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Abstract

Online semantic segmentation on a time series of point
cloud frames is an essential task in autonomous driving.
Existing models focus on single-frame segmentation, which
cannot achieve satisfactory segmentation accuracy and of-
fer unstably flicker among frames. In this paper, we propose
a light-weight semantic segmentation framework for large-
scale point cloud series, called TempNet, which can improve
both the accuracy and the stability of existing semantic seg-
mentation models by combining a novel frame aggregation
scheme. To be computational cost-efficient, feature extrac-
tion and aggregation are only conducted on a small portion
of key frames via a temporal feature aggregation (TFA) net-
work using an attentional pooling mechanism, and such en-
hanced features are propagated to the intermediate non-key
frames. To avoid information loss from non-key frames, a
partial feature update (PFU) network is designed to par-
tially update the propagated features with the local features
extracted on a non-key frame if a large disparity between
the two is quickly assessed. As a result, consistent and
information-rich features can be obtained for each frame.
We implement TempNet on five state-of-the-art (SOTA) point
cloud segmentation models and conduct extensive experi-
ments on the SemanticKITTI dataset. Results demonstrate
that TempNet outperforms SOTA competitors by wide mar-
gins with little extra computational cost.

1. Introduction

In order to better perceive the driving context, most au-
tomated vehicles are equipped with LiDAR sensors to con-
tinuously acquire point cloud data. The performance of
an online semantic segmentation algorithm for a time se-
ries of point cloud frames referred to as point cloud series,
is essential for an automated vehicle to make correct de-
cisions in real-time. For example, a commercial off-the-
shelf (COTS) LiDAR with 128 channels [7] could produce
10 frames per second with each frame containing a large
number of around 480,000 points. Due to the discrete and
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Figure 1. Segmentation examples of using SequeezeSegV2, a

SOTA single-frame segmentation method, on two sequences of

three consecutive point cloud frames. It can be seen that applying

such schemes to point cloud series leads to unstable and inaccurate

results, e.g., errors denoted by circles suddenly appear.

sparse spatial distribution nature of point cloud data, se-
mantic segmentation on large-scale point cloud series is a
more difficult task compared with semantic segmentation of
videos. Given the restricted computational power of an au-
tomated vehicle, a practical semantic segmentation method
for point cloud series should meet the following two re-
quirements. First, the segmentation results should be ac-
curate so that automated vehicles can make correct driving
decisions based on the results. Second, the method should
be real-time, which means that any frame of point cloud in
the series should be correctly segmented within a certain
bounded time. Otherwise, the returned results may become
invalid or useless.

In the literature, a number of point cloud semantic seg-
mentation methods [27, 22, 16] have been proposed, which
mainly focus on one single and static point cloud frame and
may generate inconsistent segmentation results when deal-
ing with consecutive frames of point clouds. For instance,
as shown in Figure 1, when using SequeezeSegV2 [31], a
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state-of-the-art (SOTA) single-frame point cloud segmenta-
tion scheme, segmentation errors (illustrated by dashed cir-
cles in the figure) may suddenly appear and flicker among a
series of consecutive frames. Moreover, these schemes are
too computationally expensive to process point cloud series.
As a result, there is no existing successful point cloud se-
mantic segmentation scheme, to the best of our knowledge,
that can handle the online point-cloud-series semantic seg-
mentation problem.

In this paper, we propose a light-weight point-cloud-
series semantic segmentation framework, called TempNet,
which can improve both the accuracy and the efficiency
of existing semantic segmentation models by combining
a novel frame aggregation scheme. Inspired by the work
[11, 37] in video segmentation tasks, which selectively con-
ducts feature fusion to eliminate flickers, features of previ-
ous point cloud frames and those of the current frame are
first efficiently obtained and then effectively aggregated to
achieve reliable and accurate segmentation results.

There are two main challenges in designing TempNet.
First, to obtain features of each point cloud frame for aggre-
gation is of prohibitive computational cost for online point-
cloud-series segmentation tasks. To tackle this challenge,
full feature extraction and aggregation are only conducted a
small portion of frames, referred to as key frames, and such
enhanced features are directly propagated to intermediate
non-key frames. Furthermore, to avoid possible information
loss from non-key frames, a partial feature update (PFU)
network is designed to partially update the propagated fea-
tures with the features extracted on a non-key frame if a
large disparity between the two is quickly assessed. Due to
the complexity of real-world scenarios, it is hard to obtain
an optimal key frame selection strategy. We take an adap-
tive frame scheduling (AFS) method to dynamically deter-
mine the number of key frames according to the disparities
assessed in recent non-key frames.

Second, given previous point cloud frames and their fea-
tures, how to augment the features of the current key frame
to improve the stability of segmentation, however, is non-
trivial. As to point clouds, when objects are far or sur-
rounded by interfering objects, it is hard to guarantee the
robustness of single-frame segmentation schemes. We have
the observation, referred to as local spatial consistency of
point clouds, that the local spatial structure of an object
in the point cloud should be consistent between frames al-
though the object might be moving. Leveraging the local
spatial consistency of point clouds, we design a temporal
feature aggregation (TFA) network based on graph atten-
tion convolution to effectively aggregate features of consec-
utive frames. Specifically, TFA prefers to search for neigh-
boring keypoints with similar geometric characteristics and
semantic features in the previous frame. Moreover, an at-
tention mechanism is adopted in TFA so that spatially con-
sistent features would be more impactful in the aggregation.

We implement TempNet on five state-of-the-art (SOTA)
point cloud segmentation models, i.e., PointNet++ [20],
GACNet [29], SequeezeSegV2 [31], DarkNet53Seg [2] and
RandLA-Net [5]. We conduct extensive experiments on the
SemanticKITTI dataset. Results demonstrate that TempNet
outperforms SOTA competitors by wide margins with lit-
tle extra computational cost. We highlight the main contri-
butions made in this paper as follows: 1) an online point
cloud series semantic segmentation framework TempNet is
proposed, which is light-weight and easy to implement on
existing single-frame segmentation schemes; 2) a temporal
feature aggregation network is designed, which utilizes the
continuity of motions and attentional pooling to effectively
aggregate two point cloud frames in motion; 3) extensive
experiments on the real-world SemanticKITTI dataset are
conducted and results demonstrate the efficacy of TempNet.
The whole suite of codebase will be released.

2. Related Work
2.1. Semantic Segmentation on Point Clouds

Due to the sparsity and disorder of point cloud data,
directly applying existing dense calculation methods cus-
tomized for images to the point cloud semantic segmenta-
tion problem would cause a prohibitive computational com-
plexity of O(n3). Therefore, although a set of methods have
been proposed to process point clouds, there are still diver-
gences on how to efficiently utilize point cloud data. Exist-
ing models can be mainly divided into three categories, i.e.,
voxel-based, projection-based, and PointNet-like.

Voxel-based methods. To mitigate the desperate need
for huge computational power in conducting 3D convolu-
tion, a straightforward way [13, 30, 23, 10] is to partition
the point cloud space into a regular grid and apply 3D con-
volution on each voxel. OctNet [23] and Kd-Net [10] skip
the computation of empty voxels and focus on the resolution
of information-rich voxels. PointGrid [13] proposes hy-
brid 3D shape representation to solve the problem of point
cloud sparsity and high space consumption. RandLA-Net
[5] greatly reduces the computational effort of 3D convo-
lution by rasterizing the local point cloud and reducing the
number of uninteresting points. These sparse 3D convo-
lutions can accelerate the convolution operations and share
the knowledge base with dense convolutions. However, dur-
ing the partitioning process, local spatial information be-
tween different voxels may be lost, and the computational
overhead grows cubically with the resolution of voxels.

Projection-based methods. Projection-based methods
are developed from 2D semantic segmentation. Dark-
Net53Seg [2] and other methods [25, 12, 8] perform pro-
jections to transform point clouds into the 2D plane from
multiple viewpoints, e.g., front view, top view or spheri-
cal view. The projected plane is then processed by im-
age semantic segmentation network. The projection-based
methods reach the real-time requirements(SqueezeSegV2
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Figure 2. Overview of TempNet architecture. TempNet can be implemented on existing single-frame point cloud segmentation models

(denoted as the backbone network and the segmentation network in this figure). In addition, it consists of three components to particularly

tackle large-scale point cloud series, i.e., adaptive frame scheduler (AFS), temporal feature aggregation (TFA) network, and partial feature

update (PFU) network. The AFS dynamically divides frames into key and non-key frames. For key frames, features are extracted via the

backbone network and aggregated with previous features via the TFA network. For non-key frames, features are mainly inherited from

previous features except that a large point disparity is detected, in which case the PFU network is used to partially update features. The

goal of both PFU and TFA is to keep the features of each frame up-to-date in a cost-efficient way before they are individually segmented.

[31] reaches 13.5ms/per frame) while the final performance
of projection-based methods is typically lower than other
methods.

PointNet-like methods. PointNet-like methods are the
extension of PointNet [19]. First, these methods input the
coordinates and RGB features of the original point cloud
data directly into the network. Then each point is processed
individually using a shared MLP, which makes these meth-
ods limited in extracting local spatial relationships. To over-
come this deficiency, PointNet++ [20] integrates neighbor-
hoods by sampling and grouping and applies a hierarchical
feature learning framework to learn different levels of local-
global features. PointCNN [14] and GACNet [29] combines
convolution and neighbor weights to fully extract spatial in-
formation. KPConv [28] proposes a new point cloud convo-
lution based on kernel point, which achieves state-of-the-art
performance in PointNet-like methods.

2.2. Temporal Feature Extraction

Currently, temporal convolutional networks can be ap-
plied only to 2D videos to capture temporal features. Meng
et al. [17] propose QST-CNN for video detection. Sun et al.
[26] design FstCN to identify human behavior in video. Zhu
et al. [36] use TORNADO for target detection, or count-
ing the flow of people in video [35, 18]. Yao et al. use
DMVST-Net to predict traffic conditions [33]; and Li et al.
[15] and Yu [34] use temporal convolutional networks to
estimate traffic flow. Tao Song et al. [24] propose a novel
method integrated with somatic topological line localiza-
tion and temporal feature aggregation for detecting multi-
scale pedestrians. Fei He et al. [21] propose a temporal
context enhanced network to exploit temporal context infor-
mation by temporal aggregation for video object detection,
aligning the spatial features from frame to frame. [6] intro-

duces ”tracking-by-detection” into Video Object Segmenta-
tion by proposing a new temporal aggregation network and
a novel dynamic time-evolving template matching mecha-
nism to achieve significantly improved performance. [4]
and [32] design an adaptive feature aggregation method for
video object detection to deal with blurring, occluding and
out of focus in videos. In summary, all these methods fo-
cus on target detection on 2D images, but they cannot be
directly applied to 3D point cloud series because of the dis-
continuity and disorder nature of point clouds. Simply ex-
tending the dimension of convolution function from 2D to
4D has a high computational complexity and cannot meet
the real-time requirement of online tasks.

Recently, 4D temporal feature extraction has received
great attention, which can be used to deal with point cloud
series. MinkowskiNet [3] extends the dimension of con-
volution function from 2D to 4D. OpenPose [9] uses point
cloud series to track posture of human hands in real-time.
The idea of PointFlowNet [1] is similar to PointNet, which
combines the two features of frame t and t − 1 to infer
the motion of each point. However, the scalability of such
schemes is restricted as the number of points in each frame
and that of frames in the series increase.

3. Design of TempNet

3.1. Overview

The core idea of TempNet is to utilize the temporal cor-
relation between consecutive point cloud frames to neatly
aggregate features so that two goals can be achieved: 1) the
features of each frame are enhanced after the aggregation,
making segmentation more accurate; 2) features between
frames are consistent, eliminating flickers. Specifically, full
feature extraction and aggregation are only conducted on a
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small portion of key frames and such enhanced features are
directly propagate to intermediate non-key frames. Mean-
while, the propagated features would be partially updated
on a non-key frame if an assessment via a light-weight dis-
parity estimator believes that this non-key frame contains
non-negligible information. To this end, as illustrated in
Figure 2, TempNet integrates four technical components as
follows:

Adaptive frame scheduler (AFS). The AFS is used to
determine the selection of key frames and non-key frames.
It is hard to obtain an optimal key frame selection strategy
that fits in all real-world scenarios. In TempNet, the ratio of
key frames is dynamically tuned according to the extent of
disparity observed in recent non-key frames.

Static segmentation module. TempNet employs a
SOTA static point cloud segmentation scheme as its under-
lying segmentation core. Such a scheme normally consists
of a deep and slow pre-trained backbone network Nfea for
feature extraction and a detection network Ndet of multi-
ple output branches for semantic segmentation. With Nfea,
hundreds of thousands of points in one frame are sam-
pled and encoded into a small number of so-called key-
points and their corresponding feature vectors, which con-
tain rich spatial information and portray the skeleton of the
point cloud. Letting Xi = {xi, x2, ..., xN} denote the i-
th frame with N points, we have Pi, Hi = Nfea(Xi),
where Pi = {p1, p2, ..., pn} and Hi = {h1, h2, ..., hn} are
the sets of locations of n keypoints and the correspond-
ing feature vectors, respectively. With Ndet, segmenta-
tion result can be obtained, i.e., Yi = Ndet(Pi, Hi), where
Yi = {y1, y2, ..., yN} is the set of semantic labels for each
point in the i-th frame.

Temporal feature aggregation (TFA) network. The
TFA network is designed to utilize the temporal correla-
tion between frames to aggregate features on key frames.
The neighboring locations and features of two consecutive
frames are first measured and then used to calculate atten-
tion scores for neighbors. Such attention scores are used
as summation weights to aggregate neighboring keypoints
sampled from both features so that those local spatial con-
sistent keypoints contribute more to the aggregation.

Partial feature update (PFU) network. The PFU net-
work is designed to selectively update inherited features
from the previous frame with important local keypoints
identified on the current non-key frame if necessary. A spa-
tial consistency estimator is devised to help make a quick
update decision at a low computational cost.

Figure 3 illustrated the main idea of TempNet in dealing
with large-scale point cloud series. It can be seen that the
TempNet takes both the feature consistency and computa-
tional cost into account when conducting feature aggrega-
tion.

(a) Full feature extraction and aggregation on 
key frames

(b) Partial feature update on non-key frames

flow-guided
feature warping

feature 
aggregation

key frame 
feature

inherited feature 

partially updated
non-key frame 

feature

Figure 3. An illustration of TempNet in dealing with point cloud

series segmentation, where (a) full feature extraction and aggre-

gation are conducted on key frames and (b) partial feature update

and aggregation are conducted on non-key frames.
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1 keypoint 
in Hj

Mpos

Mfea

Mneighbor

Encoding MLP

Attention 
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 keypoint feature  keypoint position C dot productmatrix concatenation

Figure 4. The structure of the TFA module. TFA takes each key-

point in frame j and their corresponding K neighboring keypoints

in frame i as input. Local spatial consistency of point cloud data

is leveraged to assign attention scores to neighboring keypoints

before they are aggregated.

3.2. Temporal Feature Aggregation

Despite the motion of objects, their local spatial struc-
ture should be consistent between frames, which we refer
to as local spatial consistency of point clouds. For instance,
points (and their corresponding features) of a moving car
in two point cloud frames should form similar shapes. We
utilize local spatial consistency of point clouds to augment
point cloud features on key frames so that the ultimate seg-
mentation results could be effectively improved.

Specifically, for two consecutive key frames i and j, the
aggregated features for frame j can be calculated as

H̄j = α · Gagg (Hi, Hj) + (1− α) ·Hj , (1)

where α is the artificially specified regularization weight;
Gagg is the temporal feature aggregation network; Hi and
Hj are the sets of feature vectors of frame i and frame j,
respectively, obtained with Nfea.

In designing Gagg , we first search for neighboring key-
points in the previous frame, taking the position of a key-
point in the current frame as the origin. Then, we assign
attention scores to those neighboring keypoints so that con-
sistent keypoints get higher weights in the aggregation.

7121



Capturing Neighboring Features in the Previous
Frame. As depicted in Figure 4, keypoints of two consec-
utive frames i and frame j are fed into the temporal fea-
ture aggregation network Gagg . For each keypoint pj ∈ Pj ,
we encode its neighboring features attached with motion in-
formation between two frames into a representation matrix
Mneighbor(pj).

More specifically, we encode the regularized positions
and feature vectors separately. To encode the regularized
positions, the neighboring keypoints of pj in Pi, denoted
as NPi

(pj), are collected using a KNN algorithm and their
relative positions are recorded to construct a matrix:

Mpos(pj) = mlp (Pnear ‖ pj) ,
Pnear = {pl}, for pl ∈ NPi

(pi),
(2)

where the symbol ‖ stands for matrix splicing and expand-
ing vectors into matrices when needed. Similarly, we en-
code the feature vectors and construct a corresponding ma-
trix of feature vectors of these neighboring keypoints, de-
noted as Mfea(pj). Ultimately, we concatenate both ma-
trixes to construct the representation matrix,

Mneighbor(pj) = (Mpos(pj) ‖Mfea(pj)) . (3)

In this way, both position changes caused by motion and
semantic features of previous neighboring keypoints, are
captured in Mneighbor(pj), characterizing the relationship
between pj and its neighbors in the previous frame, i.e.,
NPi(pj).

Aggregating Neighboring Features. As some key-
points in NPi

(pj) may not be local spacial consistent with
pj , simply applying the general max/mean pooling for hard
integration of neighboring points would lead to inaccu-
rate results. In contrast, we adopt a powerful attentional
mechanism to distinguish which neighboring points should
have more influence on the current keypoint. We adopt a
similar attentional pooling unit as introduced in the work
[5]. More specifically, given the matrix Mneighbor(pj) ={
m1

pj
,m2

pj
, . . . ,mk

pj
, . . . ,mK

pj

}
where K is the size of

NPi(pj), we use a shared function g(·) to learn the unique
attention score for each neighbor point. Basically, the func-
tion consists of a weight-shared mlp and softmax function,
defined as

skpj
= g

(
mk

pj
,W

)
, (4)

where W is the learnt weight of the shared mlp, skpj
is the

attention score of the k-th neighbor of keypoint pj .

Then, the learned attention scores are used as a soft
mask, which effectively increase the impact of local-spatial-
consistent keypoints in the previous frame. The weighted

Encoding matrix

Qi j

Encoding MLP

Decoding ConvFC

Mi

Mj

Spatial Consistency Estimator

K neighbors 
in Hi

1 keypoint 
in Hi

K neighbors 
in Hj

C

C

  keypoint position C matrix concatenation

Figure 5. The structure of the spatial consistency estimator used in

the PFU module. It takes each keypoint in the previous frame i and

the corresponding neighboring keypoints in frame i and the current

frame j as input. The estimator judges the geometric similarity of

both neighborhoods to derive the consistency estimate Qi→j .

summation of mk
pj

for k ∈ [1,K] is as follows:

m̃pj
=

K∑
k=1

(
mk

pj
· skpj

)
. (5)

The updated feature vector of pj can be obtained by
mlp

(
m̃pj

)
using the weight-shared mlp.

3.3. Partial Feature Updating
As to point cloud series, on one hand, points in con-

secutive frames share redundant information, which makes
reusing some features from previous frames for non-key
frames possible and therefore can greatly reduce compu-
tational overhead. On the other hand, significant feature
changes caused by motion on these non-key frames should
also be considered so that no important information is lost.

Instead of using heavy Nfea to calculate Pj and Hj for
a non-key frame j, we use a lightweight random sampling
algorithm to calculate only Pj . To cost-efficiently quantify
whether features Hi passed from the previous frame i are a
good approximation of the current frame j, we introduce a
spatial consistency estimator Qi→j , defined as

Qi→j(pi) = Gcons (pi, Pi, Pj) , (6)

where pi ∈ Pi and Gcons is the spatial coherence measure-
ment network. For each pi ∈ Pi, Gcons examines the simi-
larity of its local spatial features in frame i and frame j. If
Qi→j(pi) ≥ τ (τ is a consistency threshold), it indicates
that the previous feature hi should be consistent from frame
i to j, so the location pi and feature hi can be reused in
frame j; otherwise, hi is abandoned.

We depict the design of Gcons in Figure 5. Gcons takes
keypoint locations of two consecutive frames, e.g., Pi and
Pj , and pi ∈ Pi as input. It should be noted that only the
respective neighborhoods of pi in Pi and Pj are compared,
leading to low computational overhead. More specifically,
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we first construct a local-spatial-information encoding ma-
trix of pi in Pi as

Mi (pi) = P ′
near ‖ pi,

P ′
near = {p′l} for p′l ∈ NPi

(pj) ,
(7)

where NPi(pi) is the neighboring keypoints of pi in Pi

found with the same KNN algorithm as described in (2).
Thus, Mi (pi) encodes the spatial relationship between pi
and its neighboring keypoints in frame i. Similarly, we con-
struct a local-spatial-information encoding matrix Mj(pi)
with respect to frame j. Given matrices Mi(pi) and Mj(pi),
we construct ConvFC layers to predict the consistency esti-
mator,

Qi→j(pi) = ConvFC (Mi(pi) ‖Mj(pi)) . (8)

In addition, the focal loss is used to make it easier to learn
the Qi→j .

Since only a fraction of keypoints in Pj could get
reusable features from the previous frame, we still rely on
the static point cloud segmentation backbone Nfea to ex-
tract feature vectors for the rest of keypoints in Pj . Never-
theless, as the number of such keypoints is significantly re-
duced, the computational cost is affordable for online point
cloud series segmentation.

3.4. Adaptive frame scheduling
In addition to being used in the partial feature update,

the consistency estimates in recent non-key frames are also
used to dynamically determine the interval of key frames.

Specifically, to decide whether we need to increase the
key frame interval (fewer frames are considered key frames)
or decrease the key frame interval (more frames are consid-
ered key frames), the ratio of the number of updated key-
points to the total number of keypoints rk→i is used and
calculated as

ri→j =

∑
p∈Pi

I(Qi→j(pi) ≤ τ)

ni
, (9)

where frame i is the previous frame and ni is the number
of keypoints in frame i. If ri→j is large, it means that there
are a large portion of keypoints that are no longer similar to
the last key frame and the number of key frames should be
increased; otherwise, the number of key frames should be
reduced to save computational cost.

The overall algorithm of TempNet is summarized in the
supplementary materials.

4. Performance Evaluation
4.1. Implementation Details

We have implemented TempNet on five SOTA single-
frame segmentation models, i.e., PointNet++ [20], GAC-

Net [29], SequeezeSegV2 [31], DarkNet53Seg [2] and
RandLA-Net [5]. We train and test TempNet and other can-
didate schemes using the SemanticKITTI [2] dataset, which
consists of multiple sequences of 43552 densely annotated
LIDAR scans (frames). Each scan is a large-scale point
cloud with about 105 points distributed in a 3D space of
160×160×20 meters. Raw 3D points contain 3D coordi-
nates without color information. We use sequences indexed
from 00 to 07 (16,338 scans), 08 (2,792 scans) and 09-10
(19,130 scans) for training, validation and testing, respec-
tively.

During training, due to memory limitations, two adja-
cent frames are randomly selected from each small batch.
The first frame is set as a key frame and the second frame
is set as a non-key frame. During the forward pass, the fea-
ture network Nfea acts on Pi to get the feature vector space
Hi. Then, the feature consistency network Gcons acts on Pi

and Pj to get the feature consistency Qi→j . The partially
updated feature vector space H̄i is computed according to
(8) and the current-frame feature vector space of temporal
feature aggregation is computed according to (1). Finally,
the result of semantic segmentation is obtained by semantic
segmentation subnetwork Ndet processing. During training,
we enforce a probability of 1/3 and 2/3 for Qi→j ≤ τ and
Qi→j ≥ τ respectively, to encourage good performance in
both cases of feature propagation and feature recalculation
from scratch. For methods that do not use partial feature up-
dates, training is not changed and Qi→j is simply ignored
during inference.

4.2. Methodology

We consider the following candidate point cloud series
segmentation methods for comparison: 1) Baseline meth-
ods: the aforementioned five single-frame segmentation
schemes are implemented and trained; 2) Dense feature ag-
gregation (DFA) methods: A naive aggregation scheme
where features of all frames are first extracted and then
weighted summation is applied to aggregate these features,
is applied to single-frame segmentation methods. 3) Direct
feature propagation (DFP) methods: Similar to Temp-
Net except that no partial feature updates are conducted
for non-key frames. 4) *1: it denotes the implementation
of TempNet on a specific baseline method with all frames
treated as non-key frames. 5) *2: it denotes the full imple-
mentation of TempNet on a specific baseline method where
the key and non-key frames are automatically determined
by the adaptive frame scheduler;

We take the mean-Intersection-over-Union (mIoU) and
accuracy, defined as TP/(TP+FP), of all 19 categories as the
standard performance metrics.

4.3. Performance Comparison

The running time and mIoU scores of each segmenta-
tion method are shown in Table 1. It can be seen that *2
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[c]PointNet++ 328 20.5 72.0 41.8 18.7 5.6 62.3 62.3 0.9 1.9 0.2 0.2 46.5 13.8 30 0.9 1.0 0.0 16.9 5.0 8.9

[c]PointNet++*2 375 26.9 80.9 53.9 20.4 15.4 68.4 73.4 5.3 2.7 6.5 2.1 59.5 19.3 38.1 3.0 8.4 0.0 29 5.8 18.5
[c]GACNet 508 28.8 85.4 54.3 26.9 4.5 57.4 59.4 3.3 16.0 4.1 3.6 60.0 24.3 53.7 12.9 13.1 0.9 29.0 17.5 24.5

[c]GACNet*2 643 32.8 88.8 55.2 32.1 12.3 60.2 62.1 13.2 26 11.5 7.2 61.7 25.2 55.2 13.0 14.9 2.2 34.3 22.7 25.6
[c]SqueezeSegV2 1236 39.7 88.6 67.6 45.8 17.7 73.7 71.7 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 36.3

[c]SqueezeSegV2*2 1457 44.4 90.4 68.9 57 26.4 82 81.9 18.6 26.2 26.5 15.6 67.6 48.4 60.6 21.8 33.6 4.0 52.3 22 40.0
[c]DarkNet53Seg 534 49.3 89.6 74.0 34.7 4.0 87.4 90.9 67.0 9.8 18.4 27.3 87.4 43.8 83.7 44.0 45.3 0.0 43.8 49.6 36.1

[c]DarkNet53Seg*2 601 52.5 90.5 75.2 37.4 4.4 87.7 92.8 67.9 12.8 26.8 40.0 85.3 59.5 75.0 50.2 62.2 8.1 42.9 48.6 36.7
[c]RandLA-Net 772 52.4 90.5 75.3 60.3 20.4 85.9 92.9 39.1 13.2 26.1 38.2 81.4 61.1 64.9 48.8 47.6 6.8 55.4 47.8 47.7

[c]RandLA-Net*2 829 55.8 90.7 74.1 61.8 24.4 89.8 94.1 43.8 26.1 32.2 39.2 83.9 63.7 68.7 48.3 47.4 9.5 60.3 51.1 50.8

Table 1. IoU scores on the SemanticKITTI dataset. TempNet generally can improve the performance of the underlying segmentation

method in terms of accuracy and efficiency.
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Figure 6. Qualitative example results using SqueezeSegV2 as the underlying segmentation method. Point clouds are visualized after

projection. Segmentation accuracy is improved, especially for continuous surfaces that are subordinate to the same moving object.

methods generally can achieve higher scores in most cate-
gories than the corresponding baseline methods at a moder-
ate computational cost. Particularly, our method can signif-
icantly improve the mIoU for categories with more continu-
ous shapes and flatter surfaces, such as car, truck, and build-
ing. For example, PointNet++*2 achieves a 6-point gain on
mIoU over the original PointNet++ at an extra 13% com-
putational overhead. The results demonstrate that Temp-
Net can improve accuracy and efficiency for point cloud se-
ries segmentation. The qualitative example results are de-
picted in Figure 6. It can be seen that the overall accuracy
is much improved after applying the TempNet framework
to the SqueezeSegV2 model, especially for continuous sur-
faces that are subordinate to the same moving object. Fur-
thermore, flickers between frames as illustrated in Figure 7
are eliminated for the sack of effective feature aggregation.

The performance comparison of applying various aggre-
gation schemes for point cloud series segmentation to Se-

Methods Online IoU avg Acc avg time(ms)

baseline - 39.73 86.8 1236

DFA × 44.43 88.1 2996

*2
√

44.43 87.5 1475
DFP

√
38.77 86.3 309

*1
√

41.89 86.9 270

Table 2. Performance comparison of different aggregation

schemes applied to SequeezeSegV2.

queezeSegV2 is listed in Table 2. Results on other single-
frame methods are similar and omitted due to the page lim-
itation. It can be seen that both TempNet schemes outwit
other schemes in terms of accuracy and computational effi-
ciency.

4.4. Ablation Study
Only results based on SequeezeSegV2 are shown due to

page limitation.

Efficiency and accuracy gains. We manually adjust the
ratio of key frame and plot the accuracy as a function of
the key frame ratio in Figure 8. We obtain record A when
all frames are treated as key frames, and record B when
almost all frames are non-key frames whereas the single-
frame baseline is recorded at C in the figure. Our perfor-
mance curve is located to the upper right of record c by a
large margin. From record C to record A, TempNet can im-
prove the accuracy by 0.7 and the IoU metric by 4.7 with
almost similar time overhead compared to the single-frame
model. From record C to record B, it achieves more than
five times the computational acceleration while maintain-
ing the original performance. This illustrates the superi-
ority of our aggregation scheme in terms of computational
efficiency and segmentation accuracy.

Frame scheduling study. We conduct joint experiments
on performance for the adaptive frame scheduling algo-
rithm. As we can see in Figure 8, as the number of ag-
gregated frames increases, the performance achieved by the
Dense Feature Aggregation algorithm also increases, but
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Figure 7. Qualitative example results on consecutive frames using the SqueezeSegV2 as the underlying segmentation method. Flickers

between consecutive frames are effectively eliminated.

Figure 8. Accuracy as a function of the key frame ratio for different

aggregation schemes.

Figure 9. The impact of the consistency threshold τ to the accuracy

of TempNet.

with a significant loss in speed. Eventually, performance
will reach a bottleneck where it is difficult to continue to
rise. The DFP algorithm has a significant improvement in
speed as the number of frames increases but at the expense
of model accuracy. TempNet is biased to the upper right in
the line graph, allowing for a better trade-off between speed
and accuracy. In particular, compared to the DFA algorithm,
there is a very small decrease in accuracy per record but a
large speed improvement has been achieved.

Partial update threshold. We examine the impact of the
consistency threshold τ on the performance of TempNet. In

this experiment, we vary the key frame ratio and τ and plot
the accuracy of TempNet in Figure 9. The threshold τ deter-
mines how many keypoint features can be directly inherited
in a partial update and discarded points need to have their
features recaptured using Nfea. It can be seen that when the
threshold τ is high, a smaller number of points are directly
inherited, and more are directly discarded in the next frame.
So it usually leads to higher accuracy but also high compu-
tational cost. When the threshold τ is low, more points are
considered similar and are inherited directly, which is faster
but with a loss in accuracy. From record C to record D,
it can be seen that twice the acceleration ratio with nearly
the same accuracy is achieved at a threshold of 0.7. In our
algorithm design, we are more inclined to get better perfor-
mance so we generally set the τ value to 0.7.

5. Conclusion
We have proposed a novel framework for online point

cloud series semantic segmentation, called TempNet. By
combining a novel frame aggregation scheme, our method
improves both the accuracy and stability of existing seman-
tic segmentation models. The information between succes-
sive frames is aggregated to ensure accuracy through an at-
tention mechanism. By partial update the propagated fea-
tures with the local features extracted on non-key frames,
our model avoids losing information while being computa-
tionally efficient. TempNet outperforms SOTA segmenta-
tion models on the SemanticKITTI dataset with little extra
computational cost.
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