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Abstract

Knowledge Distillation (KD) aims at transferring knowl-
edge from a larger well-optimized teacher network to a
smaller learnable student network. Existing KD methods
have mainly considered two types of knowledge, namely the
individual knowledge and the relational knowledge. How-
ever, these two types of knowledge are usually modeled in-
dependently while the inherent correlations between them
are largely ignored. It is critical for sufficient student net-
work learning to integrate both individual knowledge and
relational knowledge while reserving their inherent corre-
lation. In this paper, we propose to distill the novel holis-
tic knowledge based on an attributed graph constructed
among instances. The holistic knowledge is represented as
a unified graph-based embedding by aggregating individ-
ual knowledge from relational neighborhood samples with
graph neural networks, the student network is learned by
distilling the holistic knowledge in a contrastive manner.
Extensive experiments and ablation studies are conducted
on benchmark datasets, the results demonstrate the effec-
tiveness of the proposed method. The code has been pub-
lished in https://github.com/wyc-ruiker/HKD

1. Introduction
Deep Neural Networks (DNNs) have shown tremendous
success in various applications [11, 26, 10, 25, 7, 36]. How-
ever, their success heavily relies on extensive computational
and storage resources, which are usually unavailable in em-
bedded and mobile systems. To reduce the cost while main-
taining satisfactory, knowledge distillation [12] is proposed
to transfer knowledge from a larger well-trained teacher
network to a smaller learnable student network, hoping that
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Figure 1. Comparison between Individual/Relational/Holistic
Knowledge Distillation. The blue circle indicates the teacher rep-
resentation, and the green circle indicates the student represen-
tation. The red arrow denotes the knowledge transfer from the
teacher network to the student network. The yellow area in the
holistic KD indicates the unified graph-based representation.

the transferred knowledge will benefit the student network.
The knowledge distilled from the teacher network has

played the central role in knowledge distillation. Among
existing knowledge distillation methods, two types of
knowledge have been widely studied, namely the individ-
ual knowledge and the relational knowledge. The individ-
ual knowledge is extracted from each data instance inde-
pendently and provides more favorable supervision than the
discrete labels, including logits [12], feature representations
[27, 21] and feature maps [24, 35, 17], etc. The relational
knowledge [22, 18, 20, 16] is extracted from pairs of in-
stances which is invariant to the difference between archi-
tectures of the teacher network and the student network.

Despite the success of the above two types of knowl-
edge, existing methods have extracted them independently,
ignoring their inherent correlations. However, each type of
knowledge that extracted independently will be insufficient
for the student network learning, especially when the ca-
pability of the teacher network is limited. Intuitively, the
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individual knowledge and the relational knowledge can be
treated as two views of the same teacher network, which are
naturally correlated. The closely related instances tend to
have similar individual features and shared patterns, which
is critical for more discriminative student network learn-
ing. Simultaneously integrating the individual and rela-
tional knowledge while reserving their inherent correlation
is of primal importance for knowledge distillation.

To resolve the above limitations, we propose the Holistic
Knowledge Distillation (HKD) method with graph neural
networks. We introduce a novel holistic knowledge which is
an integration of both individual knowledge and relational
knowledge. Given the feature representations and predic-
tions learned by the teacher and the student network, we
first build an attributed graphs for each network, where each
node denotes an instance, the node attributes denote the
learned feature representation, the edges among instances
are constructed by the K-nearest-neighbor (KNN) on the
predictions. Inspired by the recent success of Graph Neu-
ral Networks (GNNs) [10, 16] in simultaneously model-
ing network topology and node attributes, we extract the
holistic knowledge by aggregating node attributes from the
neighborhood samples in the attributed graph, represented
as a unified graph-based embedding. Figure 1 illustrates
the comparison among the individual, relational and holis-
tic knowledge. We also theoretically prove that existing
individual knowledge and relational knowledge are special
cases of holistic knowledge under certain conditions.

Given the holistic knowledge represented by graph-
based embedding, a naive way of knowledge distillation is
directly aligning the embedding of the same instance from
the teacher and the student network. However, since the stu-
dent network usually has lower capability than the teacher
network, force aligning the graph-based embedding is too
strict for transferring the shared patterns in the neighbor-
hood and holistic knowledge. Instead, HKD aims at max-
imizing the mutual information between the graph-based
representation from the teacher and the student network,
which is optimized with InfoNCE estimator[19] in a con-
trastive manner. The holistic knowledge guides the student
network learning in two ways: first, the student should learn
similar instance features and relational neighborhood as the
teacher network; second, the student should capture similar
patterns from the neighborhood instances in the attributed
graph. The memory bank technique is also employed to fur-
ther improve the training efficiency. To conclude, we sum-
marize our contributions as follows:

1. We propose Holistic Knowledge Distillation (HKD), a
novel method to efficiently distill holistic knowledge
for the student network learning.

2. The proposed HKD method employs graph neural net-
works to simultaneously integrate both the individual

and relational knowledge into a unified representation,
where their inherent relationship can be reserved.

3. We conduct extensive experiments on benchmark
datasets to evaluate the performance of HKD and moti-
vation of holistic knowledge, the results demonstrates
the effectiveness of the proposed HKD method.

2. Related Work
Knowledge Distillation. Knowledge distillation was

first introduced as a neural network compression technique
that minimizes the KL-divergence between the output log-
its of teacher and student networks [1, 12]. Compared with
discrete labels, the relative probabilities predicted by the
teacher network tend to encode semantic similarities among
categories, which are important for the student network
learning [12]. Some subsequent works have been proposed
to widen its applicability, such as adding regularization on
the logits [30, 3], intermediate layers [24, 35, 4, 17] or dis-
tillation process [33, 34].

However, the above mentioned methods distill knowl-
edge contained in each instance independently but ig-
nore the relationship among instances, which is critical to
achieve a robust and general student model. To make up
this shortcoming, relational knowledge distillation [20] is
proposed by distilling both instance-wise and relation-wise
knowledge. Given particular layer l, GKD [14] build a
KNN-based graph on the cosine similarity of the inner rep-
resentation and the weights represent the strength of prox-
imity between two instances. However, it requires the
layer number of the teacher and student network are same,
which is not always satisfied. IRG [18] is then proposed
by introducing feature space transformation across layers.
In MHGD [16], the relation-level knowledge is distilled
to a graph using an attention network and optimized by
minimizing the KL-divergence between the embedded the
teacher and student graphs. Recent works [27, 32] have
incorporated contrastive learning and achieve inspiring re-
sults. CRD [27] performs contrastive learning by maximiz-
ing the mutual information between the teacher and student
networks. SSKD [32] performs contrastive learning sepa-
rately in the teacher and student networks, then the model
is optimized by minimizing the loss between the output of
self-supervised module from two networks. To clearly show
the most critical contribution of our method, we do not uti-
lize the intermediate information and compare with those
methods relying on it in the experimental part.

Graph Neural Network. Graph Neural Networks
(GNNs) [13, 10] aim at learning node representation by
collectively aggregate information from neighborhood in-
stances in graph structure data. The learned representa-
tion can model individual features as well as relationship
between instances which is critical for data understand-
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ing. Profit from this property, GNNs have made remark-
able advancements in a great many learning tasks beyond
network/graph representation [37, 39, 38], including com-
puter vision [9, 15], natural language processing [23, 2] and
recommendations[6, 5] etc. Although success in other do-
mains, to the best of our knowledge, GNNs has not be ex-
plored to knowledge distillation and we are the first one to
do so.

3. Preliminaries
3.1. Background and Notations

Given a dataset X = {x1,x2, · · · ,xN} from K cate-
gories with corresponding labels Y = {y1,y2, · · · ,yN},
where N represents the number of samples in the dataset.
We refer a well-optimized deep neural network with fixed
parameters Wt as the teacher network and a relatively shal-
low neural network with trainable parameters Ws as the
student network [12]. The feature representations learned
by the teacher and student networks are denoted as f t ∈ Rdt

and fs ∈ Rds

, which are mainly used in relational knowl-
edge distillation. It is worth noting that dt and ds may be
different especially when the teacher and the student net-
work architectures are different. The logits predicted by
the teacher and student networks are denoted as zt and zs,
which are mainly used in individual knowledge distillation.

3.2. Vanilla Knowledge Distillation

The general idea of vanilla knowledge distillation is to
distill knowledge from soft targets predicted by the teacher
network [12]. The soft targets are produced by Softmax
function with temperature scaling:

pi(z; τ) = Softmax(z; τ) =
ezi/τ∑K

k=1 e
zk/τ

(1)

where zi is the corresponding logit of the i-th class and tem-
perature τ is normally set to 1. Using a higher value for τ
will produce a softer probability distribution over classes.
The student network is then optimized by minimizing the
Kullback-Leibler (KL) divergence between soft targets pt

and ps produced by the teacher and the student networks:

LKD(ps,pt) =
1

N

N∑
i=1

KL
(
ps,pt

)
(2)

In vanilla KD, the student network is also trained with the
hard labels and the total loss can be formalized as:

L = LCE(p
s,y) + λLKD(ps,pt) (3)

where λ is a balancing weight. LCE is the Cross-Entropy
(CE) loss between the hard labels and prediction.

4. Model

As mentioned earlier, holistic knowledge is expected to
integrate both individual knowledge and relational knowl-
edge. Inspired by recent success of graph neural networks
in simultaneously modeling the network topology and node
attributes, we utilize graph neural networks to extract holis-
tic knowledge from the teacher network. In the following
subsection, we will elaborate on the details of the proposed
holistic knowledge distillation (HKD) method.

4.1. Attributed Context Graph Construction

Given a batch of instances, we first feed them into the
teacher network and the student network to get the feature
representations f t, fs as well as prediction pt,ps. Then
we build two attributed graphs Gt = {At,Ft} and Gs =
{As,Fs} for the teacher network and the student network,
where Ft ∈ RN×dt

,Fs ∈ RN×ds

are the attributes of
nodes in the graph, here we directly use the feature repre-
sentations learned by the teacher and the student networks;
At,As are the adjacent matrices of the attributed graphs
which are based on the prediction pt,ps predicted by the
teacher and the student networks:

At = ϕ(pt), As = ϕ(ps) (4)

where ϕ(·) is the KNN-based graph construction function.
Note that the graph Gt is fixed since the teacher network
has been well optimized while the graph Gs will be updated
during training in both node attributes and graph topology.

The attributed graph defined above enjoys the follow-
ing properties: First, compared with fully connected graph
among instances built by existing relational knowledge dis-
tillation methods, the KNN graph will filter out the most
incorrelated sample pairs. This is particular important since
only a few samples are correlated in randomly sampled
batches and provide sufficient information for the node rep-
resentation learning. Second, the graph is able to model
the inter-class and intra-class information since the edges
are constructed based on prediction. The samples from
two highly correlated classes will have a high probability
to form an edge. Finally, it is straightforward to jointly ex-
tract both the individual and relational knowledge from the
attributed context graph with graph neural networks.

4.2. Holistic Knowledge Distillation

Inspired by the tremendous success of graph neural net-
works in simultaneously modeling the network topology
and node attributes, we apply Topology Adaptive Graph
Convolution Network (TAGCN) [8, 13] on the attributed
context graphs Gt and Gs to extract the holistic knowledge.
We use the graph-based representations Ht ∈ RN×gt

and
Hs ∈ RN×gs

of the teacher and student networks to denote
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Figure 2. The overall framework of the HKD Method. Three major components are carefully designed: graph construction, graph neural
networks, and mutual information estimation to represent, define, and distill the holistic knowledge. The student model is trained under
the guidance of ground truth labels and mutual information of the holistic knowledge.

the holistic knowledge, which can be calculated as:

Ht =

L∑
l=0

(
D

−1/2
t AtD

−1/2
t

)l

FtΘt
l (5)

Hs =

L∑
l=0

(
D−1/2

s AsD−1/2
s

)l

FsΘs
l (6)

where gt, gs are the dimension of the graph-based repre-
sentation, Dt =

∑
j At

ij is the diagonal degree matrix of
the teacher network and so is the Ds matrix, Θs

l and Θt
l are

the learnable weights to sum the results of l-th hops together
and we set L = 1 here.

A good student network is expected to distill holistic
knowledge from the teacher network by learning similar
graph based repesentation Hs with Ht. There exists several
vector-wise metrics for measuring their alignment, includ-
ing the Cosine Similarity, Euclidean distance, etc. How-
ever, these metrics are not suitable for holistic knowledge
distillation since the teacher and the student networks usu-
ally have different network architectures, there exists a gap
between the representation capability. As a result, directly
aligning the graph-based representation Hs and Ht of the
same instance may be over refine. To overcome the limita-
tions, we use the Mutual Information (MI) [28] to measure
the amount of holistic knowledge distilled from the teacher
network to the student network.

Assume that we are given a set of training instances X
with an empirical probability distribution P, after pushing
instances through the teacher and the student networks, the
graph-based representations will obey the probability distri-
bution Ht ∼ Pt and Hs ∼ Ps. We wish to train the student

network by maximizing the mutual information between the
graph-based representations Ht and Hs:

LHOL
Ws,Θt,Θs

= −I(Ht,Hs) (7)

where I(·) denotes the mutual information between two ran-
dom variables. Inspired by recent success in mutual infor-
mation estimation, we use the InfoNCE estimator [19] to
measure the mutual information, which is defined as:

I(Ht,Hs) ≥ E

[
1

N

N∑
i=1

log
ef(h

t
i,h

s
i )

1
N

∑N
j=1 e

f(ht
i,h

s
j)

]
(8)

where f(·) is the vector-wise similarity function and we use
cosine similarity here, ht

i,h
s
i are the graph-based represen-

tations of instance i learned by the teacher network and the
student network. The objective of holistic knowledge distil-
lation can be formulated as:

L = LCE + βLHOL (9)

where β is the weight for linear combination.

4.3. Efficient Training

Since the InfoNCE estimator uses all the instances in the
dataset as negative samples, computing the holistic knowl-
edge distillation loss with graph neural networks is compu-
tational expensive for large scale dataset. To avoid recom-
puting the representations for each instance during training,
the widely used Memory Bank [31] strategy is used for stor-
ing them. However, in the HKD method, the attributed con-
text graph Gt and Gs are constructed on mini-batch with
randomly sampled instances. As a result, the graph-based
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representations Ht and Hs reflect holistic knowledge in dif-
ferent attributed graphs, which should not be stored in mem-
ory bank and serve as negative samples. To overcome this
limitation while improve the efficiency of the HKD method,
we maintain two memory banks for the teacher network and
the student network, where the feature representation f t, fs

are stored and serve as the negative samples for training.
The approximate holistic knowledge distillation loss can be
formulated as:

L̃HOL =

N∑
i=1

log
ef(h

t
i,h

s
i )

ef(h
t
i,h

s
i ) +

∑N
j=1,j ̸=i e

f(ht
i,f

s
j )

+log
ef(h

s
i ,h

t
i)

ef(h
s
i ,h

t
i) +

∑N
j=1,j ̸=i e

f(hs
i ,f

t
j )

(10)

The overall framework of the HKD method is illustrated in
Algorithm 1.

Algorithm 1 Holistic Knowledge Distillation.
Input: Training dataset D = {(xi,yi)}Ni=1; A pre-trained

teacher model with parameter Wt; A student model
with random initialized parameters Ws;

Output: A well-trained student model;
1: while Ws is not converged do
2: Sample a mini-batch B with size b from D.
3: Forward propagation B into Wt and Ws to obtain

feature representation f t, fs and prediction pt,ps.
4: Construct attributed context graph Gt and Gs.
5: Extract holistic knowledge with graph neural net-

works by Equation (5),(6).
6: Calculate the Mutual information between graph-

based representation as Equation (10).
7: Update parameters Ws by backward propagation

the gradients of the loss in Equation (9).
8: end while

4.4. Analysis with Existing Methods

To further show the generality of HKD, we provide a the-
oretical analysis that many existing knowledge distillation
methods can be viewed as the special cases of our method
with certain conditions.

Feature-based KD Methods. Feature-based KD meth-
ods are popular which only distill the feature representation
learned by the teacher network. Compared with HKD, these
methods [29, 12, 35, 21] ignore the relationship among in-
stances, which can be achieved by setting the L = 0 or
A = diag(N) in HKD:

Ht = FtΘt, Hs = FsΘs (11)

where diag(·) is the diagonal matrix.

Relational KD Methods. The pairwise relationship of
instances captured by these methods [20, 22, 29, 27] can
be easily reached by setting the feature matrix Ht,Hs ∈
RN×N as the simialrity of feature representation Ft,Fs:

Ht = φ(Ft,Ft), Hs = φ(Fs,Fs) (12)

where φ(·) is the vector-wise similarity function. For the
methods that do not estimate mutual information, they can
be viewed as a special formation of Equation (8) without
negative samples.

5. Experiment
In this section, we first conduct model compression and

representation transferability experiments on benchmark
datasets to evaluate the proposed HKD method. Then we
conduct several ablation studies on graph construction and
graph neural networks to validate their effectiveness. Fi-
nally, we provide the experimental analysis on the hyperpa-
rameter sensitivity of the HKD method.

5.1. Baselines

Several recently proposed knowledge distillation meth-
ods are compared, which can be categorized into two
groups. Their main difference is presented in Figure 1.

(1) Individual Knowledge Distillation: This group of
methods capture knowledge contained in individual in-
stances, including the logits in vanilla KD [12], the attention
map in AT [35], and feature representation in CRD [27] and
SSKD [32].

(2) Relational Knowledge Distillation: This group of
methods capture pairwise relational knowledge, including
PKT [21], RKD[20], CCKD [22], SP[29].

We use the official implementation for these methods
and follow the standard experimental settings. For the
SSKD method, we remove the data augmentation so that
the training samples are consistent with other methods.

5.2. Model Compression

Experimental Setup. Model compression is one of the
most fundamental applications of knowledge distillation.
The student network is learned by distilling knowledge from
a fixed teacher network and ground truth labels. We com-
pare our method with several recent works with different
teacher and student network architectures on CIFAR100,
TinyImageNet and ImageNet datasets, as shown on Table 1,
Table 2 and Table 3 respectively. All results are reported as
the mean and variance of classification accuracy with five
runs. In order to obtain an intuitive sense about quantita-
tive improvement, we adopt Average Relative Improvement
(ARI) as the previous work [27]:

ARI =
1

M

M∑
i=1

AcciHKD − AcciBKD

AcciBKD − AcciSTU
× 100% (13)
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Table 1. Test accuracy (%) of the student networks on the CIFAR100 dataset of combining distillation methods with KD.

Teacher
Student

ResNet32×4
ResNet8×4

ResNet32×4
ShuffleNetV2

VGG13
MobileNetV2

ResNet50
VGG8

ResNet50
MobileNetV2 ARI (%)

Teacher
Student

79.42
72.79 ± 0.26

79.42
72.63 ± 0.71

74.64
65.33 ± 0.63

79.34
70.56 ± 0.32

79.34
65.33 ± 0.63 /

KD 73.55 ± 0.20 75.38 ± 0.52 68.08 ± 0.24 73.76 ± 0.09 67.83 ± 0.46 126.48 %
AT+KD 74.80 ± 0.15 76.51 ± 0.16 66.37 ± 0.13 73.91 ± 0.24 66.81 ± 0.11 152.84 %

PKT+KD 74.68 ± 0.07 76.16 ± 0.16 68.08 ± 0.94 74.19 ± 0.27 68.42 ± 0.39 55.63 %
SP+KD 73.99 ± 0.05 76.02 ± 0.34 68.46 ± 0.37 73.50 ± 0.20 68.18 ± 0.57 80.89 %
CC+KD 74.44 ± 0.14 75.81 ± 0.20 68.54 ± 0.21 73.48 ± 0.16 68.92 ± 0.16 58.96 %

RKD+KD 74.18 ± 0.09 75.64 ± 0.24 68.24 ± 0.46 73.81 ± 0.11 68.52 ± 0.14 72.15 %
CRD+KD 75.64 ± 0.25 76.41 ± 0.36 69.82 ± 0.22 74.41 ± 0.31 69.86 ± 0.04 15.32 %
SSKD+KD 75.80 ± 0.58 76.36 ± 0.38 69.12 ± 0.54 74.68 ± 0.22 69.53 ±0.43 18.86 %

HKD 75.63 ± 0.22 76.31 ± 0.30 69.97 ± 0.42 74.86 ± 0.17 69.83 ± 0.15 12.94 %
HKD+KD 76.13 ± 0.05 76.92 ± 0.22 70.48 ± 0.25 74.88 ± 0.30 70.72 ± 0.32 /

Table 2. Test accuracy (%) of the student networks on the TinyImageNet dataset of combining distillation methods with KD.

Teacher
Student

ResNet32×4
ResNet8×4

ResNet32×4
ShuffleNetV2

VGG13
MobileNetV2

ResNet50
VGG8

VGG13
VGG8 ARI (%)

Teacher
Student

57.92
49.91 ± 0.16

57.92
50.60 ± 0.23

52.02
44.20 ± 0.22

55.44
47.00 ± 0.17

52.02
47.00 ± 0.17 /

KD 52.28 ± 0.07 57.27 ± 0.03 45.39 ± 0.59 51.50 ± 0.36 51.34 ± 0.08 123.18 %
AT+KD 54.79 ± 0.23 57.56 ± 0.38 45.13 ± 0.60 51.42 ± 0.42 51.03 ± 0.28 122.61 %

PKT+KD 54.11 ± 0.18 58.33 ± 0.36 47.73 ± 0.31 51.45 ± 0.28 51.61 ± 0.28 35.51 %
SP+KD 54.22 ± 0.41 58.66 ± 0.25 48.10 ± 0.59 51.70 ± 0.12 51.51 ± 0.32 29.98 %
CC+KD 54.08 ± 0.32 58.20 ± 0.06 47.67 ± 1.14 50.87 ± 0.20 51.07 ± 0.33 44.12 %

RKD+KD 53.78 ± 0.15 57.85 ± 0.24 48.10 ± 0.26 51.01 ± 0.23 50.59 ± 0.32 46.70 %
CRD+KD 55.53 ± 0.41 58.95 ± 0.05 49.12 ± 0.04 52.87 ± 0.30 52.25 ± 0.26 7.88 %

SSKD+KD 55.10 ± 2.05 57.48 ± 0.04 47.02 ± 0.90 52.36 ± 0.36 51.60 ± 0.16 35.51 %

HKD 55.53 ± 0.07 58.83 ± 0.09 49.53 ± 0.32 52.20 ± 0.20 51.97 ± 0.33 10.48 %
HKD+KD 56.18 ± 0.12 59.31 ± 0.01 49.57 ± 0.54 53.30 ± 0.33 52.62 ± 0.03 /

where M is the number of different architecture combina-
tions and AcciHKD,AcciBKD,AcciSTU refer to the accuracy of
HKD, baseline knowledge distillation methods and regular
trained student network.

Results and Analysis. The basic observation is that our
method outperforms the conventional student network and
baseline methods on most teacher and student pairs. Even
without KD loss, our proposed HKD method still achieves
comparable performance. This demonstrates the effective-
ness of HKD method in distilling holistic knowledge from
the teacher network to guide the student network learning.

We also find that the existing relational knowledge dis-
tillation methods can not always outperform the individual
knowledge distillation methods. This implies that the noisy
signal due to aligning all pairs of relations among instances
may hurt the student network learning, motivating our KNN
based graph construction for noise filtering. Another inter-

esting observation is that the HKD method is not restricted
to the same teacher and student network architecture. More
surprisingly, we find that the HKD method sometimes gains
slightly more improvement over conventional student net-
work when the teacher and the student networks have dif-
ferent architectures. For example, on the TinyImageNet
dataset, when the teacher network is fixed to ResNet32×4
architecture, the student gains 12.56 % improvement with
ResNet8×4 architecture. However, 17.21 % improvement
over conventional student network is gained when the stu-
dent uses ShuffleNetV2. When the student network is fixed
with VGG8 architecture, 11.95 % improvement is gained
when the teacher network uses VGG13 architecture. How-
ever, 13.4 % improvement is gained when the teacher net-
work uses ResNet50 architecture. This demonstrates the
advantage of utilizing mutual information to measure the
teacher and student networks’ alignment since it is not re-
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Table 3. Test accuracy (%) of the student networks on the ImageNet dataset. The results of competing methods are obtained from [4].
Method Teacher Student KD FitNet AT SP VID CRD HKD

Top-1 Accuracy 73.54 53.78 53.73 51.46 52.83 51.73 53.97 53.76 54.07

Table 4. Representation transferability experiments of the student
network. The student network is trained on the CIFAR100 dataset
and transferred to the TinyImageNet and the STL10 dataset. A
linear classifier is evaluated on the frozen representations of the
student network.

Dataset TinyImageNet STL-10
T:ResNet50 30.79 ± 0.01 70.16 ± 0.07

S:MobileNetV2 23.01 ± 0.05 61.42 ± 0.10
KD 22.92 ± 0.13 61.25 ± 0.09

AT+KD 25.02 ± 0.01 62.05 ± 0.06
PKT+KD 26.04 ± 0.11 63.71 ± 0.05
SP+KD 24.98 ± 0.08 62.25 ± 0.13
CC+KD 25.68 ± 0.03 62.52 ± 0.10

RKD + KD 26.10 ± 0.03 63.26 ± 0.03
CRD + KD 28.98 ± 0.05 65.87 ± 0.10

SSKD + KD 24.24 ± 0.02 61.78 ± 0.02
HKD + KD 30.55 ± 0.03 67.28 ± 0.08

stricted to the same network architectures.

5.3. Representation Transferability

Experimental Setup. To evaluate the transferability of
representations learned by the student network, we follow
the experiment setting of existing works [27, 21, 35] and
compare HKD with multiple baseline methods. We first
train the student network on the CIFAR100 dataset, and
employ it to get representations of each data instance on
the TinyImageNet and STL-10 datasets. Then, we froze
these representations and evaluate the performance with a
randomly initialized linear classifier to measure the student
network’s transferability.

Results and Analysis. Table 4 shows the experimen-
tal results of representation transferability from CIFAR100
dataset to TinyImageNet and STL10 datasets. Among them,
HKD achieves better performance on all the transferred
datasets, which proves the transferability of representations
learned by the HKD method. We also observe that the con-
ventional KD method performs worse than the student net-
work. This indicates that only transferring the logits to the
student network will limit the transferability of representa-
tions, motivating the HKD to transfer the holistic knowl-
edge in a unified framework.

5.4. Ablation Study

To further show the benefit of distilling holistic knowl-
edge, we design ablation studies on the CIFAR100 dataset.
We test both similar and different architectures for the
teacher and the student networks.
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Figure 3. Ablation study on the definition of holistic knowledge
for the HKD method on the CIFAR100 dataset.
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Figure 4. Ablation study on the training strategy for the HKD
method on the CIFAR100 dataset.

Graph Construction and Graph Neural Networks. In
the HKD method, graph construction and graph neural net-
works play a critical role in defining holistic knowledge.
To explore the impact of different graph construction strate-
gies, we test two graph construction strategies: random
graph construction (Rand) and fully connected graph con-
struction (FC). To demonstrate graph neural networks’ su-
periority in combining the graph topology and the instance
features, we compare two basic graph-based representation
learning strategies: sum-pooling (Sum) and mean-pooling
(Mean).

Figure 3 illustrates the ablation study results. We can
observe that the HKD method that utilizes K-Nearest-
Neighbors and graph neural networks achieves the best
performance, demonstrating the effectiveness of the HKD
method.

Training Strategy. In the HKD method, we utilize mu-
tual information with a graph-independent memory bank to
guide holistic knowledge transfer. To verify the advantage
of such a training strategy, we compare with the following
strategies: the first one is the Mean Square Error (MSE) to
measure the similarity between representations; the second
one is the JS-divergence (JSD) with few negative samples
in each mini-batch without memory bank; the third one is
using memory bank (MB) to store the graph-based repre-
sentations directly.

Figure 4 illustrates the ablation study results. We can ob-
serve the HKD method achieves better performance than the
compared strategies, demonstrating the effectiveness of us-
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Figure 5. HeatMap visualization of four networks. The color de-
notes the strength of the similarity between pairs of instances.

ing the mutual information to measure the alignment, using
the InfoNCE to estimate mutual information and memory
bank for efficient training.

5.5. Visualization and analysis

To delving into essence beyond results, we perform anal-
ysis based on visualization. We first train a network and
then randomly select a batch of data with 32 instances.
These instances are fed into four networks: the teacher net-
work, the student network, CRD, and HKD. We use cosine
similarity to measure the pairwise similarity between the
prediction and use different colors to represent the different
strength of similarity.

Figure 5 illustrates the experimental result. Each block
represents the pairwise cosine similarity between two in-
stances. The darker color denotes higher cosine similar-
ity while the lighter color denotes lower cosine similarity.
From this figure, we have the following observations: First,
most pairs have superficial similarities among the batch in-
stances. This means most pairs of instances are not similar
to each other, which motivates the HKD method of mod-
eling the holistic knowledge instead of studying relation-
ships between all pairs of instances. Second, compare with
the student network and the CRD network, our proposed
HKD method have a more similar visualization result to
the teacher network. This demonstrates the effectiveness
of the HKD method in distilling holistic knowledge from
the teacher network.

5.6. Hyperparameter Tuning

In this subsection, we tune hyperparameters on the CI-
FAR100 dataset to test the sensitivity of the HKD method.
More specifically, we test the number of neighbors in K-
Nearest-Neighbor and the β in the loss function.

Figure 6-(a) and Figure 6-(b) illustrate the impact of the
number of nearest neighbors. The basic observation is that
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Figure 6. Hyper-parameter tuning of the HKD method. The first
row of subfigures denotes the hyperparameter tuning results on
the number of neighbors. The second row of subfigures denotes
the hyperparameter tuning results on β.

HKD is not very sensitive to the number of neighbors in
graph construction as the performance varies a little with
different numbers of neighbors. We get both the best per-
formance in the two tested teacher network and student
network architectures when we select 8 neighborhood in-
stances. When the number of neighbors goes larger than 8,
we observe a decrease in performance, which is related to
the over smoothing of graph neural networks. Figure 6-(c)
and 6-(d) illustrate the impact of β on the HKD method. We
can observe that the HKD method slightly varies with dif-
ferent β. This is reasonable as the holistic knowledge is of
different importance with different β.

6. Conclusion
This paper proposes a holistic knowledge distillation

method (HKD) with graph neural networks. Compared with
existing methods, the holistic knowledge integrates the in-
dividual and the relational knowledge while reserving their
inherent correlations. The graph neural networks (GNNs)
are utilized to extract the holistic knowledge by aggregating
feature representation from relational neighborhood sam-
ples. The student network is trained under the supervision
of holistic knowledge in a contrastive manner. Extensive
experiments are conducted on benchmark datasets to evalu-
ate the performance and the motivation of HKD, the results
demonstrate the effectiveness of the HKD method.
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