
R-MSFM: Recurrent Multi-Scale Feature Modulation for Monocular Depth
Estimating

Zhongkai Zhou, Xinnan Fan, Pengfei Shi∗, Yuanxue Xin
College of Internet of Things Engineering;

Hohai University, Changzhou, China
200220030004@hhu.edu.cn, fanxn@hhuc.edu.cn, {shipf, xinyx}@hhu.edu.cn

Abstract

In this paper, we propose Recurrent Multi-Scale Fea-
ture Modulation (R-MSFM), a new deep network architec-
ture for self-supervised monocular depth estimation. R-
MSFM extracts per-pixel features, builds a multi-scale fea-
ture modulation module, and iteratively updates an inverse
depth through a parameter-shared decoder at the fixed res-
olution. This architecture enables our R-MSFM to main-
tain semantically richer while spatially more precise rep-
resentations and avoid the error propagation caused by
the traditional U-Net-like coarse-to-fine architecture wide-
ly used in this domain, resulting in strong generalization
and efficient parameter count. Experimental results demon-
strate the superiority of our proposed R-MSFM both at
model size and inference speed, and show the state-of-the-
art results on the KITTI benchmark. Code is available at
https://github.com/jsczzzk/R-MSFM

1. Introduction
The objective of depth estimation is to determine the

depth of each pixel in an image. From the early stages
of computer vision, depth estimation from images has al-
ways been one of the major challenges for researchers.
Depth estimation as a low-level task is crucial to complete
higher-level tasks, including 3-D reconstruction[23], au-
tonomous driving[6], 3-D target detection[36], underwater
image restoration[43], and many more.

Depth estimation is traditionally regarded as a stereo
matching problem between the left and right images, which
mainly approaches as a hand-crafted optimization[18],
supervised[4] or self-supervised manner[24]. Although
decades of developments have significantly improved its
accuracy, the time-consuming matching process inevitably
limits the scope of the deployment. Inspired by the do-
main of traditional structure from motion (SFM)[38], re-

∗Corresponding author.

cent studies[13, 2, 31, 14] have demonstrated the feasi-
bility of estimating depth from a single image as a view-
synthesis problem using a photometric reconstruction loss
in a self-supervised manner. Following this successful, new
design paradigm, recent works mostly focus on the design-
ing of the specific loss function[28, 14] and the improve-
ments to the currently widely used U-Net like coarse-to-fine
architecture[19, 15].

In this paper, inspired by the domain of optical flow [37],
we introduce Recurrent Multi-Scale Feature Modulation(R-
MSFM) , a new and effective lightweight deep learning ar-
chitecture, to extend the architecture choice for monocular
depth estimation. The three most significant strengths of
R-MSFM are as follows:

• Lightweight architecture: R-MSFM reduces the pa-
rameters of Monodepth2 by 73 percent, from 14.3M to
3.8M, which is suitable for memory-limited scenarios.

• State-of-the-art accuracy: R-MSFM achieves state-
of-the-art performance, which gets a 4.470 RMSE
lower than Monodepth2 (4.701) on the KITTI Eigen
split test set.

• Reasonable inference speed.: R-MSFM processes
640 × 192 videos at 44 frames per second on a
RTX2060 GPU. It can flexibly choose the update num-
ber and get a trade-off between speed and accura-
cy with half of the overall updates, which runs on
72 frames per second while still outperforms Mon-
odepth2.

R-MSFM consists of four main components: i) a depth
encoder that extracts the per-pixel representations from
ResNet18 except for the last two blocks, producing multi-
scale features; ii) a parameter-shared depth decoder that it-
eratively updates an inverse depth initialized at zero, avoid-
ing the spatial imprecision at coarse level propagating to
fine part; iii) a parameter-learned upsampling module that
adaptively upsamples the estimated inverse depth, preserv-

12777

ing its motion boundaries; iv) a multi-scale feature modu-
lation module that modulates content across the multi-scale
feature maps, maintaining semantically richer while spatial-
ly more precise representations for each iterative update.

At each iterative update, R-MSFM maintains and re-
fines a single inverse depth at the fixed 1/8 input reso-
lution and then directly upsamples it to the full resolu-
tion with the learned mask. This is different from tra-
ditional U-Net like coarse-to-fine architecture in previous
works[14, 15, 45, 19], where depth is first estimated at
coarse resolution(1/32 input resolution) and then gradually
upsampled and refined until the full resolution. By the pro-
gressive refinement at the fixed fine resolution, R-MSFM
overcomes several limitations of the coarse-to-fine architec-
ture: the error propagation from coarse to fine resolution,
the difficulty of delineating small objects, the independence
of the multi-scale decoders. Experimental results show R-
MSFM achieves state-of-the-art performance both at accu-
racy and model size with reasonable inference speed.

2. Related Work
Depth estimation is an essential part of understanding

the 3D world, which has a major impact on robotic systems
and many vision tasks[29, 16, 7, 1]. For traditional com-
puter vision methods, depth estimation from a single image
is an ill-posed problem without relying on the second input
frame. However, humans can learn a lot of prior knowledge
about 3D scene comprehension through interacting with the
real world. Therefore, even with a single eye, they can still
get the absolute depth of the scene. With the development
of deep learning that mimics the mechanism of the human
brain, many works are dedicated to extracting scene depth
from monocular images. We will review these related meth-
ods in the next section.

2.1. Fully-Supervised monocular depth estimation

The fully-supervised monocular depth estimation net-
work adopts LiDAR’s ground truth as the supervised signal
to regress depths. During the training process, the network
can learn depth information guided by ground truth. Eigen
et al. [9] first constructed the monocular depth estimator us-
ing deep learning technique, which infers the corresponding
depth from a single input image. The estimator consists of a
global estimation layer followed by a local refinement layer.
Therefore, this estimator preserves depth values at the edge
of the image and achieves state-of-the-art results on both
NYU Depth[35] and KITTI[11] benchmarks in that year.
However, the global estimation layer and the local refine-
ment layer need to be trained separately, which increases
the difficulty of the training process. In order to solve the
problem above, Evan Shelhamer et al. [33] extended the ful-
ly convolutional network[25] specifically designed for se-
mantic segmentation to the task of monocular depth estima-

tion, enabling the training process to be carried out in an
end-to-end manner while improving accuracy. Due to the
success of deep residual learning in image recognition[17],
Laina et al. [21] introduced it into the domain of monocu-
lar depth estimation and replaced L2 loss with reverse Hu-
ber loss[47], thereby further stabilizing the training process
and improving the accuracy of the network. Although the
monocular depth estimation network trained with ground
truth achieves high accuracy, obtaining ground truth from
different scenes still limits the applications of these meth-
ods in the real world.

2.2. Self-Supervised monocular depth estimation

Regrading the restriction of ground truth used in fully-
supervised methods, many works focused on the geometric
constraints between frames as the supervised signal due to
the ubiquitous cameras in the real world. R. Garg et al.
[10] first inferred the corresponding depth from a single im-
age using stereo training pairs in a self-supervised manner.
They synthesized a novel view to obtain a supervised sig-
nal, which comprises a photometric loss between the left
input image and the warped right image. Clément Godard et
al. [13] further improved the accuracy of monocular depth
estimation by introducing a new network architecture with
a novel training loss, which includes a left-right disparity
consistency loss and a single scale SSIM term[41]. Since
consecutive images are easier to obtain than stereo pairs
in the real world, it is suitable to use them directly as the
training set for monocular depth estimation network. Zhou
et al. [46] first jointly trained a separate pose network and
a depth estimation network using consecutive images self-
supervised by a photometric loss along with an additional
motion explanation mask. Although this work proves the
feasibility of estimating depth from a single image, its ro-
bustness still suffers from occlusions and moving targets.
After careful analysis, Clément Godard et al. [14] showed
that a well-designed loss function is more effective than a
complex architecture in dealing with the above problems.
They proposed i) a strategy that takes the minimum of the
photometric loss instead of averaging for each pixel to ad-
dress occlusions in consecutive images during monocular
training. ii) an approach that automatically marks pixels as
static or relatively static between consecutive frames. iii) a
multi-scale photometric loss that samples all the depths at
intermediate layers to full resolution for better supervision.
Inspired by [40, 20], Adrian Johnston et al. [19] introduced
the self-attention mechanism and discrete disparity predic-
tion into the field of monocular depth estimation, enabling
the network to be more robust at non-contiguous region-
s and motion boundaries. Although the accuracy of self-
supervised monocular depth estimation has been dramati-
cally improved, it is still far from fully-supervised method-
s. In this work, we demonstrate the superiority of iterative

12778

depth refinement at the fixed resolution relying on the multi-
scale feature modulation module and the parameter-shared
decoder.

3. Method
In the section, we describe the details of our proposed R-

MSFM that takes a single RGB image to produce the cor-
responding depth, and the self-supervised strategy that let
our network learn from unlabeled monocular videos. The
overview of our model is depicted in Figure 1.

3.1. Depth Encoder

Different from the current state-of-the-art method[14],
which adopts the whole ResNet18[17] as its depth encoder.
Our encoder contains only a part of ResNet18, which re-
moves the last two blocks whose feature maps are seman-
tically strong but spatially imprecise. Specifically, our
depth encoder takes a single input image I1 and outputs
the multi-scale feature maps X1, X2, X3 at 1/2, 1/4, and
1/8 of the input resolution: I1 : RH×W×3 → X1 :
R

H
2 ×W

2 ×C1 , X2 : R
H
4 ×W

4 ×C2 , X3 : R
H
8 ×W

8 ×C3 where
C1, C2, C3 in ResNet18 are 64, 64, 128 respectively. S-
ince our depth decoder works at the fixed 1/8 input resolu-
tion, we should ensure that the multi-scale feature maps are
of uniform size. On the other hand, the multi-scale feature
maps from ResNet18 are under ReLU nonlinearities, which
conflicts with Tanh nonlinearities in the multi-scale feature
modulation module. Therefore, we transform them through
one or two stride-2 3× 3 convolutional layers, followed by
Tanh nonlinearities. For instance, two consecutive stride-2
3 × 3 convolutional layers are applied to X1 for 4× down-
sampling, one stride-2 3×3 convolutional layer is applied to
X2 for 2× downsampling, and an additional stride-1 3 × 3
convolutional layer is applied to X3 for nonlinearity trans-
forming. Consequently, we obtain the multi-scale feature
maps X1, X2, X3 with uniform size R

H
8 ×W

8 ×C3 .

3.2. Depth Decoder

We employ a parameter-shared architecture for our depth
decoder, which works at the fixed 1/8 input resolution to
avoid the error propagation caused by the traditional coarse-
to-fine architecture. The depth decoder outputs the in-
verse depth through five consecutive convolutional layers
with Sigmoid at the output and LeakyReLU nonlineari-
ties elsewhere. In particular, we apply two convolutional
layers to the estimated inverse depth map itself to generate
depth feature maps. Therefore, the input of the third con-
volutional layer is a concatenation of the output from the
previous convolutional layer and the depth feature maps.

3.3. Parameter-Learned Upsampling Module

We employ a parameter-learned upsampling module[37]
instead of bilinear interpolation to adaptively upsample the

estimated inverse depth at the fixed 1/8 input resolution to
full resolution. The upsampling module treats the full reso-
lution inverse depth at each pixel to be a convex combina-
tion of the 3× 3 grid of its neighborhoods at 1/8 input reso-
lution. It takes the feature maps from the third convolutional
layer in the depth decoder, and then leverages two consec-
utive convolutional layers to produce a convex mask. The
convex mask is then performed over Softmax to control
the weights for the 9 neighborhoods at 1/8 input resolution,
and used to retrieve the inverse depth at full resolution.

3.4. Iterative Updates

Our update procedure produces a series of inverse depth
maps {d̂1, ..., d̂N} from an initial starting point d̂0 = 0. At
each update, it obtains the current estimation d̂n by gener-
ating an update direction △d̂ which is exploited to the last
estimation d̂n−1 : d̂n = △d̂ + d̂n−1. Then, it performs a
Sigmoid nonlinearity over the current estimation d̂n to get
the inverse depth dn: dn = Sigmoid(d̂n).

We feed the multi-scale feature maps from the depth en-
coder to iteratively update an inverse depth in the order of
X3, X2, and X1 , which mimics the steps of the tradition-
al coarse-to-fine architecture. For maintaining semantical-
ly richer while spatially more precise representations dur-
ing the iterative updates, we embed a multi-scale feature
modulation module(MSFM) at the beginning of the depth
decoder. This module leverages a convolution-based gat-
ed recurrent unit(GRU)[5] to modulate the content between
previous activation ht−1 and current input xt. The goal of
the module is to find the most suitable activation ht for each
update except the first one, which can be formulated as:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t, (1)

where the update gate zt controls how much information the
current hidden activation needs to remember, and h̃t is the
current hidden activation. The update gate is therefore:

zt = σ(ConvZ([xt, ht−1])), (2)

where σ(.) is a sigmoid activation function, [.] is the con-
catenation operator, and ConvZ is a separable convolution-
al unit consists of two operations: one with a 1 × 3 con-
volutional layer and one with a 3 × 1 convolutional layer
for reducing model parameters while maintaining accuracy.
The current hidden activation depends on the current input
xt and previous activation ht−1, which can be formulated
as:

h̃t = tanh(ConvH([xt, rt ⊙ ht−1])), (3)

where the reset gate rt modulates the extent to which the
previous activation is forgotten, which is computed by:

rt = σ(ConvR([xt, ht−1])), (4)

12779

Figure 1. Overall Architecture. (a): The input frame is encoded by a ResNet18(w/o the last two blocks) to produce multi-scale feature
maps at 1/2, 1/4, and 1/8 input resolution. These feature maps are then unified into the same size and sequentially fed to a parameter-
shared depth decoder to iteratively update an inverse depth. In addition, we employ a MSFM module to maintain semantically richer while
spatially more precise representations during iterative updates. Finally, we learn a convex mask to upsample the estimated inverse depth to
full resolution in each update. (b) The concatenation of input frames is computed by PoseNet to get a single 6-DoF relative pose.

where ConvH and ConvR are separable convolutional u-
nits, which do not share weights. We naturally update the
inverse depth for three times due to the feature maps of three
scales from the depth encoder. In particular, we could apply
an extra convolutional layer to the feature maps modulated
by the MSFM module at each scale, resulting in six updates
for the inverse depth.

3.5. Self-supervision

Following the pervious work[14], we adopt a ResNet18-
based PoseNet as shown in Figure 1(b) to estimate the rela-
tive pose Tt−>t′ between target image It and source image
It′ , which can be formulated as follows:

Tt−>t′ = PoseNet(It, It′). (5)

In order to keep our training process robust against occlu-
sion, the masked photometric re-projection loss Lp[14] is
used, as in :

Lp =

N∑
i=1

βN−i ·min
t′

µ(It, It′ , I
i
t′−>t

)⊙ pe(It, I
i
t′−>t

),

(6)
where N is the number of updates, ⊙ denotes element-wise
multiplication, and update term β weights the pe(.) loss
exponentially increasing with the number of updates. Ad-
ditionally, t

′ ∈ (t− 1, t+ 1) as source images, indicates

the past and future images with respect to the target image
It, and µ(.) is a binary mask and responsible for removing
pixels that do not have relative motion between target and
source images, which is defined by :

µ = [min
t′

pe(It, I
i
t′−>t

) < min
t′

pe(It, It′)], (7)

where [.] denotes the Iverson bracket, Ii
t′−>t

indicates the
warped source images at update i, as in:

Ii
t′−>t

= It′ ⟨proj(Tt−>t′ , D
i
t,K)⟩, (8)

where K are the intrinsics which are identical for all im-
ages, proj(.) are the resulting 2D coordinates of the pro-
jected depths Di

t at update i in It′ , ⟨⟩ is locally sub-
differentiable bilinear sampler, and pe(.) is minimum per-
pixel photometric re-projection loss using SmoothL1[12]
and SSIM[41], as in:

pe(I1, I2) =
α

2
(1− SSIM(I1, I2))

+ (1− α)SmoothL1(I1, I2),
(9)

where α = 0.85. Following [14], we use an addition-
al edge-aware smoothness to smooth the estimated depth,
which is formulated as :

Ls =

N∑
i=1

βN−i|∂xdi∗t |e−∂xIt + |∂ydi∗t |e−∂yIt , (10)

12780

Depth Error(↓) Depth Accuracy(↑) Model Size(↓)
Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253 Parameters

Zhou[46] M 0.183 1.595 6.709 0.270 0.734 0.902 0.959 31.6M
GeoNet[44] M 0.149 1.060 5.567 0.226 0.796 0.935 0.975 31.6M
DDVO[39] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974 28.1M

Monodepth [13] M 0.148 1.344 5.927 0.247 0.803 0.922 0.964 20.2M
EPC++[27] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976 33.2M

Struct2depth[3] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979 31.6M
Monodepth2[14] M 0.115 0.903 4.863 0.193 0.877 0.959 0.981 14.3M

Monodepth2 (1024 × 320)[14] M 0.115 0.882 4.701 0.190 0.879 0.961 0.982 14.3M
Johnston[19] M 0.106 0.861 4.699 0.185 0.889 0.962 0.982 14.3M+

Zhao(832 × 256) [45] M 0.113 0.704 4.581 0.184 0.871 0.961 0.984 14.3M
PackNet-SfM [15] M 0.111 0.785 4.601 0.189 0.878 0.960 0.982 128M

PackNet-SfM(1280 × 384) [15] M 0.107 0.802 4.538 0.186 0.889 0.962 0.981 128M
R-MSFM3 w/o pretraining M 0.128 0.965 5.019 0.207 0.853 0.951 0.977 3.5M
R-MSFM6 w/o pretraining M 0.126 0.944 4.981 0.204 0.857 0.952 0.978 3.8M

R-MSFM3 M 0.114 0.815 4.712 0.193 0.876 0.959 0.981 3.5M
R-MSFM6 M 0.112 0.806 4.704 0.191 0.878 0.960 0.981 3.8M

R-MSFM3(1024 × 320) M 0.112 0.773 4.581 0.189 0.879 0.960 0.982 3.5M
R-MSFM6(1024 × 320) M 0.108 0.748 4.470 0.185 0.889 0.963 0.982 3.8M

Monodepth2-R50[14] M 0.110 0.831 4.642 0.187 0.883 0.962 0.982 32.5M
FeatDepth(1024 × 320)-Res50[34] M 0.104 0.729 4.481 0.179 0.893 0.965 0.984 35.2M

UnDeepVO[22] MS 0.183 1.730 6.57 0.268 - - - -
EPC++[27] MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979 -

Monodepth2 [14] MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979 14.3M
Monodepth2 (1024 × 320) [14] MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980 14.3M

D3VO [42] MS 0.099 0.763 4.485 0.185 0.885 0.958 0.979 -
R-MSFM3 MS 0.112 0.799 4.639 0.190 0.881 0.96 0.981 3.5M
R-MSFM6 MS 0.111 0.787 4.625 0.189 0.882 0.961 0.981 3.8M

R-MSFM3 (1024 × 320) MS 0.112 0.753 4.530 0.189 0.881 0.961 0.982 3.5M
R-MSFM6 (1024 × 320) MS 0.108 0.753 4.469 0.185 0.888 0.963 0.982 3.8M

Table 1. Comparison of our models to existing methods on the KITTI Eigen split[8]. The best results for each metric are shown in
bold, and the second are underlined. The table records the results of training the model using the two different strategies seen in the
Train column: M means the model is trained with only self-supervised mono supervision, and MS means the model is trained with both
self-supervised mono and stereo supervision.

where di∗t = dit/d̄
i
t is the mean-normalized inverse

depth[39] at update i , which prevents the inverse depth
from approaching zero and thus to increase training stabili-
ty. In the end, the final loss L is combined as the weighted
sum of Lp Equation 6 and Ls Equation 10, which is formu-
lated as :

L = Lp + λLs, (11)

where λ is the smoothness regularisation term.

4. Experiments
We use the data split of Eigen et al. [8] to train and e-

valuate our model. Before training, we remove the static
images from the training set following Zhou et al. [46].
These results in 39810 training sequences which includes
three consecutive frames for monocular training and an ad-
ditional stereo counter for mixed training, and 4,424 vali-
dating sequences. To recover scale information, we adopt
the per-image median ground truth scaling[46]. When e-
valuating our model, we restrict the depth estimations to
a fixed depth range between 0m and 80m and compare its
performance with other state-of-the-art approaches by five

widely used evaluation indicators proposed in [9]: AbsRel,
SqRel, RMSE, RMSElog, and Accuracies which are
formulated as follows:

• AbsRel = 1
|N |

∑
i∈N

|di−d∗
i |

d∗
i

,

• SqRel = 1
|N |

∑
i∈N

∥di−d∗
i ∥2

d∗
i

,

• RMSElog =
√

1
|N |

∑
i∈N ∥log(di)− log(d∗i)∥2,

• RMSE =
√

1
|N |

∑
i∈N ∥di − d∗i ∥2,

• Accuracies = max(di

d∗
i
, di∗

di
) = δ < threshold,

where N is the total number of pixels for depth ground
truth, di denotes the predicted depth value at pixel i, and d∗i
stands for the ground truth at pixel i. In addition, threshold
controls the percentage of correct pixels in the estimated
depth, which can be taken as 1.25, 1.252, 1.253.

We train our model in a self-supervised learning man-
ner with different training sets(monocular triplets(M) and
monocular + stereo quadruplets(MS)), updates, and input

12781

Figure 2. Qualitative results on the KITTI Eigen split[8] test set. Our models can robustly estimate sharper depths for intricate objects
in the reflective and color-saturated regions.

Experiments Train Beginning Middle Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253 Parameters
Monodepth2[14] M - - 0.115 0.903 4.863 0.193 0.877 0.959 0.981 14.3M

R-MSFM3-A M × × 0.120 0.889 4.869 0.199 0.867 0.956 0.980 2.9M
R-MSFM3-B M ×

√
0.118 0.860 4.816 0.198 0.867 0.956 0.980 4.3M

R-MSFM3-C M
√

× 0.114 0.815 4.712 0.193 0.876 0.959 0.981 3.5M
R-MSFM3-D M

√ √
0.115 0.828 4.702 0.192 0.877 0.960 0.981 4.8M

R-MSFM6-C M
√

× 0.112 0.806 4.704 0.191 0.878 0.960 0.981 3.8M
Table 2. Ablation study on our R-MSFM architecture, on the KITTI Eigen split[8] test set at 640 × 192 resolution. We evaluate the
impact of the parameter-shared depth decoder, multi-scale feature modulation(MSFM), and the iterative updates. Beginning and Middle
indicate the position that we embed our MSFM module. All models were trained with the same settings.

resolutions, resulting in different variants of our model. We
compare our models with other state-of-the-art approach-
es and show that they get satisfying results with the fewest
model parameters, as shown in Table 1.

4.1. Implementation Details

R-MSFM is implemented in PyTorch[30] and trained on
a single Nvidia Titan RTX for 40 epochs with a batch size of
12. Following the previous work[14], we take the weight-
s of ResNet18 on ImageNet[32] as the initialization of our
depth and pose encoder. During training, both the depth and
pose networks are optimized with AdamW[26] optimizer,
whose initial learning rate and weight decay are set to 2e−4

and 5e−5 respectively. The gradients through our model
are clipped to a fixed range[-1,1], and the resolution of in-
put/output is resized to 640 × 192 by default. Addition-
ally, the smoothness regularisation term λ and the update
term β are set to 0.001 and 0.9 respectively. To alleviate
the overfitting of our model during training, the following
data augmentations are used with 50% chance: horizontal
flips, random saturation(±0.2), random brightness(±0.2),
random contrast(±0.2), and hue jitter(±0.1).

4.2. KITTI Results

The experimental results on the KITTI Eigen split test
set[8]) are showed in Table 1. When comparing to oth-

12782

Experiments Train Update Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

R-MSFM3 (1024× 320) M 1 0.137 0.957 5.086 0.216 0.825 0.945 0.978
R-MSFM3 (1024× 320) M 2 0.116 0.805 4.672 0.193 0.869 0.958 0.981
R-MSFM3 (1024× 320) M 3 0.112 0.773 4.581 0.189 0.879 0.960 0.982
R-MSFM6 (1024× 320) M 1 0.141 0.969 5.136 0.218 0.816 0.944 0.978
R-MSFM6 (1024× 320) M 2 0.117 0.804 4.678 0.193 0.869 0.958 0.982
R-MSFM6 (1024× 320) M 3 0.111 0.757 4.539 0.187 0.882 0.961 0.982
R-MSFM6 (1024× 320) M 4 0.109 0.755 4.502 0.185 0.887 0.962 0.982
R-MSFM6 (1024× 320) M 5 0.108 0.751 4.482 0.185 0.888 0.963 0.982
R-MSFM6 (1024× 320) M 6 0.108 0.748 4.47 0.185 0.888 0.963 0.982

Table 3. Quantification of iterative updates. Results of each update of our model under different iterative updates on the KITTI Eigen
split test set[8].

er state-of-the-art methods which adopt a self-supervised
training strategy, our method produce comparable results
while significantly reducing the model parameters. As can
be seen in Table 1, our method outperforms the baseline
Monodepth2[14] by a significant margin using a quarter of
parameters of it, and gets close to the current state-of-the-
art PackNet-SfM[15] using only three percent of parameters
of it. In addition, we conduct high-resolution(1024 × 320)
training following the previous work [14], and this opera-
tion leads our model to outperform all the existing methods
with the same training schedule[14]. Moreover, we can get
comparable results to FeatDepth[34], which takes advan-
tage of a robust feature-metric self-supervised supervision
and a stronger ResNet50 encoder. The overall qualitative
results are reported in Figure 2. As can be seen, our method
gives satisfactory results for weak texture regions(column 1
and column 4) and thin structures(column 2, column 3, and
column 4) from all three methods and their variants. These
quantitative and qualitative results demonstrate the superi-
ority of our method. In addition, this implies that our R-
MSFM benefits more from iterative updates, which forces
the network to learn a coarse inverse depth from high-level
feature maps and then refine its boundary region from low-
level ones. However, when there are moving objects in the
scene, our R-MSFM fails to learn good depths for them as
with all self-supervised depth estimation methods as shown
in Figure 4. This is restricted by the self-supervised loss,
which breaks at the regions with the moving objects.

4.3. KITTI Ablation Study

Table 2 shows an ablation study of our pro-
posed R-MSFM, where we first start from the baseline
Monodepth2[14] (row one). Next, by removing the last t-
wo blocks in its depth encoder, and employing a parameter-
shared depth decoder to perform three updates for the in-
verse depth, we get our R-MSFM3-A model (row two).
Then, by applying an additional MSFM module, we get
three variants of our model: R-MSFM3-B, R-MSFM3-C,
R-MSFM3-D respectively, which only differ in the position
of applying the module. R-MSFM3-B model (row three)

Figure 3. Visualization of iterative updates. We show the es-
timated depth from the first update and the residual refinements
from subsequent updates. The brightness value of the pixel indi-
cates the magnitude of the refinement, where the brighter the pixel,
the greater the degree of the refinement. The pixels in the red box
areas indicate that the refinement decreases with the number of
updates and tends to become saturated after five updates.

applies the module after the third convolutional layer in
the depth decoder, R-MSFM3-C model (row four) applies
the module at the beginning of the depth decoder, and R-
MSFM3-D model (row five) applies the module in both po-
sitions. Finally, by performing three extra updates for R-
MSFM3-C, we get our R-MSFM6-C model. When com-
paring to the baseline model Monodepth2, all the models
above demonstrate their superiority.

Benefits of Parameter-Shared Depth Decoder The base-
line Monodepth2[14] adopts a coarse-to-fine architecture,
which gradually reduces the resolution of the input image to
get aggregated strong low-level representations by a depth
encoder, and then correspondingly increases its resolution
until the full resolution to infer multi-scale depths by sev-
eral depth decoders. This architecture works fine for most
cases, however, it is limited by the excessive parameters and
error propagation. Thanks to the parameter-shared depth
decoder, our R-MSFM-A achieves similar results compared
to Monodepth2, but its parameters are only 20% of Mon-
odepth2, demonstrating the effectiveness of our architec-
ture.
Benefits of MSFM Module Applying our MSFM Module
to R-MSFM-A model always brings an improvement in per-
formance. However, the position where it is embedded also
affects. As can be seen in Table 2, R-MSFM3-C, which

12783

Encoder Decoder Full
Method Params(M) FLOPs(B) Speed(ms) Params(M) FLOPs(B) Speed(ms) Params(M) FLOPs(B) Speed(ms)

Monodepth2[14] 11.2 4.5 9.1 3.1 3.5 3.9 14.3 8.0 13.0
PackNet-SfM[15] 121 187 186.4 7 18 13.9 128 205 200.3

R-MSFM3 0.7 2.4 4.7 2.8 14.1 9.1 3.5 16.5 13.8
R-MSFM6 0.7 2.4 4.7 3.1 28.8 17.7 3.8 31.2 22.4

Table 4. The comparison of the distribution of the parameters and inference time. All results are tested on a single RTX2060 GPU
with an input image size of 640× 192. Specially, for testing speed we run 300 times and averaged the last 250 to warm up our machine.

embeds the MSFM module at the beginning of the depth
decoder, provides the most incremental performance gains
with the lowest computational cost. In addition, adding an
extra MSFM module does not ideally lead to performance
improvements since its structural complexity.

Benefits of Iterative Updates More updates always lead to
performance improvement for our model, as can be seen in
Table 1. Especially when feeding high-resolution input im-
ages, the accuracy of the model is dramatically improved.
One reason is that doing extra updates with high-resolution
feature maps provides the decoder more information than
low-resolution ones. Table 3 and Figure 3 illustrate the ben-
efits of iterative updates, indicating that the first update is
responsible for coarse estimation, while the remaining up-
dates are responsible for progressive refinements, especially
in the regions containing intricate objects. It should, how-
ever, be noted that the accuracy is saturated at update 6,
which primarily focuses on small boundaries rather than
large targets. Finally, running for more iterations than mod-
els are trained for would degrade performance. Since the
rest multi-scale feature maps are not directly involved in
the optimization process of the parameter-shared decoder
and GRU-based MSFM module.

4.4. Complexity Analysis

The flexibility of the monocular depth estimation sys-
tem makes it expressly attractive for practical deploymen-
t. Therefore, it is necessary to analyze its complexity. D-
ifferent from the existing models[14, 15, 45] based on U-
Net-like coarse-to-fine architecture, our R-MSFM features
a small part of the traditional encoder(excludes the last t-
wo computationally heavy blocks), such as ResNet18, and
a parameter-shared decoder. Table 4 details the statuses of
each part of our model including inference speed, floating-
point operations (FLOPs), and parameter used, and com-
pares them with other state-of-the-art methods. As can be
seen, excluding the last two computationally heavy blocks
from ResNet18 significantly decreases the parameters used,
which is reduced by 94% compared to Monodepth2[14]. On
the other hand, the residual addition in ResNet inevitably
restricts the inference speed, resulting in its acceleration
rate by 48% compared to Monodepth2. When coming to
the decoder part, the procedure of our iterative update in-

Figure 4. Failure cases. Moving objects have always been chal-
lenging for monocular depth estimation which will typically get
the depth correct close to the ground and the accuracy will worsen
as it goes up.

evitably increases computational overhead(FLOPs). How-
ever, the plain topology of our decoder without residual
addition makes the inference computational efficient, and
takes roughly 4.75B FLOPs and 3ms per update. Finally,
the parameter-economical, computationally efficient, and
accurate architecture lets our R-MSFM suitable for deploy-
ment on embedded platforms.

5. Conclusion

We have presented R-MSFM—Recurrent Multi-Scale
Feature Modulation—a novel end-to-end trainable model
for self-supervised monocular depth estimation. It lever-
ages the multi-scale feature maps extracted from the depth
encoder to iteratively update an inverse depth through the
parameter-shared depth decoder, avoiding the error propa-
gation from low to high resolution. Furthermore, R-MSFM
embeds a multi-scale feature modulation(MSFM) module
at the beginning of the depth decoder, maintaining seman-
tically richer while spatially more precise representations
during iterative updates. In addition, it adopts a parameter-
learned upsampler instead of bilinear interpolation to up-
sample the estimated inverse depth, preserving its motion
boundaries. Both the high accuracy and lightweight charac-
teristics demonstrate that our R-MSFM is suitable in prac-
tical applications.

Acknowledgments

This work has been supported by the National Natural
Science Foundation of China (61801169, 61801168) and
the Fundamental Research Funds for the Central Universi-
ties (B210202087).

12784

References
[1] Markus Achtelik, Abraham Bachrach, Ruijie He, Samuel

Prentice, and Nicholas Roy. Stereo vision and laser odome-
try for autonomous helicopters in gps-denied indoor environ-
ments. In Unmanned Systems Technology XI, volume 7332,
page 733219. International Society for Optics and Photonics,
2009.

[2] Filippo Aleotti, Fabio Tosi, Matteo Poggi, and Stefano Mat-
toccia. Generative adversarial networks for unsupervised
monocular depth prediction. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 0–0, 2018.

[3] Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia
Angelova. Depth prediction without the sensors: Leveraging
structure for unsupervised learning from monocular videos.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 8001–8008, 2019.

[4] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo
matching network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5410–
5418, 2018.

[5] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau,
and Yoshua Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[6] Mingyu Ding, Yuqi Huo, Hongwei Yi, Zhe Wang, Jianping
Shi, Zhiwu Lu, and Ping Luo. Learning depth-guided convo-
lutions for monocular 3d object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 1000–1001, 2020.

[7] Gregory Dudek and Michael Jenkin. Computational princi-
ples of mobile robotics. Cambridge university press, 2010.

[8] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale con-
volutional architecture. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2650–2658,
2015.

[9] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. In Advances in neural information processing systems,
pages 2366–2374, 2014.

[10] Ravi Garg, Vijay Kumar Bg, Gustavo Carneiro, and Ian Rei-
d. Unsupervised cnn for single view depth estimation: Ge-
ometry to the rescue. In European conference on computer
vision, pages 740–756. Springer, 2016.

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354–3361. IEEE, 2012.

[12] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015.

[13] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 270–279,
2017.

[14] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In Proceedings of the IEEE international
conference on computer vision, pages 3828–3838, 2019.

[15] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3d packing for self-supervised
monocular depth estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2485–2494, 2020.

[16] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra
Malik. Learning rich features from rgb-d images for objec-
t detection and segmentation. In European conference on
computer vision, pages 345–360. Springer, 2014.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[18] Heiko Hirschmuller. Accurate and efficient stereo processing
by semi-global matching and mutual information. In 2005
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 2, pages 807–814.
IEEE, 2005.

[19] Adrian Johnston and Gustavo Carneiro. Self-supervised
monocular trained depth estimation using self-attention and
discrete disparity volume. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4756–4765, 2020.

[20] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 66–75, 2017.

[21] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. In 2016 Fourth
international conference on 3D vision (3DV), pages 239–
248. IEEE, 2016.

[22] R Li, S Wang, Z Long, and D UnDeepVO Gu. Monocular
visual odometry through unsupervised deep learning. arxiv
2017. arXiv preprint arXiv:1709.06841.

[23] Hongmin Liu, Xincheng Tang, and Shuhan Shen. Depth-map
completion for large indoor scene reconstruction. Pattern
Recognition, 99:107112, 2020.

[24] Pengpeng Liu, Irwin King, Michael R Lyu, and Jia Xu.
Flow2stereo: Effective self-supervised learning of optical
flow and stereo matching. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6648–6657, 2020.

[25] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015.

[26] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

[27] Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei
Xu, Ram Nevatia, and Alan Yuille. Every pixel counts++:
Joint learning of geometry and motion with 3d holistic un-

12785

derstanding. IEEE transactions on pattern analysis and ma-
chine intelligence, 42(10):2624–2641, 2019.

[28] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Un-
supervised learning of depth and ego-motion from monoc-
ular video using 3d geometric constraints. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5667–5675, 2018.

[29] Moritz Menze and Andreas Geiger. Object scene flow for au-
tonomous vehicles. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3061–
3070, 2015.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[31] Pierluigi Zama Ramirez, Matteo Poggi, Fabio Tosi, Stefano
Mattoccia, and Luigi Di Stefano. Geometry meets semantics
for semi-supervised monocular depth estimation. In Asian
Conference on Computer Vision, pages 298–313. Springer,
2018.

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large s-
cale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015.

[33] Evan Shelhamer, Jonathan T Barron, and Trevor Darrell.
Scene intrinsics and depth from a single image. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion Workshops, pages 37–44, 2015.

[34] Chang Shu, Kun Yu, Zhixiang Duan, and Kuiyuan Yang.
Feature-metric loss for self-supervised learning of depth and
egomotion. In European Conference on Computer Vision,
pages 572–588. Springer, 2020.

[35] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from rgb-
d images. In European conference on computer vision, pages
746–760. Springer, 2012.

[36] Jiaming Sun, Linghao Chen, Yiming Xie, Siyu Zhang, Qin-
hong Jiang, Xiaowei Zhou, and Hujun Bao. Disp r-cnn:
Stereo 3d object detection via shape prior guided instance
disparity estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10548–10557, 2020.

[37] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs
field transforms for optical flow. arXiv preprint arX-
iv:2003.12039, 2020.

[38] Shimon Ullman. The interpretation of structure from mo-
tion. Proceedings of the Royal Society of London. Series B.
Biological Sciences, 203(1153):405–426, 1979.

[39] Chaoyang Wang, José Miguel Buenaposada, Rui Zhu, and
Simon Lucey. Learning depth from monocular videos us-
ing direct methods. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2022–
2030, 2018.

[40] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018.

[41] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004.

[42] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel
Cremers. D3vo: Deep depth, deep pose and deep uncer-
tainty for monocular visual odometry. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1281–1292, 2020.

[43] Xinchen Ye, Zheng Li, Baoli Sun, Zhihui Wang, Rui Xu,
Haojie Li, and Xin Fan. Deep joint depth estimation and
color correction from monocular underwater images based
on unsupervised adaptation networks. IEEE Transactions on
Circuits and Systems for Video Technology, 2019.

[44] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learn-
ing of dense depth, optical flow and camera pose. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1983–1992, 2018.

[45] Wang Zhao, Shaohui Liu, Yezhi Shu, and Yong-Jin Liu. To-
wards better generalization: Joint depth-pose learning with-
out posenet. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9151–
9161, 2020.

[46] Chao Zhou, Hong Zhang, Xiaoyong Shen, and Jiaya Jia. Un-
supervised learning of stereo matching. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1567–1575, 2017.

[47] Laurent Zwald and Sophie Lambert-Lacroix. The berhu
penalty and the grouped effect. arXiv preprint arX-
iv:1207.6868, 2012.

12786

