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Abstract

Based on the relaxed search space, differential architec-
ture search (DARTS) is efficient in searching for a high-
performance architecture. However, the unbalanced com-
petition among operations that have different trainable pa-
rameters causes the model collapse. Besides, the inconsis-
tent structures in the search and retraining stages causes
cross-stage evaluation to be unstable. In this paper, we
call these issues as an operation gap and a structure gap in
DARTS. To shrink these gaps, we propose to induce equal-
ized and consistent optimization in differentiable architec-
ture search (EC-DARTS). EC-DARTS decouples different
operations based on their categories to optimize the op-
eration weights so that the operation gap between them is
shrinked. Besides, we introduce an induced structural tran-
sition to bridge the structure gap between the model struc-
tures in the search and retraining stages. Extensive experi-
ments on CIFAR10 and ImageNet demonstrate the effective-
ness of our method. Specifically, on CIFAR10, we achieve
a test error of 2.39%, while only 0.3 GPU days on NVIDIA
TITAN V. On ImageNet, our method achieves a top-1 error
of 23.6% under the mobile setting.

1. Introduction
The computer science community has witnessed the re-

markable achievements of Deep Neural Networks (DNN),
especially in the field of computer vision. However, the
common DNNs are designed by human experts, which re-
quire a lot of computation resources and domain-specific
knowledges. Recently, Neural Architecture Search (NAS)
has emerged to search neural architectures in an automated
way, which greatly eases the dependence on human experts
and achieves a remarkable performance.

Among various NAS methods, Differentiable Neural Ar-
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Figure 1. The correlation evaluation between the search
rank and retraining rank of a single search. We summa-
rize the results of 10 randomly selected architectures from
a single run of DARTS and EC-DARTS in different colors.

chitecture Search (DNAS) [11, 37], e.g., differentiable ar-
chitecture search (DARTS) [26], has attracted a lot of atten-
tion because it improves the efficiency of searching a neural
network by orders of magnitudes. Motivated by DARTS,
there are many works [5, 43, 7, 6, 23, 44, 1, 46, 21, 2, 42, 10,
45, 36] followed the similar scheme in DARTS, which have
achieved considerable performance gains. Despite these
achievements, it remains a challenging problem to optimize
the search process of DARTS due to the optimization gaps.
The first gap is the operation gap caused by the different
numbers of trainable parameters contained in different op-
erations. The second gap is the structure gap caused by the
inconsistent model structures adopted in the search and re-
training stages. To explain the operation gap, different op-
erations contain different numbers of trainable parameters.
In this case, the costs of optimizing operations that have
less trainable parameters will be smaller, which means that
DARTS is biased towards the optimization of the parameter-
free operations (e.g., skip-connects and pooling layers).
Therefore, the searched architecture might be dominated
by parameter-free operations, which leads to a poor perfor-
mance. To explain the structure gap, the operations that are
mixed in the one-shot model during the search stage will
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be partially pruned in the retraining stage. The inconsis-
tent structures in the search and retraining stages lead to the
structure gap. These optimization gaps have been pointed
out by several works [39, 43, 7, 6, 23, 1, 46, 21, 11, 37]. To
avoid a dramatic performance degradation caused by these
optimization gaps, several solutions have been put forward
[43, 7, 6, 23]. DARTS+ [23] directly constrained the skip-
connects to two per cell. Cyclic DARTS [43] introduced an
evaluation network with 20 cells in the search stage. These
solutions have alleviated the optimization gaps, while re-
quiring strong prior information or additional computations.
PR-DARTS [46] alleviates unfair competition only between
skip connection and other categories of operations. Our
CEN focuses on unfair competition among the whole op-
erations and includes PR-DARTS as a special case.

In this paper, we propose to induce equalized and consis-
tent optimization in differentiable architecture search (EC-
DARTS). To shrink the operation gap, we devise a Cross-
Edge Normalization (CEN) to equalize the dominance of
each operation. Therefore, the operation weights can bet-
ter reflect the importance of each operation. Specifically,
CEN normalizes the weights of operations by categories,
e.g., normalize the weights of 3×3 separable convolutions
from different edges. Besides, CEN eliminates the un-
balanced competition between operations of different cate-
gories, while introducing a balanced competition between
operations of the same category. To shrink the structure
gap, a Induced Structural Transition (IST) is proposed to
construct an auxiliary model to induce the model structure
type in the search stage to transform into a similar one that
is used in the retraining stage. In order to quantify the de-
gree to which the optimization gaps are alleviated by our
method, we adopt the Kendall Tau metric [17] to measure
the correlations between different ranks. Please refer to sup-
plementary materials for the 3 modes of the the Kendall Tau
metric used in this paper. As shown in Figure 1, we conduct
a correlation evaluation among 10 architectures randomly
selected from a single search. Compared with DARTS, our
method achieves a stronger correlation between the search
rank and retraining rank during the search process.

Our contributions are summarized as follows.

• We propose to induce equalized and consistent op-
timization in differentiable architecture search (EC-
DARTS) from the levels of operation and structure.

• We design a Cross-Edge Normalization (CEN) for
NAS. By normalizing the operation weights in a bal-
anced competition conditions, our methods exhibits a
stronger correlation between the operation weight and
model performance. Equipped with CEN, the opera-
tion gap is alleviated effectively.

• In order to improve the consistency between the search
and retraining stages, we introduce the structure infor-

mation of the retraining stage into the search stage by
an Induced Structural Transition (IST).

We further conduct comprehensive experiments over
four datasets to verify the effectiveness of our method.
Specifically, our method achieves state-of-the-art perfor-
mance on CIFAR10, CIFAR 100, Tiny-ImageNet-200, and
ImageNet. Specifically, a test error of 2.39% on CIFAR10,
and a top-1 error of 23.6% on ImageNet with a model size
of 4.7M are reported by our method.

2. Related work
Based on the impressive progresses achieved by the

great number of manually designed neural networks [34,
35, 13, 16, 15], an emerging search field named Neu-
ral Architecture Search (NAS) has been proposed to im-
prove the efficiency of model design. According to the
type of search strategy, the current NAS methods can be
simply divided into: reinforcement-learning-based methods
[24, 12, 48, 47], evolution-based methods [33, 40, 31, 25],
and gradient-based methods [26, 5, 29, 44, 42, 3, 41, 27].
Reinforcement-learning-based NAS. For reinforcement-
learning-based NAS, the reinforcement learning is used to
train a controller that indicates the performances of neural
networks. However, it has a high requirement for compu-
tation resources in training the intermediate architectures
from scratch. For example, NASNet [47] needs 2,000 GPU-
hours to search a state-of-the-art architecture.
Evolution-based NAS. Evolution-based NAS follows a dif-
ferent path to search architectures, which learns a proba-
bilistic model to sample architectures and uses genetic oper-
ations to generate offspring in the search stage. In this way,
a globally optimal architecture might be obtained. Simi-
lar to reinforcement-learning-based NAS, the sampled ar-
chitectures in evolution-based NAS [40, 31] also need large
amount of computation resources to train from scratch. Be-
sides, the search spaces of these two types of NAS are non-
differentiable, which are not efficient in optimization.
Gradient-based NAS. Gradient-based NAS relaxes the
search space to a differentiable form to use gradient descent
in optimizing the search process. DARTS is one of the typi-
cal gradient-based NAS methods, which adopts continuous
weights for operations based on the relaxed search space.
After that, the model weights and operation weights are iter-
atively optimized in a bi-level manner. As a result, the com-
putation and time consumption in searching architectures
are reduced by several orders of magnitude with DARTS.
Despite the efficiencies achieved by DARTS, the downsides
of DARTS have been revealed in recent years [39, 32]. [32]
pointed out the gap between the model depths in the search
and retraining stages, which leads to a sub-optimal perfor-
mance in the retraining stage. In [39], Xie et al. argued that
the major challenge faced by DARTS comes from the op-
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timization gaps during the search and retraining stages. It
remains an open issue to tackle the downsides of DARTS.

In this paper, we focus on two main optimization gaps:
the operation gap and the structure gap in DARTS. To han-
dle these gaps, we propose a new differential NAS frame-
work based on DARTS namely EC-DARTS. In contrast
with DARTS, EC-DARTS normalizes the operation weights
under a equalized optimization manner and induces the
model structure type in the search stage to transform into
that in the retraining stage.

3. Preliminaries
To better comprehend our method, we first briefly review

the search formulation of DARTS, and elaborate on the op-
timization gap problem of DARTS.

Given a search space O, which includes M various can-
didate operations. Previous works [48] proposed to search
for normal cell and reduction cell instead of directly search-
ing the entire architecture. The cell is represented as a di-
rected acyclic graph (DAG) of N sequential nodes. The
nodes denote representations (e.g., feature map in convolu-
tion neural networks), and the edge from node i to node j
is associated with all operations in the search space, which
transforms the node xi to xj . There are two inputs and one
output node in a cell. We denote the architecture with a
mixture of different operations in each edge as the one-shot
model. Specifically, in the one-shot model, DARTS relaxes
the search of each edge with a softmax over operations in
the search space, the edge in the cell is formulated as

ō(i,j)(xi) =
∑
o∈O

exp (α
(i,j)
o )∑

o′∈O exp (α
(i,j)
o′ )

o(xi), (1)

where α
(i,j)
o denotes the weight of operation o at

the edge from node i to j. We denote α ={
α
(i,j)
o1 , α

(i,j)
o2 , · · · , α(i,j)

oM

}
as the operation weight vector

from node i to j after the softmax process. In other words,
α is the probability of selecting the corresponding candi-
date operations to generate architectures. All inputs from
incoming edges of the intermediate node j are gathered as

xj =
∑
i<j

ōi,j (xi) , (2)

After the relaxation, the search problem is turned to learn
the optimal operation weight α and architecture weights ω
by gradient descent. DARTS treats the search problem as a
bi-level optimization problem as follows:

min αLval

(
ω∗(α), α

)
,

s.t. ω∗(α) = arg min ωLtrain(ω, α),
(3)

where Lval and Ltrain denote the validation and training
losses, respectively.

At the end of the search stage, the searched cells are
derived by preserving the two top operations among all
non-zero candidate operations gathered from all connected
nodes. In the retraining stage, DARTS stacks a certain num-
ber of cells to construct the final architecture.

The search paradigm of DARTS has exposed some lim-
itations [39, 32]. As we mentioned in Section 1, the op-
timization gap problem has degraded the performance of
DARTS. As shown in Figure 1 (a), the Kendall Tau value
calculated between the 10 architectures selected from a sin-
gle search of DARTS is 0.13, which means the search rank
and retraining rank during the search process in DARTS are
relatively independent.

4. Methodology
In this section, we introduce how to alleviate the afore-

mentioned gaps by the proposed Cross-Edge Normalize and
Induced Structural Transition in Section 4.1 and Section4.2,
respectively.

4.1. Cross-Edge Normalization

As we discussed in Section 3, DARTS relaxes the oper-
ation weights with a continuous vector α named operation
weights. The candidate operations that have different train-
able parameters influence each other. In this case, there is an
inherent operation gap that makes the parameter-free oper-
ations dominate in the searched architectures. Specifically,
as illustrated in Equation 1, DARTS proposed to normalize
the weights of different operations in the same edge, which
leads to the operation gap.

In this paper, we introduce a simple yet effective strategy
named Cross-Edge Normalization (CEN) to alleviate this
issue. Based on the incoming edges of each node in the
one-shot model, we group the operations in a cross-edge
manner to decouple different operations in the search stage.
As shown in Figure 2, CEN normalizes the weight cross-
edge according to the categories (a total of 8 categories)
of the operations. Formally, for a specific operation weight
α
(i,j)
ok , we propose to normalize the weight by

α(i,j)
ok

=
α̂
(i,j)
ok∑

i′<j α̂
(i′ ,j)
ok

, (4)

where α̂(i
′
,j)

ok denotes the unnormalized operation weight of
operation ok in edge (i

′
, j), i

′
< j denotes the predecessors

connected with node j. Then, given the normalized weight
α
(i,j)
ok , the intermediate node xj is obtained by

xj =
∑
i<j

∑
ok

α(i,j)
ok

ok(xi), (5)

where k denotes the k-th operation in the search space.
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Figure 2. Illustration of EC-DARTS. Our EC-DARTS de-
couples different operations by employing softmax accord-
ing to the categories of operations. Then, an auxiliary model
is constructed to eliminate the structure gap.

As shown in Equation 4, α(i,j)
ok is computed among op-

erations of the same category.The only difference between
these operations in CEN is the incoming nodes connected
by them. Therefore, CEN enables the search to focus on
optimizing the importance of each operation without the im-
pact of unbalanced competition.

There are several works [23, 6] that restricted or modi-
fied certain candidate operations to achieve a fair compari-
son among different operations. Intuitively, even with prior
information, the degree of imbalance between these oper-
ations in the search stage is difficult to manually estimate.
Comparing with these methods, there are two main benefits
brings by our CEN. On the one hand, CEN does not involve
additional calculations, and it is easy to be implemented in
gradient-based NAS. On the other hand, CEN alleviates un-
balanced optimization among different operations, while in-
troducing equalized optimization among the same category
operation.

4.2. Induced Structural Transition

It is impractical to completely train different sub-
architectures in the search space due to limited computa-
tion resources. Therefore, DARTS proposed to share the
model weights of the one-shot model among every sub-
architecture. However, there is no theory to support weight-
sharing yet. From the perspective of the structures, the one-
shot model compounds all sub-architectures in the search
space, which makes the structure of the one-shot model is
very different from the final optimal architecture. For exam-
ple, the 4-th node in a normal cell has (5 × 7) connections
(includes 2 from the 2 input nodes) and each edge includes
7 categories of operations except zero operation.) in the
search stage and only 2 connections in the retraining stage,
which leads to another optimization gap for DARTS. We de-
note this optimization gap as the structure gap. To alleviate
the structure gap, we design Induced Structural Transition
(IST), which adds an auxiliary model in the search stage.
The auxiliary model retains only two top operations for
each node (i.e., in the retraining stage, the one-shot model

Algorithm 1: EC-DARTS
Input: The search space O, the training and

validation datasets, operation weights α and
model weights ω, and search epochs S;

Output: The searched optimal architecture;
1 Randomly initialize α and ω;
2 for search step i in i ∈ [0, S] do
3 Calculate Ltrain(ω, α) and update ω∗;
4 Prune α to α∗ by retaining the top-k operations;
5 Construct auxiliary model by α∗ with the

weights of one-shot model;
6 Calculate Ltrain(ω

∗, α∗) and update ω∗
aux;

7 Compute Acc = Eval(ω∗
aux, α

∗);
8 if Acc surpasses the best seen value then
9 Update ω with ω∗ + ω∗

aux;
10 end
11 Update α by descending Lval

(
ω∗
aux(α

∗), α
)
;

12 end

is pruned with two top operations for each node to generate
the final architecture) and inherits the weights of the one-
shot model, which is used to bridge the structure gap be-
tween search and retraining stages. Specifically, the struc-
ture of the auxiliary model in IST is more consistent with
the structure in the retraining stage. Therefore, the verifica-
tion result of the auxiliary model is more accurate compared
to the original one-shot model in DARTS. And the auxiliary
model dynamically gives a backward propagation to update
the weights of the one-shot model. In this way, without
coupling all candidate connections in the search space, the
auxiliary model shares a similar model structure as in the
retraining stage.

Formally, by applying the IST, the optimization problem
in Equation 3 is reformulated as

min
α

Lval

(
〈ω∗, ω∗

aux〉 , α
)
,

s.t. ω∗ = arg min ωLtrain(ω, α),

ω∗
aux(α

∗) = arg min ωaux(α)Ltrain(ω
∗, α∗),

(6)

where α∗ indicates the operation weights after pruning α.
ω∗
aux is the model weights of the auxiliary model, which

is part of ω∗. The one-shot model weights might be up-
dated based on the backward propagation from the auxiliary
model. In other words, the training of the one-shot model
and auxiliary model dynamically optimize each other. We
depict the dynamic procedure in Algorithm 1. Specifically,
the discretized sub-architecture is sampled from the one-
shot model according to the operation weights α. Then,
an auxiliary model is constructed with the sub-architecture
where the model weights are inherited from the one-shot
model. We train the auxiliary model by one epoch and val-
idate it on the validation set. Finally, the one-shot model
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might be updated by the auxiliary model and trained in the
next iteration to sample a new auxiliary model. These pro-
cesses are iterated until the search stage is completed.

As shown in Figure 2, the one-shot model includes all
sub-architectures by embedding different operations with
corresponding operation weights α in each edge. Our IST
makes use of the operation weights α and the model weights
of the one-shot model to construct an auxiliary model. Ex-
tensive experiments in Section 5.6 provide evidence that
IST induces the structural transition in the search stage, thus
shrink the structure gap and improve the final performance.

5. Experiments
5.1. Datasets and implementation details

We conduct experiments on CIFAR10/100 [19], Tiny-
ImageNet-2001, and ImageNet [8] to verify the effective-
ness of our method. CIFAR is a basic image classifica-
tion benchmark that includes CIFAR10 and CIFAR100. CI-
FAR10 contains 10 classes, and each class has 6,000 im-
ages. CIFAR100 contains 100 classes, and each class has
600 images. The training and testing sets in CIFAR10/100
consist of 50,000 and 10,000 images, respectively. Tiny-
ImageNet-200 includes 200 classes, and each class has
500 and 50 images in the training set and testing set, re-
spectively. ImageNet is a large-scale image classification
benchmark, which contains 1,000 classes. There are 1.2
million training images and 50,000 validation images in this
benchmark.

5.2. Implementation details

We adopt the search space used in most NAS methods
[26, 3, 5, 42, 7], which contains 3×3 and 5×5 separa-
ble convolution, 3×3 and 5×5 dilated separable convolu-
tion, skip-connect (i.e., identity), 3×3 max-pooling, 3×3
average-pooling, and zero (i.e., none). It should be noted
that EC-DARTS is orthogonal to the search space, thus
can be combined with different search spaces. Following
the settings in [26], EC-DARTS includes a search stage to
search basic cell structures, and a retraining stage to train
the architecture that consists of a certain number cells from
scratch. In the search stage, the training data is randomly
separated into two parts equally, where the model weights
(i.e., ω∗, ω∗

aux) and operation weights (i.e., α) are optimized
on these two parts, respectively. In the retraining stage, we
follow the procedure in conventional image classification
[13, 20] to train the target architecture. In our experiments,
the image sizes are unified to 32×32, 64×64, and 224×224
on CIFAR10/100, Tiny-ImageNet-200, and ImageNet, re-
spectively. All experiments are completed on NVIDIA TI-
TAN V. Code will be released in PaddleSlim2.

1http://tiny-imagenet.herokuapp.com/
2https://github.com/PaddlePaddle/PaddleSlim

5.3. Results on CIFAR

Following the search settings in [26], the one-shot model
contains 6 normal cells and 2 reduction cells. We use SGD
with an initial learning rate of 0.025, a momentum of 0.9,
weight decay 3×10−4 to optimize the model weights of
the one-shot model and the auxiliary model. The operation
weights are optimized by the Adam optimizer [18] with an
initial learning rate of 3×10−4, weight decay 10−3 for 25
epochs with a batch size of 64. We use less training epochs
in our search stage because there are two update steps in the
main loop of our algorithm, and our method tends to conver-
gence in about 25 epoch. The two update steps are for the
one-shot model and auxiliary model. Due to the less com-
putation of auxiliary model, our method is more efficient.

An architecture with 20 cells (18 normal cells and 2 re-
duction cells) is retrained from scratch on CIFAR10/100.
The architecture is optimized by the SGD optimizer with an
initial learning rate of 0.025, a momentum of 0.9, weight
decay 3×10−4, and gradient clipping at 5 for 600 epochs.
To prevent overfitting, the retraining stage is regularized by
cutout [9] and drop path with a rate of 0.2.

We compare EC-DARTS with other state-of-the-art
methods[16, 25, 31, 30, 48, 24, 26, 41, 3, 5, 42, 10, 7, 4]
on CIFAR10 and CIFAR100. The results of EC-DARTS
on CIFAR10 and CIFAR100 are collected from 10 and
3 individual runs, respectively. As shown in Table 1,
EC-DARTS achieves test errors of 2.39%/16.13% on CI-
FAR10/100, and when transferring the architecture from
CIFAR10 to CIFAR100, EC-DARTS achieves a test error
of 16.13%. These results are competitive among the com-
pared methods. EC-DARTS surpasses the manually de-
signed DenseNet-BC by a large margin, and the architecture
searched by EC-DARTS is more lightweight. EC-DARTS
also outperforms DARTS in the comparison of the test er-
ror and search cost. Note that the search space adopted in
ProxylessNAS [3] is different from EC-DARTS. Although
the test error achieved by ProxylessNAS is smaller than that
of EC-DARTS, the model size and search cost of Proxyless-
NAS are much larger. For a comprehensive comparison,
we also list the transferred results of architectures searched
on CIFAR10/100 by EC-DARTS in Table 1. Note that the
transferred results deteriorate a bit. A similar phenomenon
is reported by [3]. Intuitively, it demonstrates that NAS is
affected by the dataset bias.

5.4. Results on Tiny-ImageNet-200

We adopt similar search and retraining settings as on CI-
FAR. The only difference is that the stride of the first 3×3
convolution layer in the architecture is set to 2 to obtain
32×32 features, which constrains the model size at the same
level as that in CIFAR.

To compare with other state-of-the-art NAS methods
[26, 23, 42] in a fair way, we also present the results of
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Table 1. Quantitative comparison results with state-of-the-art NAS methods on CIFAR10 and CIFAR100.

Architectures Test Err. (%) Params
(M)

Search Cost
(GPU-days) TypeCIFAR 10 CIFAR 100

DenseNet-BC [16] 3.46 17.18 25.6 - manual
Hireachical Evolution [25] 3.75±0.12 - 15.7 300 evolution
AmoebaNet-B [31] 2.55±0.05 - 2.8 3150 evolution
ENAS [30] 2.89 - 4.6 0.5 RL
NASNet-A [48] 2.65 - 3.3 1800 RL
PNAS [24] 3.41±0.09 - 3.2 225 SMBO
DARTS (1st order) [26] 3.00±0.14 - 3.3 0.4 gradient-based
DARTS (2nd order) [26] 2.76±0.09 - 3.3 1 gradient-based
SNAS (moderate) [41] 2.85±0.02 - 2.8 1.5 gradient-based
ProxylessNAS [3] 2.08 - 5.7 4.0 gradient-based
P-DARTS (CIFAR10) [5] 2.50 16.55 3.4 0.3 gradient-based
P-DARTS (CIFAR100) [5] 2.62 15.92 3.6 0.3 gradient-based
PC-DARTS [42] 2.57±0.07 - 3.6 0.1 gradient-based
GDAS [10] 2.82 18.13 2.5 0.17 gradient-based
FairDARTS [7] 2.54 - 2.8 0.4 gradient-based
SDARTS-ADV [4] 2.61±0.02 - 3.3 1.3 gradient-based
Ours (CIFAR10) 2.39±0.08 16.13±0.12 3.2 0.3 gradient-based
Ours (CIFAR100) 2.44±0.10 15.72±0.11 3.5 0.3 gradient-based

transferring the architectures searched on CIFAR10 to Tiny-
ImageNet-200. As demonstrated in Table 2, among the
architectures searched on Tiny-ImageNet-200, EC-DARTS
achieves a test error of 28.1% with a smaller model size.
Note that the model size of the architecture searched by EC-
DARTS on Tiny-ImageNet-200 is larger than that on CI-
FAR10. One possible reason is that the larger dataset needs
more trainable parameters to learn the diversity of samples.
When transferring the searched architecture from CIFAR10
to Tiny-ImageNet-200, EC-DARTS shows the state-of-the-
art performance at a test error of 28.7%.

5.5. Results on ImageNet

We follow the ImageNet search settings in PC-
DARTS[42], which are different from the settings on CI-
FAR. The training and validation sets in the search stage
are randomly sampled 10% and 2.5% from the training set
of ImageNet, respectively. The first three layers of the one-
shot model are 3×3 convolution layers with a stride of 2,
which reduce the input size from 224×224 to 28×28. The
one-shot model in the search stage is stacked with 8 cells
(6 normal cells and 2 reduction cells). The model weights
are optimized by the SGD with an initial learning rate of
0.5, a momentum of 0.9, and a weight decay of 3×10−4.
We adopt an Adam optimizer with an initial learning rate of
6×10−3 and a weight decay of 10−3 to optimize the oper-
ation weights. We follow the mobile setting to restrict the
total number of multiply-add operations in the model to be
less than 600M. A total of 30 epoch with 1024 batch size is

Table 2. Quantitative comparison results with state-of-the-
art NAS methods on Tiny-ImageNet-200, ∗ denotes the ar-
chitecture is searched on Tiny-ImageNet-200

Architectures Test Err.(%) Params
(M) Type

ResNet-34 [13] 42.5 20.4 manual
DenseNet-BC [16] 37.1 - manual
DARTS [26] 30.4 3.8 gradient-based
PC-DARTS [42] 28.9 4.2 gradient-based
DARTS+ [23] 29.1 4.2 gradient-based
DARTS+∗ [23] 28.3 3.8 gradient-based
EC-DARTS 28.7 3.3 gradient-based
EC-DARTS∗ 28.1 3.7 gradient-based

adopted to ensure the convergence of the search stage.
In the retraining stage, the architecture is stacked with 14

cells. The cells at 1/3 and 2/3 of the architecture are reduc-
tion cells, and the others are normal cells. The other settings
follow that of DARTS except that the first three layers of
the stacked architecture are 3×3 convolution layers with a
stride of 2. The architecture is optimized by the SGD opti-
mizer with an initial learning rate of 0.5, and a weight decay
of 3×10−6. The initial channel number is set to 48, and the
architecture is trained from scratch for 250 epochs.

We summarize the results and comparison to recent
state-of-the-art methods [35, 14, 28, 48, 31, 24, 22, 26,
41, 5, 10, 38, 7, 42, 3] in Table 3. As demonstrated in
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Table 3. Quantitative comparison results with state-of-the-art NAS methods on ImageNet.

Architectures Test Err. (%) Params
(M)

Multi-Add
(M)

Search Cost
(GPU-days) Typetop-1 top-5

Inception-v1 [35] 30.2 10.1 6.6 1448 - manual
MobileNet [14] 29.4 10.5 4.2 569 - manual
ShuffleNet 2× (v2) [28] 26.4 10.2 5 524 - manual
NASNet-A [48] 26.0 8.4 5.3 564 1800 RL
AmoebaNet-C [31] 24.3 7.6 6.4 570 3150 evolution
PNAS [24] 25.8 8.1 5.1 588 225 SMBO
PC-NAS-S [22] 23.9 8.5 5.1 - - heuristic
DARTS [26] (2nd order, CIFAR10) 26.7 8.7 4.7 574 4.0 gradient-based
SNAS (mild) [41] 27.3 9.2 4.3 522 1.5 gradient-based
P-DARTS (CIFAR10) [5] 24.4 7.4 4.9 557 0.3 gradient-based
GDAS [10] 25.1 - 5.5 375 9.0 gradient-based
FBNet-C [38] 26.0 8.5 5.3 581 0.2 gradient-based
FairDARTS (CIFAR10) [7] 24.9 7.5 4.8 541 0.4 gradient-based
FairDARTS (ImageNet) [7] 24.4 7.4 4.3 440 3 gradient-based
PC-DARTS (CIFAR10) [42] 25.1 7.8 5.3 586 0.1 gradient-based
PC-DARTS (ImageNet) [42] 24.2 7.3 5.3 597 3.8 gradient-based
ProxylessNAS (ImageNet) [3] 24.9 7.5 7.1 465 8.3 gradient-based
Ours(CIFAR10) 24.3 7.3 4.5 549 0.3 gradient-based
Ours(ImageNet) 23.6 6.9 4.7 572 3.6 gradient-based

Table 3, the architecture searched by EC-DARTS on Im-
ageNet achieves 23.6%/6.9% top-1/5 test errors, which is
competitive among the other gradient-based methods. EC-
DARTS outperforms manually designed architectures by a
clear margin, with a smaller model size. In comparison,
PC-NAS-S [22], a heuristic-based method, reports a top-
1 test error comparable to that achieved by EC-DARTS,
but its model size is larger. To comprehensively ana-
lyze EC-DARTS with the other NAS methods, we further
transfer the searched architecture from CIFAR10 to Ima-
geNet. The comparison results are listed in Table 3, and
EC-DARTS achieves state-of-the-art top-1/5 test errors of
24.3%/7.3%. This result verifies the robustness of the ar-
chitecture searched by our EC-DARTS.

5.6. Ablation study

We conduct the ablation studies on CIFAR10 to verify
the effectiveness of different components in EC-DARTS.
All experiments listed in Table 4 are under the same search
and retraining settings.
Effectiveness of Cross-edge Normalization. The oper-
ation gap makes the coupled operations in the one-shot
model to be optimized to different degrees. As a result,
the optimization of operation weights is biased, that is, the
correlation between operation weights and model perfor-
mances becomes weak. In EC-DARTS, we propose CEN to
decouple different operations based on their categories. As
summarized in Table 4, the test error is reduced from 2.76%

Table 4. Ablation study of CEN and IST on CIFAR10.

Method Test Err.(%)
Baseline(DARTS) 2.76±0.09
Baseline + CEN 2.60±0.13
Baseline + IST 2.47±0.06
EC-DARTS 2.39±0.08

to 2.60% with CEN, and the search cost remains the same
level as the baseline (DARTS). To further verify the effec-
tiveness of CEN in alleviating the operation gap problem,
we adopt the Kendall Tau Metric [17] to measure the corre-
lation between operation weights and model performances.
We use 10 architectures which are generated by replacing
the pairwise edges, that are connected with the last interme-
diate node in the searched architecture, with different com-
binations. Specifically, the last intermediate node can have
an edge connected to each of the remaining 5 nodes, and
only 2 of these edge connections remain in the final archi-
tecture. Therefore, a total of 10 architectures can be ob-
tained through all possible pairwise combinations of these
edge connections. As shown in Figure 3 (a), the Kendall Tau
value of DARTS [26] is 0.06, which indicates a weak corre-
lation between operation weights and model performances.
In contrast, CEN is able to shrink the operation gap, which
significantly improves the Kendall Tau value to 0.63.
Effectiveness of Induced Structural Transition. The in-
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(a) DARTS (2nd Order)





























       





(b) DARTS with CEN

Figure 3. The correlation evaluation between operation
weights and model performance for CEN.

































     

















Figure 4. The correlation evaluation between the search
rank and retraining rank with our IST.

consistent structures in search and retraining stages bring
the structure gap in DARTS [26], which can be interpreted
as a correlation between the search rank and retraining rank.
We use the Kendall Tau Metric [17] to measure this corre-
lation in a single run of DARTS. As shown in Figure 1 (a),
DARTS reports a Kendall Tau value of 0.13, which means
that the search rank and retraining rank during the search
process in DARTS have a weak correlation. We summarize
10 randomly selected results in a single run of the base-
line (DARTS) with IST in Figure 4. The baseline with IST
achieves a higher Kendall Tau value than that in DARTS,
which means a stronger correlation between the search rank
and retraining rank during the search process. The high
Kendall Tau value illustrates that the structure gap can be
shrunken by IST. Results shown in Table 4 demonstrate that
the baseline with IST achieves a test error of 2.47%, which
surpasses the baseline by a clear margin. The effectiveness
of IST is further verified.
Additional Analysis. In this part, we analyze the correla-
tion of the searched results from 10 independent searches.
As shown in Figure 5, the Kendall Tau value is calcu-
lated between the search rank and retraining rank of 10 in-
dependent searched architectures, and the average retrain-
ing accuracies of DARTS and EC-DARTS are 97.13% and
97.61%, respectively. The lower search accuracy in Figure
1 (b), Figure 4 and Figure 5 (b) is caused by IST, because
the auxiliary model in IST has a much smaller parameter

 

 

 

 
 

 

 

   

 















     
















(a) DARTS (2nd Order)

 

 

 

 

 

 

 

 

 

 















    





(b) EC-DARTS(ours)

Figure 5. The correlation evaluation between the search
rank and retraining rank of 10 independent searches.

quantity than the one-shot model. Compared with DARTS,
EC-DARTS achieves higher Kendall Tau and average re-
training accuracy, which further indicates that the correla-
tion of the search rank and retraining rank is improved in
EC-DARTS. These results also reflects that EC-DARTS is
relatively stable than DARTS.

6. Conclusion

In this work, we analyze the optimization gaps lie in
DARTS, and conduct experiments to show the negative im-
pact caused by the optimization gaps. As shown in Fig-
ure 3 (a), the operation weights and model performance
in DRATS are almost irrelevant, Moreover, DARTS shows
a weak correlation between the search rank and retraining
rank in Figure 1 (a) and Figure 5 (a). Then, we propose EC-
DARTS, which includes CEN and IST to shrink these opti-
mization gaps in DARTS. CEN decouples operations to op-
timize operation weights of the same categories in a equal-
ized manner, and IST contains an auxiliary model to induce
the model structure type transforms between the search and
retraining stages. The experimental results demonstrate that
EC-DARTS achieves competitive performances on both the
proxy dataset and target dataset. The experimental analysis
of the correlation further verified that EC-DARTS is effec-
tive in shrinking the operation and structure gaps.
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