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Abstract

Due to the superior ability of global dependency mod-
eling, Transformer and its variants have become the pri-
mary choice of many vision-and-language tasks. How-
ever, in tasks like Visual Question Answering (VQA) and
Referring Expression Comprehension (REC), the multi-
modal prediction often requires visual information from
macro- to micro-views. Therefore, how to dynamically
schedule the global and local dependency modeling in
Transformer has become an emerging issue. In this pa-
per, we propose an example-dependent routing scheme
called TRAnsformer Routing (TRAR) to address this issue1.
Specifically, in TRAR, each visual Transformer layer is
equipped with a routing module with different attention
spans. The model can dynamically select the correspond-
ing attentions based on the output of the previous infer-
ence step, so as to formulate the optimal routing path for
each example. Notably, with careful designs, TRAR can re-
duce the additional computation and memory overhead to
almost negligible. To validate TRAR, we conduct extensive
experiments on five benchmark datasets of VQA and REC,
and achieve superior performance gains than the standard
Transformers and a bunch of state-of-the-art methods.

1. Introduction

After gaining dominance in the field of natural lan-
guage processing [60, 10, 74, 9, 27], Transformer [60] also
becomes the prime choice of many vision-and-language
(V&L) tasks [14, 7, 30]. More and more researchers [39,
71, 79, 58, 22] follow the design paradigm of Transformer

*Corresponding author.
1Source code: https://github.com/rentainhe/TRAR-VQA/
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Figure 1: Illustration of our Transformer Routing (TRAR)
and the traditional static Transformer. Circles denotes the
self-attention modules, and their colors represent different
attention spans (receptive fields). TRAR can dynamically
schedule the attention spans for each example.

to propose various multi-modal networks, achieving new
state-of-the-art performance on various benchmarks [14,
30, 28, 7]. Their great success largely attributes to the su-
perior global dependency modeling of self-attention (SA),
which can not only capture the relationships within modal-
ities, but also facilitate the vision and language alignments.

However, in some V&L tasks, such as visual question
answering (VQA) [14] and referring expression compre-
hension (REC) [30], the multi-modal inference often re-
quires visual attentions from different receptive fields. As
shown in Fig. 1, to answer the question, the model should
not only understand the overall semantic, but more impor-
tantly, it also requires to capture the local relationships. In
this case, only relying on the global dependency modeling
in SA is still insufficient to meet such a requirement. This
finding is also supported by the recent development of im-
age Transformers [38, 62]

Such an issue becomes more prominent in the end-to-end
multi-modal inference. After Jiang et al. [25] revealed that
well pre-trained grid features can also have expressive de-
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scription power, recent endeavors [22, 41, 76] have begun
to re-pursue the design of one-stage V&L models. How-
ever, compared with the widely used detection features [2],
the semantic information of grid features are more frag-
mented. Therefore, the global dependency modeling of SA
is more likely to introduce noise during attention, disturbing
the model inference, e.g., associating unrelated regions.

To deal with this problem, helping Transformer networks
to explore different attention spans has become an emerging
demand. An intuitive solution is to build a dynamic and hy-
brid network, where each layer has a set of attention mod-
ules of different receptive fields. Then, the model can select
the suitable ones according to the given example. How-
ever, the direct application of this solution might be coun-
terproductive, because the additional parameters and com-
putations will further exacerbate the model costs, which is
already the main criticism of Transformer [27].

In this paper, we propose a novel yet lightweight rout-
ing scheme called Transformer Routing (TRAR), which
achieves the automatic selection of attentions with negligi-
ble additional computation and memory overhead. Specif-
ically, TRAR equips each visual SA layer with a path
controller to predict the next attention span (or receptive
field) [45] based on the output of the previous step. To
address the issue of redundant parameters and computa-
tion, TRAR regards SA as a feature update function for the
densely connected graph [79], and constructs different ad-
jacency masks for the defined attention spans. Afterwards,
the task definition of module selection can be converted to
the one of mask selection, reducing the additional cost to a
large degree.

To validate TRAR, we apply it to the single-stage Trans-
former networks for two multi-modal tasks, VQA and
REC, and conduct extensive experiments on five benchmark
datasets, VQA2.0 [14], CLVER [28], RefCOCO [68], Ref-
COCO+ [68] and RefCOCOg [43]. The experimental re-
sults not only confirm the merits of TRAR over the de-
fault Transformer network, but also show new SOTA perfor-
mance on multiple benchmarks2, e.g., 72.7 on VQA2.0 [14]
and 68.9 on RefCOCOg [43].

In summary, the main contributions of this paper are
threefold:

• We reveal the issue of attention span, which is critical
for the development of end-to-end Transformers.

• We propose the first example-dependent routing
scheme for Transformer to dynamically schedule
global and local attentions, which requires negligible
additional computation and memory overhead.

• The proposed TRAR helps the one-stage Transformers

2Single model without the large-scale BERT style pre-training.

achieve new SOTA performances on multiple bench-
mark datasets of VQA and REC.

2. Related Work
2.1. Visual Question Answering

Visual question answering (VQA) is a task of answer-
ing human questions based on given images. It is of-
ten considered as a classification task with fixed cate-
gories [3, 14, 28]. The rapid development of VQA has
been supported by the emergence of various benchmark
datasets [1, 3, 14, 28, 29, 32, 52] and methods [13, 59, 66,
72, 54, 46, 77, 78, 79, 80]. With the prevalence of Trans-
former networks [60], recent advances in VQA also resort
to stacking multiple attention layers, e.g., Bilinear Atten-
tion layers [31] or Self-Attention Layers [71], for capturing
relationships within and across modalities. The success of
large-scale unsupervised pretraining in NLP [11] has further
promoted the popularization of Transformer and its variants
in VQA, leading to a new trend of large-scale V&L pre-
training [39, 40, 58, 55, 22].

2.2. Referring Expression Comprehension

Referring expression comprehension (REC) is a task of
grounding (locating) target regions in an image based on
the given natural-language expressions [30], which is also
known as visual grounding. Recent years have witnessed
its fast advancements with a bunch of methods [6, 49, 20,
19, 69, 67, 76, 41], which can be roughly divided into
two main categories. The first one is multi-stage model-
ing [6, 49, 20, 19, 69, 67], which typically regards REC
as a metric learning problem, i.e., selecting the best region
from a set of proposals/objects based on the given expres-
sion. In these methods, a joint embedding network for two
modalities is built for computing the matching degree of
each region-expression pair [67]. The other one is single-
stage modeling, [65, 76, 41, 64], which considers REC as a
language-guided detection task. These methods typically
embed a language encoder into a detection network like
YOLOv3 [51], and perform multi-modal regressions to ob-
tain the referent. In this paper, we mainly focus on the
single-stage modeling of REC.

2.3. Dynamic Neural Networks

Dynamic neural networks are an emerging research topic
in deep learning. Differing from the traditional static net-
work structures, dynamic networks can adapt their struc-
tures or parameters to the given example during infer-
ence, yielding appealing properties like better representa-
tion power, adaptiveness, compatibility and generality [15].
According to architecture design, the research of dynamic
networks can be categorized into three main directions,
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Figure 2: The framework of the proposed Transformer Routing (TRAR) scheme for the one-stage Transformer. The different
colors of the decoding layers denote visual attentions of different spans. With TRAR, the Transformer can dynamically select
the visual attention span of each step, so as to form the optimal reasoning path for each example.

which are dynamic depth for network early exiting [5] or
layer skipping [35, 61], dynamic width for skipping neu-
rons [4] or channels [37], and dynamic routing for multi-
branch or tree structure networks [21, 34, 63]. Our method
belongs to the last direction. Most of existing dynamic rout-
ing models [34, 63] are built on super networks, where each
routing option is an independent module. Although the in-
ference efficiency can be maintained via categorical choice
or budget constraints [34], the network parameters and com-
putations are very redundant during training, which leads to
a huge demand for experimental resource.

3. Transformer Routing
The framework of the proposed Transformer Routing

(TRAR) is given in Fig. 2. In the following sub-sections,
we introduce its routing process, path controller, attention
spans, optimization, and network structure.

3.1. Routing Process

To achieve the goal of dynamic routing (selection) for
each example, an intuitive solution is to create a multi-
branch network structure, where each layer is equipped with
modules of different settings. Specifically, given the fea-
tures of the last inference step, X ∈ Rn×d, and the routing
space, F = [F0, ..,Fn], where n denotes the number of fea-
tures and d is the feature dimension, the output of the next
inference step X′ is obtained by:

X′ =

n∑
i=0

αiFi (X) , (1)

where α is the path (selection) probability predicted by the
path controller (described in Sec.3.2) and F is a set of mod-
ules. During testing, α can be either binarized for a hard
selection, or remain continuous to obtain a soft routing [34].

However, from Eq. 1 we can see that such a routing
scheme can inevitability make the network become very
cumbersome, and exacerbates the training overhead greatly.
Besides, due to the dot-product operations in SA, Trans-
former has been long criticized for its expensive computa-
tion and memory footprint [27].

In this case, it is critical to optimize the definition of path
routing to alleviate the burden of experiments. By revisiting
the definition of the standard self-attention, defined as:

X′ = SA (X) = AXWv,

A = Softmax
( (XWq)

T
XWk√

d

)
,

(2)

we can see that SA can be regarded as a feature update
function for a fully connected graph, when A ∈ Rn×n is
regarded as a weighted adjacency matrix [79].

In this case, to obtain the features of different attention
spans, we just need to limit the graph connections of each
input element. It can be accomplished by placing an ad-
jacency mask D ∈ Rn×n after the dot-product operation,
which is used to calculate the coupling coefficents between
all elements. Its formulation is:

A = Softmax
( (XWq)

T
XWk√

d
D
)
, (3)

where the values of D are binary and set to 1 if they are
within the attention span of the target element3. Therefore,
attention is only performed within the defined spans.

Based on Eq. 3, a routing layer for SA is then defined as:

SAR (X) =

n∑
i=0

αiSoftmax
( (XWq)

T
XWk√

d
Di

)
XWv,

(4)
3During deployment, the zero values will be replaced by a large nega-

tive value.
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where Wq,Wk and Wv can be shared between different
SA layers, thereby reducing the parameter size.

However, Eq. 4 is still computationally expensive. So
we further simplify the problem of module selection to the
choice of adjacency masks, D, defined as:

SAR(X) = Softmax
( (XWq)

T
XWk√

d

n∑
i=0

αiDi

)
XWv.

(5)
From Eq. 5 we can see that the additional computation

and memory footprint can be reduced to almost 0, and the
goal of selecting features from different attention spans still
can be accomplished.

3.2. Path Controller

In TRAR, each visual SA layer is equipped with a path
controller to predict the probabilities of routing options, i.e.,
the module selection. Specifically, given the input features
X ∈ Rn×d, the path probabilities α ∈ Rn is defined as:

α = Softmax (MLP(fatt)) ,
fatt = AttentionPool (X) .

(6)

Here, MLP refers to the multi-layer predictor, and Atten-
tionPool is the attention based pooling method [71].

Eq. 6 can be replaced by other controller designs like
Gating Function [34]. But during experiments, we found
this softmax-based predictor is more efficient.

3.3. Attention Span

Attention span denotes the receptive field of attention
features, and its definition is not new in both natural lan-
guage processing (NLP) and computer vision (CV) com-
munities [57, 45, 50]. In compute vision, Parmar et al. [45]
borrowed the sliding-window design of convolution to make
each visual region interact with its neighbors within a con-
strained receptive field, e.g., 3×3 or 5×5. Our definition is
similar to it, except that we use the concept of order neigh-
borhood from graph topology [12] to denote different de-
grees of attention spans, e.g., 1st-order neighborhood equal
to 3× 3, and 2nd-order is 5× 5, and so on. This definition
allows most elements to be located at the center of the at-
tention span, which is also theoretically consistent with the
routing process defined in Sec. 3.1.

3.4. Optimization

In this paper, we provide two types of inference methods
for TRAR, namely, soft routing and hard routing.

Soft routing. As shown in Eq. 5, by applying the soft-
max function, we relax the categorical choice of the rout-
ing path to a continuous and differentiable operation. Then,
the controller weights can be jointly optimized with the
Transformer weights according to the task objective, i.e.,

SA

Xi

Q K V

Add&Norm

SA

Add&Norm

Xt

FFN

Add&Norm

SAR

Xi

Q K V

Add&Norm

SA

Add&Norm

Xt

FFN

Add&Norm

(a) Standard (b) TRAR

Figure 3: Illustration of the implementation of our routing
module on the multi-modal decoding layer [71]. Xi and Xt

denote the visual and textual features, respectively. SAR is
the SA routing layer. Add&Norm denotes addition and layer
normalization, respectively, and FFN is the feed-forward
network [60].

argminw,zLtrain(w, z), where w and z are the weights
of the Transformer and controllers, respectively. During
testing, the features of different attention spans are dy-
namically combined, which is similar to most soft rout-
ing schemes [34]. Since soft routing requires no additional
hyper-parameter tunning, it is relatively easy to train. The
efficiency is also not affected by the dynamic feature aggre-
gations, as analyzed in Sec. 3.1.

Hard routing. Hard routing is to achieve binary path
selection, which can further introduce specific CUDA ker-
nels [45, 50] to accelerate the model inference. However,
the categorical routing makes the weights of the controllers
non-differentiable, and directly binarizing the results of the
soft routing might lead to the feature gap between train-
ing and testing. To handle this problem, we introduce the
Gumbel-max trick [24] to achieve differential path routing,
i.e., replacing softmax in Eq. 5 with Gumbel softmax:

αi =
exp ((log(πi) + gi)/τ)∑
j exp ((log(πj) + gj)/τ)

, (7)

where gi are i.i.d samples drawn from Gumbel(0,1) [24], τ
is the softmax temperature, π is the log softmax probability.
In the initial training phase, τ is set to a larger value, e.g.,
10, and will be reduced as the training progresses. When τ
approaches 0, the Gumbel softmax become one-hot, which
is identical to the categorical distribution. In terms of op-
timization, we can use the chain rule to compute path-wise
gradients from the Transformer network to the controllers.
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3.5. Network Structure

We build the routing network based on the represen-
tative multi-modal Transformer proposed by [71], also
termed MCAN. Concretely, similar to the standard Trans-
former [60], MCAN has six encoding layers used to mod-
eling the language features extracted by an LSTM [17], and
six decoding layers for processing visual features and cross-
modal alignments simultaneously. During deployment, we
replace the visual SA module with the proposed routing
module, i.e., Eq. 5, as shown in Fig. 3.

In VQA, the routing network use a convolution neural
network (CNN), e.g., ResNetx-101 [25], as the visual back-
bone. Two AttentionPooling layers [71] are added after the
language and visual outputs of the Transformer, where the
attention feature vectors of the two modalities are com-
bined as the joint representation, which are followed by
a multi-layer predictor for multi-label classification. The
network structure for REC is similar to that for VQA. The
difference is that we apply an additional multi-scale fusion
scheme [41] to enhance the description power of the grid
features following the setting in [41]. For REC, we use the
regression layer from YOLOv3 [51] as the predictor.

4. Experiments
To validate the proposed TRAR, we apply it to two

highly competitive V&L tasks, namely visual question
answering (VQA) [14] and referring expression compre-
hension [30] (REC, also known as visual grounding),
and conduct extensive experiments on five benchmark
datasets, VQA2.0 [14], CLVER [28], RefCOCO [68], Ref-
COCO+ [68] and RefCOCOg [43].

4.1. Datasets

VQA2.0 [14] is a widely-used benchmark dataset for
VQA developed based on VQA1.0 [3]. It also uses images
from MS-COCO [52] and has about 1,105,904 VQA exam-
ples, of which 443,757, 214,254 and 447,793 examples for
training, validation and testing, respectively. Compared to
VQA 1.0, the dataset distribution is more balanced.

RefCOCO (UNC RefExp) [68] has 142,210 referring
expressions for 50,000 bounding boxes in 19,994 images
from MS-COCO [36], which is split into train, validation,
Test A and Test B with 120,624, 10,834, 5,657 and 5,095
samples, respectively. The expressions are typically short
sentences with an average length of 3.5 words. Test A are
about people while Test B are objects.

RefCOCO+ [68] has 141,564 expressions for 49,856
boxes in 19,992 images from MS-COCO. It is also divided
into splits of train (120,191), val (10,758), Test A (5726)
and Test B (4,889). Compared to RefCOCO, its expres-
sions include more appearances (attributes) than absolute
locations [30] to describe the target box.

RefCOCOg (Google RefExp) [43] has 95,010 expres-
sions for 49,822 boxes in 25,799 images from MS-COCO.
The split has 85,474 and 9,536 samples for training and val-
idation, respectively. Since the test set is not released, we
use the UNC partitions [68, 67] of the val split for valida-
tion and testing. Compared to the above two datasets, the
expressions in RefCOCOg are collected in a non-interactive
way, and the lengths are longer (8.4 words on average).

CLEVR [28] is a synthetic VQA dataset introduced by
Johnson et al. [28], which aims to examine various reason-
ing skills, e.g., relation and counting. It contains 70K im-
ages and 700k questions.

Metric. For VQA2.0, we use the VQA accuracy [3] as
the evaluation metric, while on CLEVR, the classification
accuracy is used. For REC benchmarks, we follow the set-
ting in [30] to use the IoU accuracy as the metric, i.e., the
prediction is correct when the overlapping degree (IoU) be-
tween the predicted bounding box and the ground truth one
is larger than 0.5

4.2. Implementation

Most of the deployments of TRAR for VQA and REC
are similar. LSTM [17] is used as the language encoder,
and its dimension is set to 512. The input text words are
initialized by GLOVE [47] embeddings with a dimension of
256. All transformers have 6 encoding layers for language
modeling, and 6 decoding layers for visual attention and
multi-modal interaction [71]. The dimensions of the self-
attention and FFN are 512 and 2,048, respectively, and the
number of attention heads is 8. For the path controller, its
hidden dimension is 1,024. For Gumbel Softmax, the maxi-
mal value of temperature τ is set to 10.0, while the minimal
one is 0.1. τ updated by :

τi = τmax − (τmax − τmini) ∗ i/(m− 1), (8)

where i denotes the i-th epoch and m is the number of total
training epochs.

On VQA2.0, the visual backbone is ResNext152 [25]
pre-trained on Visual Genome [32]. Its grid features are first
padded to the scale of 16× 16, and then pooled by a kernel
size of 2× 2 with a stride of 2. So the resolution for Trans-
formers is 8 × 8. We defined 3 adjacency masks with the
neighborhood orders of 1st, 2nd ,3rd, corresponding to the
sizes of 3×3, 5×5, and 7×7. On CLEVR, the backbone is
ResNet-101 [16] provided by the dataset, and the resolution
of its features is 13 × 13. We use the adjacency masks of
1st and 3rd on CLEVR. The numbers of training epochs for
VQA and CLEVR are 13 and 16, respectively, where the
first three epochs are for model warming. The batch size is
set to 64. The learning rates are all set to 1e-4, which are
decayed by 0.2 on the 10th, 13th and 15th epochs.

On three REC datasets, we use DarkNet [51] as the back-
bone. For fair comparisons with SOTA methods [73, 67,
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Table 1: Comparison with different baselines on VQA2.0
val set and RefCOCO. * denotes only counting the param-
eter size of the Transformer. MAdds [18] is the metric for
computation efficiency.

VQA Para.* MAdds All Yes/No Num.
Base 45M 2.8G 67.3 85.0 49.1
Routing 67M 8.0G 67.7 85.3 50.3
RoutingWS 45M 8.0G 67.5 85.1 49.4
TRARS 45M 2.8G 67.7 85.2 49.6
TRARH 45M 2.8G 67.6 85.2 49.9

REC Para. MAdds val TestA TestB
Base 45M 2.8G 75.8 77.0 68.5
Routing 73M 9.2G 75.1 78.4 70.0
RoutingWS 45M 9.2G 75.5 78.7 69.8
TRARS 45M 2.8G 77.6 80.1 70.7
TRARH 45M 2.8G 77.3 79.6 70.4

Table 2: Effects of routing options w.r.t. neighborhood or-
ders on the VQA2.0 val set and RefCOCO val set. 0* de-
notes that no mask is used.

VQA REC

Orders TRARS TRARH TRARS TRARH

[0*] 67.3 67.3 75.8 75.8
[0,1] 67.6 67.5 76.2 76.5
[0,1,2] 67.7 67.6 76.7 76.9
[0,1,2,3] 67.6 67.6 77.6 76.1
[0,1,2,3,4] - - 77.5 77.3

64], we test two backbones, which are pre-trained on the
complete and incomplete MSCOCO datasets [67], respec-
tively. We use the outputs of Layer26, Layer43 and the last
layer as the input visual features, which are processed by
a multi-scale fusion module [41], and the output scale is
13 × 13. The adjacency masks of 1st, 2nd, 3rd and 4th or-
ders are used for TRAR. The batch size is set to 64, and the
number of training epochs is 45, 3 of which are for model
warming. The learning rates are all set to 1e-4, which are
decayed on the 20th and 30th epochs.

4.3. Experimental Analysis

Ablations. We first compare the proposed TRAR with
a set of baselines on VQA and REC, the results of which
are given in Tab. 1. In Tab. 1, Base denotes the default
multi-modal Transformer, and Routing refers to the con-
ventional routing scheme defined in Eq. 1. RoutingWS de-
notes the weight-sharing setting of Routing, as defined in
Eq. 4. TRAR with soft routing and hard routing is de-
noted as TRARS and TRARH , respectively. From Tab. 1,
we can observe that all routing schemes can bring perfor-
mance improvements to Transformer, leading to up to +4%

Table 3: Comparison with the state-of-the-arts on VQA2.0
with single model and no large-scale pre-training.

Test-dev Test

Method All Yes/No Num. Others All
BoUp[59] 65.32 81.82 44.21 57.26 65.67
Pythia [26] 68.49 - - - -
BAN [31] 70.04 85.42 54.04 60.52 70.35
DFAF [46] 70.22 86.09 53.32 60.49 70.34
ReGAT [33] 70.27 86.08 54.42 60.33 70.58
MCAN [71] 70.63 86.82 53.26 60.72 70.90
AGAN [79] 71.16 86.87 54.29 61.56 71.50
MMNAS [70] 71.24 87.27 55.68 61.05 71.46
Base 71.45 87.43 53.80 61.81 -
TRARS 72.00 87.43 54.69 62.72 -
TRARH 71.82 87.49 53.84 62.52 -
TRARS* 72.62 88.11 55.33 63.31 72.93

∗ With grid features of resolution 16× 16.

improvement on TestA of RefCOCO. Such a result validate
our motivation of attention span routing. Notably, the ad-
ditional costs of parameter size and computation of TRAR
are very little. In contrast, the conventional routing scheme,
i.e., Routing, increases about 66% and 184%, respectively.
More importantly, on most metrics, TRAR can outperform
Routing and RoutingWS slightly, showing its better effi-
ciency in model training. These observations strongly con-
firm the merits of TRAR.

We also examine the effects of TRAR’s routing space,
i.e., the selection of neighborhood orders, which is shown
in Tab. 2. The first observation is that adding a local atten-
tion mask, i.e., 1st order, can lead to a distinct performance
improvement, which validates the importance of local de-
pendency modeling in VQA and REC. We also find that
the benefit of high-order masks is less obvious, the recep-
tive fields of which are close to the standard SA. The other
finding is that TRAR works better on high-resolution fea-
ture maps, e.g., the ones of REC with a scale of 13 × 13.
Such an advantage is also confirmed in the experiments of
CLEVR as shown in Tab. 4.

Comparison with SOTAs. We further compare TRAR
with SOTA methods on VQA2.0. The results are given in
Tab. 3. It can be seen that TRAR not only outperforms these
Transformers, but also achieves the new SOTA performance
on this highly competitive benchmark. We also validate
TRAR on the other widely used benchmark CLEVR [28],
the results of which are given in Tab.4. CLEVR is a dataset
that focuses on visual reasoning, where the questions are
usually longer and more complex compared to VQA2.0. On
CLEVR, the performance gains of TRAR becomes more
obvious, which further confirms the effectiveness of the
routing attention spans.

The comparison results with SOTA methods of REC are
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Table 4: Comparison with the state-of-the-arts on CLEVR. * denotes that the program annotations are used.

Method Overall Count Exist Comp Num Query Attr Comp Attr

Human [28] 92.60 86.70 96.60 86.40 95.00 96.00
FILM [48] 97.60 94.50 99.20 93.80 99.20 99.0
XNM [53]* 97.70 96.00 98.70 98.00 98.40 97.60
DDRprog [56]* 98.30 96.50 98.80 98.40 99.10 99.0
TBD [44]* 98.70 96.80 98.90 99.10 99.40 99.60
MAC [23] 98.90 97.20 99.50 99.40 99.30 99.50
NS-CL [42] 98.90 98.20 98.80 99.00 99.30 99.10
Base 98.54 96.34 99.24 98.60 99.43 98.93
TRARS 99.00 97.53 99.55 99.10 99.66 99.12
TRARH 99.10 97.65 99.54 99.42 99.62 99.40

Table 5: Comparison with the state-of-the-arts on Ref-
COCO, RefCOCO+ and RefCOCOg. * denotes that the
backbone is pre-trained on the complete MS-COCO dataset.

RefCOCO RefCOCO+ RefCOCOg

Two-Step TestA TestB TestA TestB Val Test
Listener[69] 73.1 64.9 60.0 49.6 59.3 59.2
VarCN[75] 73.3 67.4 58.4 53.2 - -
PAtt[81]* 75.3 65.5 61.3 50.8 - -
DPPN[73]* 76.9 67.5 60.0 49.6 - -
MattNet[67] 80.4 69.3 70.3 56.0 66.7 67.0

One-Step TestA TestB TestA TestB Val Test
FAOA [65] 74.9 66.3 61.9 49.5 59.4 58.9
SSG [8]* 76.5 67.5 62.1 49.3 - 58.8
RSC [64]* 80.5 72.3 68.4 56.8 67.3 67.2
GIN [76] 78.7 72.7 67.2 54.2 62.7 62.3
GIN [76]* 81.1 77.3 65.5 57.4 65.5 65.6
Base 77.0 68.4 62.3 51.9 62.9 62.3
TRARS 80.1 70.7 67.9 54.9 64.1 64.2
TRARH 79.6 71.3 65.1 53.5 63.3 62.5
TRARS* 81.4 78.6 69.1 56.1 68.9 68.3
TRARH* 81.5 77.3 66.9 57.8 66.1 65.8

shown in Tab. 5. From this table, we can first observe that
the performance gains of TRAR over Transformer are more
distinct on REC, e.g., +9% on TestA of RefCOCO+. Mean-
while, compared with the existing one-stage SOTAs, TRAR
also shows obvious merits in performance, suggesting its
generalization ability for V&L tasks. Compared with the
two-stage methods, which are much less efficient, the over-
all performance of TRAR is still superior.

In summary, these results greatly validate the effective-
ness of TRAR. We believe its contribution to the V&L com-
munity is significant.

(a) VQA2.0 (b) CLVER (c) RefCOCO

Figure 4: The change of routing entropies of TRAR with
hard routing (TRARH ) and soft routing (TRARS).

4.4. Qualitative Analysis.

Fig. 4 depicts the changes of TRAR’s routing entropies.
From this figure, we can see that after a short period of train-
ing, the entropies of soft routing and hard routing have sig-
nificantly declined, suggesting that the model has been able
to select the attention spans. The difference is that as the
training progresses, the entropy of soft routing will become
steady, while the one of hard routing will continue to de-
crease until it approaches zero.

To obtain a deep insight into the reasoning process of
TRAR, we also visualize the attentions during inference
in Fig. 5. We compare its results with those of the stan-
dard Transformer in the first sub-figure. It can be seen that
the attention of Transformer is often divergent and random,
which can easily associate the target region with unrelated
ones, as we analyze in Sec. 1. Take the first example for in-
stance, given the target region of bus, Transformer’s atten-
tion is constantly swaying between the bus and surround-
ing environment, and finally is related to the bus with the
passengers around, which, however, is inconsistent with the
question. In contrast, from these examples, we can see that
TRAR can dynamically select the attention span based on
the output of the previous step, which is consistent with its
target. Meanwhile, such an attention routing scheme can
also improve the error-tolerance of self-attention modeling.
From the first example of the second sub-figure, it can be
seen that TRAR can also easily attend to incorrect regions.
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(1)  Q: What is on 

the front of the bus ? 

TRAR:  Bike Rack 

Transformer:  Sign
(2)  Q: What are 

the subjects doing? 
Transformer:  Standing

TRAR:  Hiking

(1)  Q: What is the painting on above the doors called? 

Predict:  Graffiti G.T:  Graffiti

(3)  Q: What is the green stuff on the sandwich?

Predict:  Lettuce G.T:  Lettuce

(2)  Q: Is there a boy? 

Predict:  Yes G.T:  Yes

(4)  Q: There is a large green object on the left side of 

the small purple block; does it have the same shape as 

the purple rubber object? 
Predict:  No G.T:  No

(6)  Q: Is the gray cylinder made of the 

same material as the tiny ball?

Predict:  Yes G.T:  Yes

(5)  Q: Is the color of the large shiny object 

the same as the small ball? 

Predict:  No G.T:  No

(7)  Exp: Man on the Ground (8)  Exp: Kid in front (9)  Exp: Guy with the bat

(a)  Comparison between TRAR and Transformer

(b)  Attentions on VQA and REC

Figure 5: Visualizations of the attentions in TRAR. An area enclosed by a red box denotes the attention span of the chosen
grid, i.e., the one with red dot. TRAR can help the model to use different spans of attentions to schedule the global and local
dependency modeling.

However, as the path routing progresses, its attention can be
adjusted to the correct area, helping the model to answer the
question. These appealing properties are also confirmed in
the examples of REC.

5. Conclusion
In this paper, we investigates the dependency modeling

of Transformer for two vision and language tasks, namely
VQA and REC. These two tasks typically require the visual
attentions from different receptive fields, which cannot be
fully handled by the standard Transformer. To this end, we
propose a lightweight and effective routing scheme called
Transformer Routing (TRAR) to help the model dynami-
cally select the attention spans for each example. In partic-
ular, TRAR transforms the module selection problem into

the one of selecting attention masks, thereby making the
additional computation and memory overhead negligible.
To validate TRAR, we conduct extensive experiments on
5 benchmark datasets, and the experimental results greatly
confirm the merits of TRAR.
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