settings: We fur-
ther analyze ELloss in Figure 6, and the result shows a fact
that local mode is indeed a relatively simple problem since
the matching process only occurs within current episode,
which naturally, makes the network too lazy to give satis-
fied solutions. The introduction of ELloss delays the ap-
pearance of performance saturation points, thereby allevi-
ating the problem of sub-optimal solutions to some extent.

Analyze of Stability: A good model should perform well
in any situation, especially when attacked by degraded in-
put. The following stability test in Table 6 is carried out
in several groups of degraded cases: size change; blur at-
tack; noise attack and brightness attack. Results show that
our BML performs well in any situation, which shows the
stability of binocular learning strategy.
Is Similarity Ranking important for a good model? We
randomly visualize a task (Figure 7) and find an interesting
sidelight: while improving discriminability, BML also get-
s more accurate inter-class relationship and more accurate
heatmap. This inspired us to think: for the current closed-
set setup of FSC, should we pay attention to the similarity
ranking besides the top-1 accuracy? Since semantical ef-
fective ranking is more practical and can further distinguish
the advantages of existing methods.
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Figure 6. Performance trend of Elastic Loss with different N .

Table 6. Stability evaluation on miniImageNet.
84× 84 → 224× 224

DeepEMD [45] 82.41→78.12
BML 83.59→81.57

+ GaussianBlur (σ ∈ [0.1, 2])
Rethink-Distill [36] 82.14→ 49.30
BML 83.59→61.96

+pepperNoise (r = 0.01)
Rethink-Distill [36] 82.14→63.97
BML 83.59→71.02

+ ColorJitter (B = 0.8)
Rethink-Distill [36] 82.14→81.05
BML 83.59→82.24

(a)

Similarity ranking

(b)

(c)

1 2 3 4

1 2 34

1 4 3 2

Figure 7. Similarity Ranking on a 4-way 1-shot task. (golden re-
triever, dalmatian, lion and bus). (a) Our BML, (b) single global
view, (c) single local view. BML gives completely accurate rank-
ing results while the left two failed to get inter-class relationship.

5. Conclusion

Inspired by mutual learning paradigm and binocular par-
allax, we propose a unified Binocular Mutual Learning
(BML) framework, which achieves the compatibility of the
global view and the local view through both intra-view
and cross-view modeling. The effectiveness of BML has
been fully demonstrated on both within-domain and cross-
domain evaluations. The aggregated features are more ro-
bust than other competitors when dealing with degradation
attacks. Besides, BML obtain accurate similarity ranking.
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