
CCT-Net: Category-Invariant Cross-Domain Transfer for Medical
Single-to-Multiple Disease Diagnosis

Yi Zhou ∗1, Lei Huang2, Tao Zhou3, and Ling Shao4

1School of Computer Science and Engineering, Southeast University, Nanjing, China
2SKLSDE, Institute of Artificial Intelligence, Beihang University, Beijing, China

3School of Computer Science and Technology, Nanjing University of Science and Technology, China
4Inception Institute of Artificial Intelligence, Abu Dhabi, UAE

Abstract

A medical imaging model is usually explored for the di-
agnosis of a single disease. However, with the expanding
demand for multi-disease diagnosis in clinical applications,
multi-function solutions need to be investigated. Previous
works proposed to either exploit different disease labels to
conduct transfer learning through fine-tuning, or transfer
knowledge across different domains with similar diseases.
However, these methods still cannot address the real clini-
cal challenge - a multi-disease model is required but anno-
tations for each disease are not always available. In this
paper, we introduce the task of transferring knowledge from
single-disease diagnosis (source domain) to enhance multi-
disease diagnosis (target domain). A category-invariant
cross-domain transfer (CCT) method is proposed to address
this single-to-multiple extension. First, for domain-specific
task learning, we present a confidence weighted pooling
(CWP) to obtain coarse heatmaps for different disease cat-
egories. Then, conditioned on these heatmaps, category-
invariant feature refinement (CIFR) blocks are proposed to
better localize discriminative semantic regions related to
the corresponding diseases. The category-invariant char-
acteristic enables transferability from the source domain to
the target domain. We validate our method in two popular
areas: extending diabetic retinopathy to identifying multi-
ple ocular diseases, and extending glioma identification to
the diagnosis of other brain tumors.

1. Introduction
Over the past decades, increasingly more automatic dis-

ease diagnosis systems have been developed for different
medical imaging tasks [35, 51, 57, 59]. In some specific ap-
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Figure 1. Motivation of the proposed CCT-Net. The knowledge
learned from the well-explored single-disease diagnosis with fine-
grained annotations can be transferred to improve the diagnosis of
multiple related diseases without annotations.

plications, large data with fine-grained annotations have fa-
cilitated model development and led to significant progress.
For example, diabetic retinopathy (DR) diagnosis, includ-
ing DR grading [19, 21] and lesion segmentation [44, 56],
has been well studied on fundus images. Glioma identifi-
cation, including tumor segmentation [20, 5, 9], has been
successfully applied on brain MRI scans. Recently, many
COVID-19 detection models [54, 27, 40] have also been
rapidly developed using the annotated lung CT data. How-
ever, most of these works only focus on a single disease,
which limits their transferability to other related diseases. In
most clinical departments, multi-disease diagnosis (e.g. oc-
ular diseases: DR, glaucoma, hypertension, myopia; brain
tumors: glioma, meningioma, pituitary tumor; lung inflam-
mation: community acquired, viral, bacteria pneumonia),
has higher practical value and is preferred by clinicians.
Therefore, as illustrated in Fig. 1, this work aims to transfer
the ability of learning discriminative features from the well-
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explored single-disease diagnosis with rich annotations to
multi-disease diagnosis with limited annotations.

Previous works on transfer learning from one disease to
another can be coarsely categorized into two types. The
first type adopts models pre-trained on annotated natural
images [29] or similar-domain data and then fine-tune them
for new diseases [26, 19]. The low-level features of similar-
domain data can be shared so that the model only needs to
transfer the high-level semantic disease category informa-
tion. However, this approach usually requires extensive an-
notation for new diseases. Since annotating medical data
requires professional knowledge and is time-consuming,
we cannot expect rich annotations to be available for all
diseases. The second type focuses on domain adaptation
[49, 12, 4, 30, 15, 34] for different-domain data that have the
same disease or lesion types. These works aim to transfer
domain-invariant knowledge from labeled source domain
data to unlabeled target domain data. For example, unsu-
pervised lesion segmentation models for endoscopic data
[11] have been explored through domain adaptation using
labeled gastroscope segmentation data. However, this trans-
fer is only feasible when the disease categories of the two
domains are the same: cancer, polyp, gastritis, ulcer and
bleeding. In more general clinical scenarios, multi-disease
diagnosis of diseases that do not share similar appearances
is required, but annotations for each disease are not always
available. Thus, it is difficult to directly apply these existing
models to address the practical problems.

In this paper, we focus on the problem where the two do-
mains have different disease identification tasks, with the
source domain having pixel-level labels for a single dis-
ease and the target domain involving more diseases, with-
out fine-grained annotations (only image-level disease cat-
egories are known). We propose a category-invariant cross-
domain transfer method to learn the knowledge from the
source domain task and improve both the classification and
localization performance of the target domain task. The
main contributions of this work are as follows:

1. A domain-specific task learning module is designed to
learn domain-invariant features while preserving the disease
discrepancy between two domains. A CWP global pooling
method is proposed to obtain better class activation maps
(CAMs) than other global pooling operations.

2. Conditioned on the coarse heatmaps of different cat-
egories, we propose CIFR blocks to construct the CCT-
Net for localizing more discriminative regions of the cor-
responding diseases. The category-invariant characteristic
enables the transferability from the source domain to target
domain. Moreover, such refined features can contribute to
the final classification performance as well.

3. Experimental evaluations are conducted in two pop-
ular medical imaging tasks. First, we extend DR diagnosis
on fundus images to the diagnosis of multiple ocular dis-

eases, such as glaucoma and hypertension. Second, glioma
segmentation on brain MRI scans is exploited to improve
the segmentation and classification performance of other tu-
mors, such as meningioma and pituitary tumors. Experi-
mental results demonstrate the effectiveness of our method.

2. Related Work
2.1. Medical Disease Diagnosis Scenarios

Deep neural networks have achieved significant success
in the diagnosis of numerous individual diseases from med-
ical imaging data. For example, in fundus imaging for ocu-
lar diseases, DR and glaucoma have been widely explored,
with tasks including DR grading [19], DR lesion semantic
segmentation [14], and glaucoma detection [16]. In chest
X-rays for thoracic diseases, pneumonia [45] and tubercu-
losis [36] identification models have been developed and
used in clinical applications. In brain MRI, researchers are
most interested in glioma segmentation, and the BraTS [39]
competition is organized annually to provide a platform for
contributing to the community. Moreover, in lung CT, many
well-developed lung nodule [52] and pneumonia [13] de-
tection systems have achieved satisfactory performance and
reached radiologist level. However, these single-disease di-
agnosis models have limited transferability to multiple dis-
eases and usually require new annotations. Multi-disease
diagnosis systems are more practical.

2.2. Cross Domain Transfer Learning

Domain adaptation (DA) [49] is a way of transfer learn-
ing which deals with scenarios in which a model trained
on a source distribution is used in the context of a different
(but related) target distribution. DA methods aim to learn
domain-invariant representations to address domain shifts.
Adversarial networks [23] and diverse variants [10, 42, 33]
based on the adversarial strategy have been widely ex-
plored for domain alignment. For example, the domain-
adversarial neural network (DANN) [17] introduces a con-
fusion loss to match the distributions of the source and tar-
get domains in order to confuse the high-level classifica-
tion layers. Meanwhile, maximum classifier discrepancy
(MCD) [47] was presented to utilize task-specific decision
boundaries to align distributions. Except for the adversar-
ial approach, divergence-based DA methods [53, 48] aim to
minimize the divergence criterion between the source and
target domains, while batch normalization [32, 3] parame-
ters have been used to model domain-specific information.
DA has also been addressed by adopting auxiliary recon-
struction tasks [18, 61] to create a shared representation for
each of the domains. Most of these methods define DA to
be a problem in which the task space is similar to the source
space, with the only difference being the input domain di-
vergence. However, disease discrepancy exists in our task.
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3. Proposed Methods
3.1. Problem Formulation

In the proposed domain transfer scenario, we are given
the source domain data XS with pixel-level labels Yp

S and
the target domain data XT without pixel-level labels. The
disease categories of two domains are denoted as Yc

S and
Yc
T , respectively. Yp

S and Yc
S have the same category car-

dinality NS , while Yc
T has NT categories. The overall aim

of the task is to transfer knowledge from the source domain
data (XS , Yp

S , Yc
S) to improve both the localization and clas-

sification performance on the target domain data (XT , Yc
T ).

As illustrated in Fig. 2, the domain-specific encoder
(DSE), marked in green and purple, is designed for learning
different disease classification tasks in the two domains and
optimized by the corresponding classification loss LCls.
The coarse heatmaps can be obtained to weight the features
for further learning discriminative feature refinement. Then,
the category-invariant feature refinement module fCIFR(·)
is introduced to decode different category heatmaps to the
corresponding pixel-level probabilistic predictions. More-
over, the features refined by the CIFR can be further adopted
to improve the performance of classification tasks. The
overall optimization function is formulated as follows:
L = LS

Cls(XS ,Yc
S) + LT

Cls(XT ,Yc
T ) + λLFR(XS ,Yp

S)
(1)

= `(fDSE(XS),Yc
S) + `(fDSE(XT ),Yc

T )+

+ λ`(fCIFR(fDSE−1(XS)),Yp
S),

where λ balances the weights of LCls and the feature re-
finement LFR loss, and `(·) denotes the cross-entropy loss.

3.2. Domain-Specific Task Learning

The basic disease classification frameworks used in most
previous works [19, 38, 45] typically adopt a classic deep
neural network (e.g. ResNet [22] or DenseNet [24]) and
optimize it with disease category information. Since image-
level disease category labels are easy to collect, a base-
line classification result and coarse localization map can
be obtained. In this work, we aim to optimize a DSE for
learning the source and target domain tasks simultaneously.
Both domains share convolutional (Conv) parameters to
constrain the encoder to learn domain-invariant represen-
tations. Since the two domains are usually from different
data sources and their disease categories have discrepancies,
both the low-level and high-level features have distribution
differences between the two domains. Thus, in addition to
exploiting separate task-specific classification losses to pre-
serve the disease discrepancy, we adopt a domain-specific
batch normalization (BN ) inspired by [3] to enhance the
learning of domain-invariant features.

To construct the DSE, DenseNet-121 [24] is adopted as
the backbone. The BN layer after each Conv layer for

different domains is learned separately. Domain-specific
affine parameters are allocated to estimate different batch
statistics for each domain. We expect the DSE to be able to
learn domain-invariant representations because the domain-
specific input information within the network can be effec-
tively removed via the captured statistics and learned pa-
rameters from the given domain. Note that the better the
domain-invariant features extracted by the DSE, the more
effectively the feature refinement module trained on the
source domain data can be transferred to the target domain.

3.2.1 Confidence Weighted Pooling

In addition to obtaining a preliminary classification result of
different diseases, the DSE is also able to compute coarse
heatmaps for different categories. In the image classifica-
tion task, weakly supervised methods [8, 50] using only
image-level labels usually adopt a class activation map
(CAM) [55] to compute a coarse heatmap for localizing
each category. The CAM for a particular category indi-
cates the discriminative image regions used by the network
to identify that category and can be used to interpret the
prediction decision made by the network. This localization
ability is enabled by the basic global average/max pooling
(GAP/GMP) layer. Although GAP and GMP have been
widely used, they are not trainable and the CAM may fail
to localize the most discriminative regions. Log-Sum-Exp
(LSE) pooling [43] introduces a hyper-parameter γ to serve
as an adjustable option between max pooling and average
pooling. However, LSE pooling is still not optimizable and
has overflow or underflow problems.

In this work, we propose a trainable CWP global pool-
ing method to enhance the original CAM with better local-
ization performance. Given the last-layer feature maps of
the DSE, the input image is represented as {x1,x2, ...,xN},
whereN denotes the number of image regions and xn is the
feature embedding of the n-th region. For each category, the
{xn}Nn=1 are passed forward to a 1× 1 Conv layer to com-
pute the class confidence score, which indicates the disease
possibility of each embedding. Rather than directly adopt-
ing the confidence score map as the localization map, we
further employ a sigmoid function σ(·) and normalize the
activation map to globally pool the {xn}Nn=1 by normalized
confidence weights. Then, during training, the pooled em-
bedding is passed forward to the same 1× 1 Conv layer to
learn image-level disease classification. In the test phase,
the probability map after σ(·) is adopted as the localization
map. Overall, the CWP is defined as:

x =

N∑
n=1

σ(wxn + b)∑N
n=1 σ(wxn + b)

xn, (2)

where w and b are the 1 × 1 Conv parameters for learn-
ing classifiers. The heatmaps marked in gray in Fig. 2 are
examples obtained by CWP-based CAM. CWP is used for
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Figure 2. Pipeline of the proposed method. The source domain data has pixel-level labels, while the target domain data only has image-
level labels. The DSE in green (DSE-1) is proposed to obtain preliminary classification results and category-specific coarse localization
maps(H n). The CCT-Net enables feature refinement and transfers such ability learned from the source domain, through CIFR blocks, to
implement segmentation for disease categories in the target domain. The enhanced features, focusing on more discriminative regions, are
further encoded by the domain-specific encoder in purple (DSE-2) to improve the disease classification performance.

both the source and target domain task learning. Although
the initial CWP-based CAM already discards large irrel-
evant regions to discriminate correct diseases, its coarse
heatmaps still contain some distracting information from
noise or misclassified categories. In this work, we aim to
refine these coarse heatmaps to fine-grained pixel-level pre-
dictions that delineate more discriminative regions, and also
transfer this refinement ability from the source to the tar-
get domain. Please note that CAM might not be the best
weakly-supervised localization method [8], but that is not
the primary concern of this work. We will investigate this
point specifically to enhance the CCT-Net in future work.

3.3. Category-Invariant Cross-Domain Transfer
Given images with pixel-level annotations, semantic seg-

mentation models [31, 13] are usually adopted to obtain
fine-grained predictions. However, in our task, only the
source domain XS is provided with pixel-level Yp

S , while
the target domain XT is unlabeled and contains different
categories. Thus, we propose the CCT-Net to transfer the
feature refinement ability learned from the source domain
to enable pixel-level segmentation for new categories in the
target domain. Moreover, the refined features can be further
used for improving the classification performance.

3.3.1 Category-Invariant Feature Refinement

The CCT-Net, stacking multiple sets of CIFR blocks, in-
herits some characteristics from the expansive module of

conventional image segmentation frameworks [46, 60] but
has essential differences. As shown in the top-left of Fig. 3,
to perform pixel-level segmentation, the standard expansive
path in segmentation networks usually decodes the bottle-
neck features of the input image into C-channel vectors
for C-category output masks. Essentially, the expansive
module takes one input and learns a C-channel classifier
at the end. However, for CCT-Net, category-specific coarse
heatmaps of different categories predicted by the DSE are
combined with the bottleneck features to construct multi-
ple inputs. The pipeline of CCT-Net is shown in the top-
right of Fig. 3. For each input tuple (i.e. bottleneck features
+ one category heatmap), CCT-Net refines the category-
specific features and predicts a one-channel output vector
supervised by the category’s ground truth mask. Note that
CCT-Net plays the role of classifying whether or not a pixel
belongs to a specific category conditioned on that category’s
coarse heatmap, rather than discriminating which category
a pixel should be. Thus, adopting tuples of different cate-
gories to train CCT-Net makes it category-invariant for fea-
ture refinement. Moreover, since the DSE is able to extract
domain-invariant features, CCT-Net can effectively transfer
the refinement ability learned from the source domain to all
categories in the target domain.

In this work, the CCT-Net consists of four CIFR blocks
whose operations are shown in the bottom of Fig. 3. In a
block of a certain scale, different category-specific coarse
heatmaps are first separately concatenated with the input
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Figure 3. Upper part: pipeline comparison of the standard expan-
sive path of segmentation networks [46] and the proposed CCT-
Net. Bottom part: structural details of the CIFR Block.

feature maps. The heatmaps obtained by CWP-based CAM
of the DSE are resized to fit the spatial size of the current
block. Next, two 1 × 1 Conv layers are added to reduce
the channel dimension for computing the attention mask
A ∈ RH×W , where H and W denote the width and height,
respectively. Then,A is normalized using the softmax func-
tion to obtain the final category-invariant attention α as:

α(x, y) =
eA(x,y)∑H

i=1

∑W
j=1 e

A(i,j)
, (3)

where α(i, j) denotes the value of the category-invariant at-
tention α at (i, j). We adopt α to weigh the input feature
maps and then conduct upsampling through bilinear inter-
polation. All the remaining operations of the CIFR block
are similar to the expansive path in [46]. A skip connection
from the same-scale dense block of the DSE is used for con-
catenation, which can recover spatial information lost dur-
ing downsampling. Finally, a 3 × 3 Conv layer is used to
compute the refined output feature maps. Please note that
the network parameters of the CCT-Net are only optimiz-
able when training on the source domain data with pixel-
level supervision, and fixed for the target domain data flow.

3.3.2 Feature-Enhanced Domain Task Learning

As mentioned, besides providing the pixel-level segmenta-
tion performance, CCT-Net essentially refines the feature
representations to delineate more discriminative regions. As
shown in purple in Fig. 2, we employ the same network ar-
chitecture as the DSE-1, except the firstConv layer, to build
a feature-enhanced DSE (DSE-2) to further improve disease
classification performance. We conduct element-wise max
on the last-layer feature maps of the CCT-Net along all the
categories and take the results as inputs of the DSE-2.

3.4. Implementation Details

Although our training scheme can adopt an end-to-end
strategy from the beginning, we observe better optimization
results when we pre-train the DSE-1 first and then add the
CCT-Net and feature-enhanced DSE-2 for combined train-
ing. This is because training the CCT-Net requires effective
category-specific heatmaps to be provided in the very first
stage. Moreover, the CCT-Net is only trained on the source
domain data flow due to its pixel-level supervision. Parame-
ter λ in Eq. 1 is set to 0.5 throughout our experiments, which
yields the best performance. Other hyper-parameters are set
as follows. The Adam optimizer is adopted with an ini-
tial learning rate of 0.001 and default parameters β1 = 0.9,
β2 = 0.999. The mini-batch size is set to 32.

4. Experiments and Results
4.1. Datasets and Evaluation Metrics

Ocular Diseases (Fundus Imaging) - FGADR [58]
is a fine-grained annotated DR dataset with 1,842 pixel-
level labeled images. The DR related lesions, including
microaneurysms (MA), hard exudates (EX), soft exudates
(SE), hemorrhages (HE), intra-retinal microvascular abnor-
malities (IRMA), and neovascularization (NV), are anno-
tated by three ophthalmologists. ODIR-5K [1] consists of
7,000 fundus images with multi-label image-level annota-
tions. The labels contain eight ocular disease categories,
including diabetes, glaucoma, cataract, age-related macular
degeneration (AMD), hypertension, myopia, normal, and
other diseases. Therefore, we adopt the FGADR and ODIR-
5K datasets as the source and target domain data, respec-
tively, in our task. Moreover, to obtain image-level labels
for the FGADR dataset, if the ground-truth mask of a cat-
egory has annotated spots, the corresponding image-level
label is marked as positive, and negative otherwise. The
evaluation of our task consists of two steps. The first step
is to evaluate the performance of the category-invariant fea-
ture refinement module at a pixel level (same as segmenta-
tion) using the dice score (Dice) and area under the curve
of precision-recall (AUC-PR). The second step is to evalu-
ate the multi-ocular-disease identification results at an im-
age level using the Cohen’s kappa, F-1 score, and AUC of
receiver operating characteristic (ROC).

Brain Diseases (MRI) - BraTS 2019 [39] provides
pre-operative multimodal MRI scans from 335 patients
and focuses on the segmentation of intrinsically hetero-
geneous brain tumors, namely glioma. Each patient case
contains 155 slices. The pixel-level annotations comprise
GD-enhancing tumors (ET), peritumoral edema (ED), and
necrotic and non-enhancing tumor cores (NET). We use
BraTS 2019 as the source domain data. BrainTumor [7]
has 3,064 T1-weighted contrast-enhanced (T1-ce) images
from 233 patients with three kinds of brain tumor: menin-
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gioma, glioma, and pituitary tumor. Both pixel-level and
image-level labels are provided. We use BrainTumor as
the target domain data, so its pixel-level annotations are
only used for testing. Please note that since BrainTumor
only has the T1-ce modality, we also only adopt the T1-ce
modality images of BraTS 2019 for consistency. The eval-
uation metrics for pixel-level segmentation are Dice and
Hausdorff (Haus.) distance, while accuracy and confusion
matrix are adopted to evaluate image-level classification.

4.2. Single-to-Multiple Ocular Disease Diagnosis
DR is the most widely studied eye disease, which can

damage the blood vessels in the back of the retina and lead
to blindness. In addition to DR, other ocular diseases, such
as glaucoma, cataracts, AMD, and hypertension, are also
important but have less research data. In this experiment,
we assess the CCT-Net’s ability to transfer the knowledge
learned from DR data to improve multiple ocular disease
diagnosis. Different pixel-level annotated lesion categories,
including MA, HE, SE, and EX from the FGADR dataset,
are used to train the CCT-Net. Their corresponding image-
level labels are used to train the DSE for the source domain.
Multi-disease image-level labels from the ODIR-5K dataset
are used to train the DSE for the target domain flow. We
study the effectiveness of our method in terms of both pixel-
level segmentation and image-level classification.

4.2.1 Evaluation of Pixel-Level Mask Segmentation

Our primary concern is to investigate the effectiveness of
the cross-domain category-invariant feature refinement of
the CCT-Net. We first validate this point by evaluating the
pixel-level segmentation performance and comparing the
masks refined by the CCT-Net with standard segmentation
networks. In this ocular task, since the pixel-level ground
truths of the target domain data are not available, we report
the segmentation results for the source domain in Table 1.
However, a qualitative visualization of pixel-level segmen-
tation for both the source and target domain is provided in
Fig. 4, which also effectively proves the transferability. The
quantitative results for evaluating the transferability to the
target domain will be given in the next task of brain MRI.

Multiple baselines and state-of-the-art segmentation
models are compared with our method in Table 1. First,
w/o-CCT does not apply CCT but directly resizes the
coarse map predictions (binarized by the threshold 0.2) ob-
tained by the CWP-based DSE-1 to the size of the ground
truths for evaluation. Moreover, to explore how the coarse
localization performance produced by different global pool-
ing operations affects the CCT-Net, the masks predicted
(binarized by the threshold 0.2) by our CCT-w-CWP for
segmentation are compared with those produced by three
other baselines: CCT-w-AVG, CCT-w-MAX, and CCT-w-
LSE. Four other traditional segmentation networks, includ-

Table 1. Ocular: segmentation performance in source domain. The
two best results are in red and blue. ‘w/o’=‘without’, ‘w’=‘with’.

Methods MA HE SE EX
Dice PR Dice PR Dice PR Dice PR

FCN-8s [37] 0.468 0.363 0.509 0.606 0.637 0.642 0.586 0.686
DL V3+ [6] 0.482 0.364 0.550 0.619 0.648 0.659 0.602 0.702
U-Net [46] 0.521 0.382 0.570 0.643 0.655 0.683 0.607 0.726

Att. U-Net [41] 0.536 0.435 0.576 0.678 0.689 0.712 0.637 0.762
w/o-CCT 0.453 0.359 0.471 0.554 0.633 0.638 0.569 0.653

CCT-w-AVG 0.493 0.369 0.553 0.622 0.651 0.658 0.599 0.705
CCT-w-MAX 0.491 0.368 0.552 0.622 0.649 0.655 0.596 0.703
CCT-w-LSE 0.517 0.383 0.567 0.640 0.663 0.681 0.616 0.723
CCT-w-CWP 0.542 0.452 0.591 0.687 0.709 0.721 0.644 0.768

Table 2. Ocular: classification results in target domain.
Methods Kappa F-1 AUC

B
as

el
in

e DSE-1-w-AVG 0.6556 0.9163 0.9274
DSE-1-w-MAX 0.6548 0.9155 0.9271
DSE-1-w-LSE 0.6561 0.9168 0.9279
DSE-1-w-CWP 0.6712 0.9195 0.9298

Tr
an

sf
er

DANN [17] 0.6934 0.9278 0.9381
MCD [47] 0.7296 0.9386 0.9477
ITL [58] 0.7348 0.9426 0.9498

DSE-1+CCT*+DSE-2 0.6747 0.9183 0.9309
DSE-1+CCT+DSE-2 B1 0.7253 0.9369 0.9448
DSE-1+CCT+DSE-2 B2 0.7508 0.9510 0.9583

ing FCN-8s [37], DeepLab v3+ [6] (s=8), U-Net [46], and
Attention U-Net [41], are also compared. Following [58], a
two-fold cross validation is adopted.

As shown in Table 1, we observe that the coarse
heatmaps obtained by DSE-1 using different global pool-
ing operations have different effects on the performance of
the CCT-Net. The CCT-w-AVG and CCT-w-MAX achieve
similar results but perform worse than the U-Net, since
these two basic global pooling methods do not have good
enough preliminary localization performance. Compared
to CCT-w-AVG, CCT-w-LSE increases the Dice and AUC
of PR by, on average, 1.7% and 1.8%, respectively, while
the performance is significantly improved by CCT-w-CWP,
with increases of 4.75% and 6.95% in terms of Dice and PR.
This illustrates that the CWP-based DSE-1 obtains better lo-
calization performance and benefits the training of the CCT-
Net. Once the CCT-Net is detached (i.e. w/o-CCT), the seg-
mentation performance using coarse maps is poor. More-
over, although traditional segmentation networks tackle the
segmentation task as a classification problem on each pixel
using C channels for the output classifiers, our category-
invariant feature refinement mechanism can also achieve
competitive segmentation performance to these, with even
a slight improvement. Fig. 4 shows various lesion regions
related to multiple diseases in target domain are segmented.

4.2.2 Evaluation of Image-Level Disease Classification

Although the target domain data does not have pixel-level
annotations, we validate whether the feature refinement
ability of the CCT-Net can be transferred from the source
domain to the target domain for improving the multi-disease
classification performance. We report the classification re-
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Figure 4. Qualitative results visualization of the pixel-level mask segmentation. Each row shows different disease categories.

sults for the target domain in Table 2. First, DSE-1 models
with different global pooling operations, including DSE-
1-w-AVG, DSE-1-w-MAX, DSE-1-w-LSE, and DSE-1-
w-CWP, are compared to provide baseline results with-
out using CCT. Moreover, to study the effectiveness of
CCT, DSE-1+CCT+DSE-2 B1 and DSE-1+CCT+DSE-
2 B2 are explored, which adopt the standard BN and
domain-specific BN in the DSE, respectively. To deter-
mine whether the performance improvements arise from the
novel model designs or the increase in parameters, we also
compare DSE-1+CCT*+DSE-2, which drops the supervi-
sion of CCT but still keeps the network in the pipeline. The
CWP global pooling is employed in the DSE of these three
methods. We also compare our model with three state-of-
the-art transfer learning methods DANN [17], MCD [47],
and ITL [58]. In MCD, pixel-level annotated data is added
to optimize the discrepancy loss for the source domain. Fol-
lowing [58], the training and testing set is split as 4:1 for
five-fold cross validation.

As shown in Table 2, for the baselines using DSE without
the CCT-Net, the CWP global pooling performs better than
other pooling methods. The Kappa of DSE-1-w-CWP is
slightly increased by 1.56% compared to that of DSE-1-w-
AVG. The transfer learning methods MCD and ITL, which
exploit the knowledge learned from the pixel-level anno-
tated source domain data, significantly increase the Kappa
by 5.84% and 6.36%, respectively, compared to DSE-1-w-
CWP. Our DSE-1+CCT+DSE-2 B1, adopting the features
refined by the CCT-Net, also improves the classification re-
sults in the target domain, with a Kappa increase of 5.41%.
Since there exists a difference in distribution between the
source and target domain data, enhancing the domain-
invariant feature extraction ability of the DSE can make the
CCT-Net perform category-invariant feature refinement for
the target domain better. We adopt the domain-specific BN
in the DSE, denoted as DSE-1+CCT+DSE-2 B2, to further
increase the Kappa by 2.55%. DSE-1+CCT*+DSE-2 illus-
trates that CCT is not effective when dropping the LFR.
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Table 3. Brain: segmentation performance in two domains. The
two best results are in red and blue. ‘w/o’=‘without’, ‘w’=‘with’.

So
ur

ce
D

om
ai

n

Methods ET ED NET
Dice Haus. Dice Haus. Dice Haus.

Su
pe

rv
is

ed

FCN-8s [37] 0.731 5.87 0.485 17.48 0.650 5.83
DL V3+ [6] 0.747 5.70 0.500 17.02 0.669 5.23
U-Net [46] 0.762 5.46 0.514 16.73 0.680 4.79

Att. U-Net [41] 0.775 5.23 0.528 16.25 0.701 4.52
w/o-CCT 0.608 9.71 0.424 20.18 0.604 9.83

CCT-w-AVG 0.745 5.67 0.499 17.03 0.669 5.18
CCT-w-MAX 0.743 5.88 0.497 16.94 0.661 5.31
CCT-w-LSE 0.763 5.42 0.521 16.56 0.683 4.71
CCT-w-CWP 0.786 5.08 0.541 15.96 0.714 4.38

Ta
rg

et
D

om
ai

n

Methods Meningioma Glioma Pituitary Tumor
Dice Haus. Dice Haus. Dice Haus.

Su
pe

rv
is

ed FCN-8s [37] 0.824 6.17 0.621 11.30 0.785 5.09
DL V3+ [6] 0.851 5.65 0.638 10.73 0.812 4.73
U-Net [46] 0.875 5.20 0.647 10.61 0.830 4.49

Att. U-Net [41] 0.889 4.97 0.665 10.28 0.849 4.15

W
ea

kl
yS

up
er

vi
se

d w/o-CCT 0.715 8.55 0.531 15.26 0.660 6.93
CCT-w-AVG 0.845 5.76 0.629 10.99 0.793 4.95
CCT-w-MAX 0.838 5.88 0.624 11.18 0.792 4.95
CCT-w-LSE 0.862 5.38 0.641 10.76 0.819 4.62

CCT-w-CWP B1 0.873 5.21 0.653 10.55 0.830 4.46
CCT-w-CWP B2 0.883 5.05 0.668 10.22 0.841 4.27

4.3. Single-to-Multiple Brain Tumor Identification
A brain tumor is a mass or growth of abnormal cells in

the brain. Many different types of brain tumors can be iden-
tified through brain MRI. Some brain tumors are benign,
while others are malignant. Glioma is the most frequent
primary brain tumor, which originates from glial cells and
infiltrates the surrounding tissues. Besides, meningioma
arises from the membranes that surround the brain and
spinal cord, and pituitary tumors are abnormal growths that
develop in the pituitary gland. In this experiment, glioma
data with pixel-level labels of ET, ED, and NET, provided
by BraTS 2019, are used to train the CCT-Net. The classi-
fication task in the target domain is to discriminate between
the three types of tumors, meningioma, pituitary tumor, and
glioma, from the BrainTumor dataset.

4.3.1 Evaluation of Pixel-Level Mask Segmentation

In this task, both the source and target domains have pixel-
level ground truths, but we still only adopt the source do-
main annotations to train the CCT-Net and the target do-
main annotations for testing. Thus, for the target domain,
our CCT-Net for segmentation is weakly supervised, which
can better illustrate the cross-domain transferability of our
method. For both the source and target domains, five-fold
cross validation based on patient IDs is adopted. In the tar-
get domain data flow, only the image-level category labels
of the training set are used. As shown in the target domain
results of Table 3, our weakly-supervised CCT-based meth-
ods can achieve competitive performance compared to the
traditional supervised segmentation networks trained us-
ing pixel-level labels. CCT-w-CWP B1, which adopts the
standardBN in the DSE, already slightly outperforms some
segmentation models, validating the category-invariant fea-

Table 4. Brain: classification accuracy in target domain. The two
best results are in red and blue. ‘w’=‘with’.

Methods Meningioma Glioma Pituitary Tumor

B
as

el
in

e DSE-1-w-AVG 0.8863 0.9194 0.9275
DSE-1-w-MAX 0.8845 0.9205 0.9282
DSE-1-w-LSE 0.9048 0.9379 0.9441
DSE-1-w-CWP 0.9067 0.9394 0.9438

Tr
an

sf
er

DANN [17] 0.9092 0.9409 0.9472
MCD [47] 0.9123 0.9446 0.9531
ITL [58] 0.9159 0.9472 0.9555

DSE-1+CCT*+DSE-2 0.9061 0.9389 0.9442
DSE-1+CCT+DSE-2 B1 0.9246 0.9503 0.9560
DSE-1+CCT+DSE-2 B2 0.9379 0.9568 0.9614

DSE-1 Meningioma Glioma Pituitary 
Tumor

Meningioma 90.67% 2.35% 6.98%
Glioma 1.94% 93.94% 4.12%

Pituitary Tumor 2.89% 2.73% 94.38%

DSE-1

DSE-1+CCT+DSE-
2_B2

Meningioma Glioma Pituitary 
Tumor

Meningioma 93.79% 2.11% 4.10%
Glioma 1.44% 95.68% 2.88%

Pituitary Tumor 2.32% 1.54% 96.14%

DSE-1+CCT+DSE-2_B2

Figure 5. Comparison of confusion matrix and feature visualiza-
tion for DSE-1 and DSE-1+CCT+DSE-2 B2.

ture refinement ability of the CCT-Net. Moreover, CCT-w-
CWP B2, which uses the domain-specific BN in the DSE
to learn better domain-invariant representations, further im-
proves the CCT in terms of cross-domain transferability.
Some qualitative results are visualized in the bottom part
of Fig. 4. We also compare our method to some weakly-
supervised models [28, 25, 2] in the supplementary file.

4.3.2 Evaluation of Image-Level Disease Classification

The training and testing split in this study is the same as the
split for pixel-level mask segmentation. Since the target do-
main task is single-label disease category classification, the
classification accuracies are shown in Table 4. The aver-
age accuracy for the three brain tumors is increased by our
fully-equipped DSE-1+CCT+DSE-2 B2, with an increase
of 2.21% compared to DSE-1-w-CWP. To better demon-
strate the detailed improvements by the CCT-Net, we also
visualize the discriminative feature space and the confusion
matrix of the two compared methods in Fig. 5.

5. Conclusion
We propose to extend single-disease to multi-disease di-

agnosis to better serve clinical needs. The CCT-Net is de-
signed for category-invariant cross-domain transfer to learn
knowledge from source domain to improve the results of
target domain. We validated our method in two popular
medical imaging areas. This work was supported by the
National Natural Science Foundation of China (62106043).
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