This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Removing Adversarial Noise in Class Activation Feature Space

Dawei Zhou!, Nannan Wang'? Chunlei Peng', Xinbo Gao?, Xiaoyu Wang?, Jun Yu*, Tongliang Liu®
1Xidian University, 2Chongqing University of Posts and Telecommunications
3The Chinese University of Hong Kong (Shenzhen), University of Science and Technology of China
>The University of Sydney

dwzhou.xidian@gmail.com, {nnwang,clpeng}@xidian.edu.cn, gaoxb@cqupt.edu.cn

fanghuaxue@gmail.com, harryjun@ustc.edu.cn, tongliang.liu@sydney.edu.au

Abstract

Deep neural networks (DNNs) are vulnerable to adver-
sarial noise. Pre-processing based defenses could largely
remove adversarial noise by processing inputs. However,
they are typically affected by the error amplification effect,
especially in the front of continuously evolving attacks. To
solve this problem, in this paper, we propose to remove ad-
versarial noise by implementing a self-supervised adversar-
ial training mechanism in a class activation feature space.
To be specific, we first maximize the disruptions to class
activation features of natural examples to craft adversar-
ial examples. Then, we train a denoising model to mini-
mize the distances between the adversarial examples and
the natural examples in the class activation feature space.
Empirical evaluations demonstrate that our method could
significantly enhance adversarial robustness in comparison
to previous state-of-the-art approaches, especially against
unseen adversarial attacks and adaptive attacks.

1. Introduction

Deep neural networks (DNNs) are known to be vulnera-
ble to adversarial examples. Adversarial examples are ma-
liciously crafted by adding imperceptible but adversarial
noise on natural examples [11, 35, 15, 23, 26, 38]. The
vulnerability of DNNs poses a potential threat to many
decision-critical deep learning applications, such as image
processing [21, 14, 47, 33, 17, 27] and natural language
processing [34]. Thus, it is important to find an effective
defense against adversarial noise.

Previous researches show that adversarial robustness of
target models could be enhanced by processing inputs with
certain transformations [12, 7, 29, 13, 23]. However, pre-
processing based defenses may suffer from the error am-
plification effect, in which small residual adversarial noise
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Figure 1. A visual illustration of class activation maps of natural
examples and adversarial examples. The adversarial examples are
crafted by distinct types of non-targeted attacks, e.g., PGD [28],
FWA [39] and AA [6]. Although adversarial noise is imperceptible
in pixel level, there exists obvious discrepancies between the class
activation maps of natural examples and adversarial examples.

is amplified to a large perturbation in internal layers of the
target model and leads to misleading predictions [23]. Fur-
thermore, these pre-processing based approaches are shown
to be less effective in front of unseen adversarial attacks
[39, 6, 45] as the adversarial perturbations of adversarial
examples they used may not be the maximum in internal
layers (see Section 4).

The class activation mapping technique [48] gives us an
inspiration to solve this problem. Given a classification net-
work, the class activation mapping technique could iden-
tify the importance of image regions by projecting back the
class weights of the output layer on to the last convolutional
features and performing a linear sum of the weighted fea-
tures [48]. We find that although adversarial noise is im-
perceptible in pixel level, there exists obvious discrepancies
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between the class activation maps of natural examples and
adversarial examples crafted by existing attack approaches
(see Figure 1). In addition, the weighted features are in the
high-level layer of the network where small residual noise
could cause large perturbations. This motivates us to han-
dle the issue of error amplification effect by designing a de-
fense method which focuses on the weighted features called
as class activation features.

In this paper, we propose an adversarial training mech-
anism to remove adversarial noise by exploiting class acti-
vation features. In a high level, we design a max-min for-
mula in the class activation feature space to learn a denois-
ing model in a self-supervised manner without seen types of
adversarial examples and ground-truth labels. Specifically,
we first craft adversarial examples by maximally disrupt-
ing the class activation features of natural examples. The
discrepancies of class activation features make adversarial
examples have different prediction results from natural ex-
amples. We name such attack as class activation feature
based attack (CAFA). Then, we train a denoising model,
namely class activation feature based denoiser (CAFD), to
remove adversarial noise. Instead of directly utilizing pixel-
level loss functions to train our model, we minimize the dis-
tances between the class activation features of the natural
examples and the adversarial examples. Finally, an image
discriminator is introduced to make restored examples close
to the natural examples by enhancing the fine texture details.

Achieved by such self-supervised adversarial training,
our defense method could provide more significant protec-
tions against unseen types of attacks and adaptive attacks
compared to previous defenses, which is empirically veri-
fied in Section 4.2. Furthermore, additional evaluations on
ablation study and robustness of our model to the perturba-
tion budget in Section 4.3 further demonstrate the effective-
ness of our method.

The main contributions in this paper are as follows:

* We find that although adversarial noise is impercep-
tible in pixel level, it significantly disrupts the class
activation features of natural examples. To this end,
we design a class activation features based denoiser
(CAFD) to effectively remove adversarial noise by ex-
ploiting class activation features.

* An self-supervised adversarial training mechanism is
proposed to train the denoiser. We maximally disrupt-
ing the class activation features of natural examples
to craft adversarial examples, and use them to train
the denoiser for learning to minimize the distances be-
tween natural and adversarial examples in the class ac-
tivation feature space.

* Empirical experiments show that our method could
enhance adversarial robustness and it could be trans-
ferred across different target models. Particularly, the

success rates of unseen attacks and adaptive attacks are
reduced significantly in comparison to previous state-
of-the-art approaches.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review related work on attacks and de-
fenses. In Section 3, we describe our defense method and
present its implementation. Experimental results on differ-
ent datasets are provided in Section 4. Finally, we conclude
this paper in Section 5.

2. Related work

Attacks: Adversarial examples have been shown to mis-
lead DNNs [35] and transfer across different target models
[25]. They can be crafted by single-step or multi-step at-
tacks following the direction of adversarial gradients under
a L, norm perturbation budget. Attacks based on this strat-
egy include fast gradient sign method (FGSM) [11], basic
iterative attack (BIA) [20], the strongest first-order informa-
tion based projected gradient descent (PGD) method [28],
Carlini and Wagner (CW) method [4], decoupling direc-
tion and norm (DDN) method [31] and the autoattack (AA)
method [6]. Rather than optimizing the objective function
at a single point, the translation-invariance input diversity
method (TI-DIM) [9, 46] uses a set of translated images to
optimize an adversarial example. In addition, unlike these
pixel-constrained attacks which do not consider the seman-
tic or geometric information, spatially-constrained attacks
focus on mimicking non-suspicious vandalism via geome-
try and spatial transformation, e.g., faster wasserstein attack
(FWA) [39] and spatial transform attack (STA) [45].

Defenses: Adversarial training (AT) is an extensive strat-
egy for defending adversarial noise [11, 37, 20]. It is ded-
icated to train a robust model by augmenting the training
data with adversarial examples [28]. For example, the de-
fensing against occlusion attacks (DOA) [41] method uses
adversarial examples crafted by occlusion attacks to en-
hance the backbone model’s robustness. The channel-wise
activation suppressing (CAS) [2] strategy suppresses redun-
dant activations from being activated by adversarial pertur-
bations during the adversarial training process. Adversar-
ial training could improve the accuracy of the target model
on adversarial examples, but it typically cannot directly be
transferred to other models or tasks.

Pre-processing based methods process the inputs to
achieve robustness against adversarial noise. For exam-
ple, JPEG compression [13] and total variation minimiza-
tion (TVM) [13] were proposed to remove high-frequency
components and small localized changes respectively. Jin
et al. [15] proposed APE-G to back adversarial exam-
ples close to natural examples via a generative adversar-
ial network. A high-level representation guided denoiser
(HGD) [23] method was utilized as a pre-processing step
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to remove adversarial noise. The method in [49] removes
adversarial noise by disentangling attack-invariant features
from adversarial noise. Different from the above meth-
ods, we combine the benefits of adversarial training and
pre-processing, and design an denoising model that remove
adversarial noise by minimizing the distances between the
class activation features of natural and adversarial examples
in a self-supervised adversarial training manner.

3. Methodology
3.1. Preliminaries

In this paper, we aim to design a pre-processing based
defense which could mitigate the error amplification effect
and provide robust protections. The basic intuition behind
our defense is to effectively exploit the class activation fea-
tures of DNNs which could be significantly disrupted by
adversarial noise. Towards this end, we design a class acti-
vation features based denoiser (CAFD) which learns to re-
move adversarial noise in the class activation feature space.
To train our CAFD, we propose a self-supervised adversar-
ial training mechanism without using seen types of adver-
sarial examples and ground-truth labels. As shown in Fig-
ure 2, the training procedure can be regarded as a max-min
formula and it is expressed as in the following:

For a given natural example z, let ®, represent its class
activation features obtained from a pretrained deep neural
network P. We first craft an adversarial example by max-
imally disrupting ®,, (Section 3.2). Then, at the minimiza-
tion step, a class activation feature based denoiser C tries to
remove the adversarial noise by minimizing the discrepan-
cies between ¥, and ®;, where ®; denotes the class ac-
tivation feature of . In addition, to further enhance fine
texture details of restored examples, we introduce an image
discriminator D to play a game with C (Section 3.3).

3.2. Crafting adversarial examples

Our defense model is trained in an adversarial manner
without utilizing seen types of adversarial examples and
ground-truth labels. The adversarial examples used for self-
supervised training are obtained by class activation feature
based attack (CAFA). Below, we first outline class activa-
tion features and the impact of disrupting class activation
features. Then, we describe the procedure of CAFA.

Class activation features: Given a pretrained deep neu-
ral network P, the class activation mapping technique [48]
projects back class weights of the output layer of P on to
the last convolutional features and performs a linear sum
of the weighted features. To be specific, for a given exam-
ple z, its predicted probability of class ¢ is p(c|z). ¢, =
arg max, p(c|z) is the predicted class of x. We first use f*
to represent the deep feature of = of the £ — th channel in
the last convolutional layer of P. Then, for class c,, the

weighted feature of the k — th channel is ¢F = fF . wk,
where w! is the class weight of the k& — th channel cor-
responding to class c,. Essentially, w¥ indicates the im-
portance of ff for ¢, [48]. By linear summation of all

k. we could get a class activation map of z. We name

the weighted features for all K channels as class activation
features which are denoted by ®, = [¢L,¢2,..., oK ]T.

T x?

Intuitively, the class activation features could be expressed
T
as &, = F, - W,, where F=[f1 f2,...,fX] and

-
We=[wl,w2,...,wk]  are the deep features and class

weights for all K channels respectively.

Disruptions to class activation features: We note that
there exists obvious discrepancies between class activation
maps of natural examples and adversarial examples crafted
by existing attacks. Since class activation maps is the liner
sum of class activation features, the discrepancies indicate
that adversarial noise could significantly disrupt the class
activation features. This is similar to the phenomenon de-
scribed in the error amplification effect that residual adver-
sarial noise could cause large perturbations in internal lay-
ers of a target model. The reason why we use class acti-
vation features to craft adversarial examples is that the dis-
ruptions to class activation features could directly impact
the effect of misleading the target model. To show this, we
conduct a proof-of-concept experiment.

We define the feature distance to measure the disruptions
to the class activation features of a natural example x as
follows:

where @, and ®; are the class activation features of x and
its adversarial example Z respectively. J(-) denotes a Lo-
norm distance metric. As shown in Figure 3, we implement
three classic attack methods, BIA [20], PGD [28] and CW
[4]. The results show that the fooling rates and the feature
distances have the same changing trend. This indicates that
the disruptions to class activation features could directly im-
pact the attack effect. Therefore, maximizing the objective
in Eq. 1 could craft strong adversarial examples and enable
an effective defense model.

Class activation feature based attack: Based on above ob-
servations, we design a class activation feature based attack
(CAFD) method. Our method aims to find strong adversar-
ial examples in class activation feature space by solving the
following optimization problem:

max A(z,Z) = 6(D,, Dz),
z ()

subject to: ||z — Z||co <€,

where e denotes the perturbation budget. Our attack method
is summarized in Algorithm 1. Given natural examples z,
we first initialize adversarial examples zo as x. Then, we
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Figure 2. A visual illustration of our defense method. The proposed defense learns to remove adversarial noise via a self-supervised
adversarial training mechanism. We maximally disrupt the class activation features of natural examples to craft adversarial examples and
use them to train the denoiser for learning to bring adversarial examples close to natural examples in the class activation feature space.
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Figure 3. The average feature distances and fooling rate of adver-
sarial examples against a VGG-19 [33] target model on CIFAR-
10. The adversarial examples are respectively crafted by BIA[20],
PGD [28] and CW [4]. It could be seen from the figure that the

fooling rates rise synchronously as the feature distances increase.

forward z and Z; to the pretrained deep neural network P.
and obtain their class activation features ®, and ®z,. Next,
we compute the feature distance A(z, &;) and its gradients
using Eq. 2 and Eq. 3. Finally, we take the gradients to
update 2, and obtain Z44; using Eq. 4 and Eq. 5. By itera-
tively executing such update procedure, Algorithm 1 could
maximize A(x, Z) and output an adversarial example Z.

3.3. Removing adversarial noise

We design a class activation feature based denoiser
(CAFD) C to remove adversarial noise. To train the de-
noiser, we use a hybrid loss function, which consists of a
class activation feature loss and an adversarial loss.

Algorithm 1 CAFA: Class Activation Feature based Attack

Input: A pretrained deep neural network P, natural example x,
perturbation budget €, number of iterations 7" and attack step
size o

Output: An adversarial example Z with ||z — Z||ec < €.

1: Tp + x;
2: fort =0to7T — 1do

3:  Forward x and Z; to P, and obtain class activation features
®, and Pj,;
4:  Compute the feature distance A(x, Z+) using Eq. 1;
5:  Compute gradients w.r.t inputs:
gt =V.A (w,ft); 3)
6:  Update the adversarial example Z:
Tpp1 = & + o - sign (g¢) 5 )
7. Project Z;41 to the vicinity of x:
Ze41 = clip (Te41, 2 — €,z +€); 5)
8: end for

9: return T = I7.

Class activation feature loss: Adversarial examples
crafted by CAFA directly disrupt the class activation fea-
tures and thus lead to misleading predictions. In order to ef-
fectively protect target models, the denoiser needs to learn
to reduce the distances between natural examples and ad-
versarial examples in the class activation feature space. The
class activation feature loss could be defined as follows:

£caf = 6((I)z’ ®C(j)), (6)

where ®¢ (3 denotes the class activation features of the re-
stored example C(Z), and 6(-) denotes the Lo-norm distance
metric. Considering that ®, is the dot product of deep fea-
tures F), and class weights W, we could also achieve this
optimization goal by jointly reducing the distances of deep
features and class weights between the natural example and
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Figure 4. A visual illustration of the defense effect of our model against various types of attacks. (fop: adversarial examples; middle:
restored examples; bottom: class activation maps of restored examples). Subscripts “N” indicates that the corresponding attacks are

non-targeted attacks.

Algorithm 2 CAFD: Class Activation Feature based Denoiser
Input: Training data X, pretrained deep neural network P and
perturbation budget e.
1: repeat
2:  Simple natural example x from X;
3:  Craft adversarial example ¥ at the given perturbation bud-
get € by utilizing Algorithm 1;
4:  Forward-pass & through C and calculate L., (Eq. 6 or
Eq. 7);
5 Forward-pass C(Z) through D, then calculate Lp (Eq. 8)
and La40 (Eq. 9);
6:  Back-pass and update D, C to minimize L¢ (Eq. 10) and
Lp (Eq. 8);
7: until C and D converge.

its adversarial example. The class activation feature loss
could be modified as follows:

Ecaf = 5(sz FC(fc)) + 6(Wx» WC(%)), (N

where F(z) denotes the deep features of & and We(z) de-
notes the class weights of . We use Eq. 6 and Eq. 7 respec-
tively to train C and present their results in Section 4.2. In
addition, we empirically observe that removing L., s loss
would result in a significant decrease in the defense effect
of the denoiser (See Figure 5).

Adversarial loss: We introduce an image discriminator D
to enhance the fine texture details of restored examples in
the manner of a relativistic average generative adversarial
network [16]. Compared with a standard generative adver-
sarial network (SGAN), the relativistic average generative
adversarial network (RaGAN) is significantly more stable
and can generate higher quality examples [16]. In SGAN,
the discriminator D estimates the probability that the in-
put data is real. However, the probability that real data is
real should be also decreased simultaneously [16]. RaGAN
achieves this property by making discriminator relativistic

(i.e., having the output of D depends on both real and fake
(restored) data). To make the relativistic discriminator act
more globally, RaGAN further focuses on the average of
the relativistic discriminator over random samples of data
of the opposing type.

For a given natural example x and its adversarial exam-
ple z crafted by CAFA, the adversarial loss for D is defined
as follows:

Lp = —log(a(D(x) — 7(D(C(7)))))
—log(1 — o(D(C()) — 7(D(x)))),
where o(-) denotes the sigmoid function and 7(-) denotes

the mean function. The adversarial loss for C is represented
by,

®)

Eadv = - log(U(D(C(i)) - T<D(‘T)))>
—log(1 = o(D(z) — 7(D(C(%)))))-
Combining the above class activation feature loss and ad-
versarial loss, the overall loss function for C is given as:

LC = )\lﬁcaf + A2‘£adva (10)

where \; and Ao are positive parameters to trade off each
component. The overall procedure is summarized in Al-
gorithm 2. Given training data X, we first simple natural
example x from X and craft its corresponding adversarial
example = via CAFA. Then, we forward-pass 2 through the
denoiser C and calculate L., s. Next, we forward-pass C(Z)
through D and then calculate £ p and £,4,. Finally, we take
a gradient step to update C and D to minimize L¢ and Lp.
The above steps are repeated until C and D converge.

€))

4. Experiments

In this section, we first introduce the datasets, network
architectures and training details used in this paper (Sec-
tion 4.1). Then, we present and analyze the experimental re-
sults of defending against unseen types of attacks and adap-
tive attacks (Section 4.2). Finally, we conduct an ablation
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Table 1. Classification error rates (percentage) of the VGG-19 target model against adversarial examples (lower is better). CAFD and
CAFD' are our defense models corresponding to Eq. 7 and Eq. 6 respectively. The subscript NV indicates that the corresponding attack is a
non-targeted attack and the subscript 7" indicates that the corresponding attack is a targeted attack. The compression quality of JPEG is 75
and the weight of TVM is 0.003. The DOA method in this paper uses 7 x 7 adversarial patches crafted by exhaustive searching to retrain
the target model. For each attack, we show the most successful defense with bold and the second one with underline.

Defenses Attacks
None DDNpy TI-DIMy PGDy PGDy AAny STAy STAr  FWAp
DOA 6.37 7.48 37.84 38.96 32.90 39.09 17.03 19.10 65.89
AT 7.16 10.49 40.10 31.27 25.78 32.56 20.90 21.10 45.26
JPEG 9.78 11.25 92.04 95.67 86.60 97.56 37.81 33.65 93.07
SVHN TVM 10.01 21.37 88.94 94.53 75.17 95.84  27.76 23.66 96.61
APE-G 10.40 11.92 89.45 93.20 83.40 81.92  43.75 42.37 86.57
HGD 10.12 10.99 90.83 57.35 45.00 62.25 40.43 36.53 67.44
CAFD 7.65 14.90 58.57 14.64 10.63 13.57 19.92 18.48 58.07
CAFD’ 9.79 16.34 61.49 15.91 13.46 14.87 22.19 22.06 60.82
DOA 7.82 10.42 28.53 47.81 32.37 47.43 17.51 18.13 50.65
AT 10.34 18.07 31.78 31.77 30.17 30.61 21.16 20.69 39.70
JPEG 13.32 16.10 38.68 51.41 50.34 58.84  47.76 47.35 85.27
CIFAR-10 TVM 9.65 23.15 39.46 68.79 56.71 66.46 30.76 31.90 90.81
APE-G 8.18 11.75 34.19 78.08 62.31 76.65 24.08 21.40 76.66
HGD 7.64 9.18 35.50 46.87 31.18 45.73 19.96 18.27 46.87
CAFD 8.90 9.24 26.57 12.79 10.58 11.80  18.19 17.17 35.59
CAFD' 8.95 9.32 29.85 15.45 12.67 14.27 19.03 18.10 39.49

study and an evaluation of the robustness of our model to
the perturbation budget, to further show the effectiveness of
our defense method (Section 4.3). The code is available at
https://github.com/dwDavidxd/CAFD.

4.1. Experiment setup

Datasets: We verify the effective of our defense method
on two popular benchmark datasets, i.e., SVAN [30] and
CIFAR-10 [19]. SVHN and CIFAR-10 both have 10 classes
of images, but the former contains 73,257 training images
and 26,032 test images, and the latter contains 60,000 train-
ing images and 10,000 test images. Images in the two
datasets are all regarded as natural examples. Adversarial
examples for evaluating defense models are crafted by ap-
plying state-of-the-art attacks. These attacks inlcude: (i)
pixel-constrained attacks, i.e., PGD [28], CW [4], AA [6],
DDN [31] and TI-DIM [9, 46]. (ii) spatially-constrained
attacks, i.e., STA [45] and FWA [39]. Pixel-constrained
attacks generally manipulate the pixel values directly by
leveraging the L, norm distance for penalizing adversarial
noise, while spatially-constrained attacks focus on mimick-
ing non-suspicious vandalism via spatial transformation and
physical modifications [10, 41].

Network architectures: We use three network architec-
tures to perform classification tasks on SVHN and CIFAR-
10, i.e., a VGG-19 architecture [33], a ResNet-50 architec-
ture [14] and a Wide-ResNet architecture [47]. The depth
and widen factor in the Wide-ResNet architecture are set to
28 and 20 respectively. The architecture of our defense is
a DUNET architecture [23]. It consists of multiple basic

blocks and each block contains a 3 x 3 convolutional layer,
a batch normalization layer and a rectified linear unit. Our
image discriminator is a VGG style discriminator [36, 22],
it consists of a fully connected layer and three convolutional
blocks containing convolutional layers followed by a batch
normlization layer and a leaky ReLU activation function.

Training details: For fair comparison, all experiments are
conduced on four NVIDIA RTX 2080 GPUs, and all meth-
ods are implemented by PyTorch. We use the implementa-
tion codes of PGD, DDN, CW and STA methods in the ad-
vertorch toolbox [8] and the author’s implementation codes
of AA, TI-DIM and FWA methods. The default perturba-
tion budget € is set to 8/255 for both SVHN and CIFAR-10.
The VGG-19, ResNet-50 and Wide-ResNet networks are
used as target models and the VGG-19 network is also uti-
lized as the pretrained network P. Learning rates for target
models is 1072 on SVHN and 10~! on CIFAR-10. All these
networks are pretrained and remain fixed. The denoiser C
and the discriminator D are optimized using Adam [18].
Their learning rates are initially set to 1073 and decay to
2.7 x 107> when the training loss converges. The positive
parameters A and ), are set to 102 and 5 x 1073 on SVHN
and 102 and 5 x 10~ on CIFAR-10.

4.2. Defense Results

Defending against unseen types of attacks: We use ad-
versarial examples crafted by non-targeted Ly norm CW
to train previous defense models, and select non-targeted
L, norm PGD, targeted L., norm PGD, non-targeted Lo
norm DDN, non-targeted Lo norm CW, non-targeted AA,
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Table 2. Classification error rates (percentage) of distinct target
models with CAFD (lower is better). We transfer the CAFD de-
fense trained based on VGG-19 to ResNet-50 and Wide-ResNet.

Target Model
Attack VGG-19 ResNet-50 Wide-ResNet
CAFD None CAFD | None CAFD

SVHN
PGD 14.64 100 11.01 97.71  21.33
PGDr 10.63 100 10.62 93.85 14.14
DDN y 14.90 99.98  15.53 100 16.60
AAnN 13.57 100 18.80 9720 23.17
STAN 19.92 99.87  22.34 96.79  23.51
STAT 18.48 99.71 2191 96.63  24.87
CIFAR-10

PGD 12.79 100 18.86 100 20.18
PGDr 10.58 100 13.19 99.91 1245

DDN 9.24 99.99  9.25 100 7.84

AAN 11.8 100 16.25 100 17.23
STA N 18.19 100 17.51 99.99 18.16
STAT 17.17 99.97 17.07 99.66 17.93

non-targeted TI-DIM, non-targeted STA, targeted STA and
non-targeted FWA as unseen types of attacks to craft ad-
versarial examples for evaluating defense models. The de-
tails of these attacks could be found in appendix A. Figure 4
shows that our method is effective to remove strong adver-
sarial noise. Quantitative analysis in Table 1 demonstrates
that our method achieves more robust performance, e.g., re-
ducing the success rate of AAy from 30.61% to 11.80%
compared to previous state-of-the-art. The adversarial ex-
amples and restored examples are shown in appendix B.

Cross-model defense results: In order to evaluate the
cross-model defense capability of our method, we trans-
fer our CAFD model to other classification models, i.e.,
ResNet-50 and Wide-ResNet. Results in Table 2 present
that our method significantly removes adversarial noise
crafted by various unseen types of attacks against ResNet-
50 and Wide-ResNet. The classification error rates of the
ResNet-50 and Wide-ResNet target models are relatively
similar to those of the VGG-19 target model, which demon-
strates that our method could provide effective cross-model
protections. The adversarial examples and restored exam-
ples are shown in appendix B.

Defending against adaptive attacks: An adaptive attack
can access the leaked defense. In this case, the attacker
uses the knowledge of the defense and is only restricted by
the threat model [1, 3]. We study the following three diffi-
cult scenarios: (i) The attacker knows the defense and uses
BPDA [1] to bypass it. (ii) The attacker gains a copy of the
defense and combine it with the original target model into
a new target model. Then, the attacker perform a white-box
attack on the new target model (iii) The attacker does not
directly access the defense but train a similar local defense
model to craft adversarial examples in a gray-box manner.

Table 3. Classification error rates (percentage) under scenarios
wbere defen§e are leaked. (lower is better). Defense models APE-
G and HGD are trained based on adversarial examples crafted by
non-targeted PGD with iteration number 20. ‘It-7° means that the
maximum number of attack iterations is controlled to be 7.

BPDA
Target Attack Defense  Error rate
APE-G' +VGG-19 PGDy (It-10) APE-G’ 98.32
HGD +VGG-19  PGDy (It-10)  HGD' 79.50

CAFD+VGG-19
APE-G' +VGG-19
HGD' +VGG-19
CAFD+VGG-19

PGDy (t-10)  CAFD 4774
PGDy (It:20) APE-G  99.12
PGDy (It-20) HGD' 85.04
PGDy (It-20)  CAFD 51.25

White-box adaptive attack

Target Attack Defense  Error rate
APE-G+VGG-19 DDN APE-G 97.85
HGD+VGG-19 DDN HGD 97.10
CAFD+VGG-19 DDN y CAFD 93.23
APE-G' +VGG-19 PGDy APE-G’' 98.86
HGD' +VGG-19 PGDy HGD' 98.13
CAFD+VGG-19 PGDy CAFD 95.18

Gray-box adaptive attack

Target Attack Defense  Error rate
APE-G +VGG-19 DDN v APE-G 11.07
HGD' +VGG-19 DDNpn HGD 10.93
CAFD' +VGG-1 9 DDN CAFD 10.90
APE-G +VGG-19 PGDyN APE-G 81.19
HGD'+VGG-19 PGD HGD 65.03
CAFD' +VGG-19 PGDy CAFD 56.76

In the BPDA scenario, the defense models APE and
HGD' are trained based on adversarial examples crafted by
non-targeted PGD. We use non-targeted PGD with iteration
numbers 10 and 20 to attack defense models in the BPDA
manner. As shown in Table 3, our method shows signif-
icant gains, i.e., the classification error rates are reduced
by 49.85% and 39.83% on average compared to APE and
HGD. In the white-box adaptive attack scenario, our method
presents a slight reduction in the error rates. Since the de-
fense models are completely leaked to the attacker, defense
models’ protection capabilities are destroyed under this sce-
nario, which prompts us to strengthen the defense against
such attacks in the future. In the gray-box adaptive attack
scenario, we use APE—G/, HGD' and CAFD' as the local
defense models to craft adversarial examples. Our method
shows competitive performance against DDN y and obtains
better experimental results against PGD y .

4.3. Further Evaluations

Ablation study: Figure 5 shows the ablation study on
CIFAR-10. We respectively remove the adversarial loss
L4 and the class activation feature loss L., to investi-
gate their impacts on our model. Removing £, slightly
reduces the classification accuracy rates because some fine
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Figure 5. Ablation study on CIFAR-10. The figure shows the clas-
sification accuracy rates (percentage) of VGG-19 (higher is bet-
ter). The performance of our method without L. is significantly
affected, which indicates the importance of the class activation fea-
ture loss. MSED denotes the defense model which is trained by
using a pixel-wise mean square error loss and the adversarial loss.

texture details would be lost. The performance of our
method without L., is significantly affected, which indi-
cated the importance of the class activation feature loss. We
train a similar defense model named as MSED by using a
pixel-wise mean square error loss and the adversarial loss
instead of class activation feature loss. Compared to our
defense model, the MSED does not provide sufficient pro-
tections against these attacks.

To further demonstrate the effectiveness of the proposed
CAFA for improving the adversarial robustness, we show
the results of the proposed models trained using adversarial
examples crafted by PGD and CW in appendix C. In addi-
tion, we also present the results of previous defense meth-
ods when using adversarial examples crafted by PGD as
adversarial training data in appendix C. The results show
that using CAFA can achieve a great defense performance
and improve the generalization of the defense against un-
seen types of attacks.

Robustness of our model to the perturbation budget:
To explore the robustness of our defense model to the per-
turbation budget €, we set the L., norm perturbation bud-
get € within the range of (6/255,16/255) and craft adver-
sarial examples via non-targeted PGD, targeted PGD and
non-targeted AA. As shown in Figure 6, our defense model
maintains a relatively high accuracy rate when the adversar-
ial noise is constrained within (6/255, 12/255). This indi-
cates that our model is suggested to defense against attacks
with € less than 12/255 when the perturbation budget of
CAFA is 8/255. When the perturbation budget continues to
increase, the protection effect would reduce significantly.

5. Conclusion

In this paper, we aim to design a defense that could miti-
gate the error amplification effect, especially in the front of

95
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— . — S~

\. -~
3’85 S~ ‘\s
« . \\
~. “u
<80 ~N

75

70
6/255 8/255 10/255 12/255 14/255 16/255

Perturbation budget
~8- Non-targeted PGD == Targeted PGD Non-targeted AA
Figure 6. Classification accuracy rates (percentage) of our defense
model against adversarial examples with distinct perturbation bud-
get (higher is better). We select three strong attacks for this evalu-
ation and set the L., norm perturbation budget ¢ within the range

of (6/255, 16,/255).

unseen types of attacks. Inspired by the observation of the
discrepancies between the class activation maps of adver-
sarial and natural examples, we propose a self-supervised
adversarial training mechanism to remove adversarial noise
in a class activation feature space. Specifically, we first
use class activation feature based attack to craft adversarial
examples. Then, we train a class activation feature based
denoiser to minimize the distances between the adversarial
and natural examples in the class activation feature space for
removing adversarial noise. Experimental results demon-
strate that our defense could provide protections against un-
seen types of attacks. In future, we can extend this work in
the following aspects. First, we need to strengthen the de-
fense against white-box adaptive attacks. Second, we can
use the class weights in the internal layers via gradient-
based methods, e.g., Grad-CAM [32] and Grad-CAM++
[5]. Third, we can use the strategies in the filed of label
noise [24, 44, 43, 37, 42, 40] to improve the adversarial ro-
bustness of the target model against the adversarial noise.
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