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Abstract

Contrastive learning, which aims at minimizing the dis-
tance between positive pairs while maximizing that of neg-
ative ones, has been widely and successfully applied in un-
supervised feature learning, where the design of positive
and negative (pos/neg) pairs is one of its keys. In this
paper, we attempt to devise a feature-level data manipu-
lation, differing from data augmentation, to enhance the
generic contrastive self-supervised learning. To this end,
we first design a visualization scheme for pos/neg score'
distribution, which enables us to analyze, interpret and un-
derstand the learning process. To our knowledge, this is
the first attempt of its kind. More importantly, leveraging
this tool, we gain some significant observations, which in-
spire our novel Feature Transformation proposals includ-
ing the extrapolation of positives. This operation creates
harder positives to boost the learning because hard pos-
itives enable the model to be more view-invariant. Be-
sides, we propose the interpolation among negatives, which
provides diversified negatives and makes the model more
discriminative. It is the first attempt to deal with both
challenges simultaneously. Experiment results show that
our proposed Feature Transformation can improve at least
6.0% accuracy on ImageNet-100 over MoCo baseline, and
about 2.0% accuracy on ImageNet-1K over the MoCoV2
baseline. Transferring to the downstream tasks success-
fully demonstrate our model is less task-bias. Visualization
tools and codes: https://github.com/DTennant/
CL-Visualizing-Feature-Transformation.

1. Introduction

Finetuning from ImageNet [34] supervised pre-train net-
works [16, 37, 19] for down-stream tasks, such as object
detection [27, 31, 32] and semantic segmentation [28, 5],
is a de facto dominant approach in computer vision com-
munity. But recently self-supervised contrastive learn-

*Equally-contributed and this work is done at JD Al Research.
fCorresponding author.
IPos/neg score indicates cosine similarity of pos/neg pair.
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Figure 1. The motivation of visualizing the score distribution. (a) It
draws the score distribution of positive pairs for m (the momentum
in MoCo[14]) being 0.99 and 0.9, showing that smaller positive
scores generally need longer time to converge and obtain better
accuracy. (b) Inspired by (a), we apply extrapolation on positive
pairs to slightly decrease the scores, generating harder positives.
(c) Leveraging the extrapolation of positives, we improve the per-
formance from 71.1% (the blue) to 72.8% (the orange). The per-
formance increase is consistent with the change of distribution.
The mean score of positive pairs changes from blue plot (before
extrapolation) to orange plot (after extrapolation).

ing achieves comparable transfer performance without the
human-provided annotations. One of the key issues of con-
trastive learning is to design positive and negative (pos/neg)
pairs to learn an embedding space such that the positives
stay closer in the space while the negatives are pushed away.

Most existing approaches [4, 6, 40, 7] acquire pos/neg
pairs by data augmentation, which exploits various views
of the same image to form positive pairs. For example,
CMCJ[39] uses the luminance and chrominance color chan-
nel of an image as two views. InfoMin [40] demonstrates
that incremental data augmentations indeed lead to decreas-
ing mutual information between views and thus improve
transfer performance. In other words, an effective posi-
tive pair prefers to convey more variance of one instance.
With a series of promotions, the contrastive learning meth-
ods based on data augmentations [4, 6, 40, 7] are achieving
closer to the fully supervised performance on ImageNet[6].

Most previous data augmentations (e.g., cropping, color
distortion) are directly sourced from human intuitions,
which may lack much interpretability, thus they can not
guarantee their effectiveness. We argue, however, that the
feature-level data manipulation (i.e., feature transformation)
can provide more explainable or effective pos/neg pairs to
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enhance the feature embedding. To this end, we first design
a scheme to visualize the pos/neg pair score distributions
during the training. We believe that, from these score distri-
butions, we can reveal and explain how the model parame-
ter values affect its performance. The visualization can help
us trace back the training process. Moreover, it enables us
to observe the characteristics of the pos/neg pairs, and then
invent more effective feature transformations (FT).

Figure 1 demonstrates the motivation of score visualiza-
tion. By plotting the score distributions under different mo-
mentum values of MoCo [14], we can clearly observe that
the case of m = 0.99 has smaller positive scores while
achieves better performance. A small positive score indi-
cates less similarity between the pair, which means this pos-
itive pair actually carrying large view variance of one ex-
ample. Actually, this is consistent with the goal of feature
learning, which targets at a more view-invariant visual rep-
resentation. Therefore, we conjecture that “hard positives”
are the ones conveying large view variance of a sample. In-
spired by this observation, we introduce an extrapolation
operation on positive pairs to increase view variance and
thus acquire hard positives. Figure 1(c) shows that the ex-
trapolation of positives can boost the model performance
from the “blue” one to the “orange” one.

Besides, to make full use of negative features, we pro-
pose the random interpolation among negatives, which in-
tuitively provides diversified negatives for each training step
and makes the model more discriminative.

Unlike the traditional data augmentation, our feature
transformation does not bring additional training examples.
Instead, it aims at reshaping the feature distribution by ma-
nipulating both positive and negative pairs. Basically, our
feature transformation will create hard positives and diver-
sified negatives to learn a more view-invariant (hard posi-
tive) and a more discriminative (diversified negatives) rep-
resentation. It is directly driven by the performance of the
learned representation, while data augmentation is kind of
blind to the performance. Furthermore, our feature transfor-
mation makes the model less “task-bias”, which means we
can achieve performance improvement for various down-
stream tasks. It has been verified by our experiments on ob-
ject detection, instance segmentation, and long-tailed clas-
sification with significant improvement.

Both our visualization tool and feature transformation
are generic, and can be applied to various self-supervised
contrastive learning including MoCo[14], SimCLR[6],
InfoMin[40], SwAv[4], SimSiam[8]. In the following sec-
tions, we employ the classic model MoCo to demonstrate
our framework. To summarize, our contributions include:

* We are the first to design a visualization tool to ana-
lyze and interpret how the score distribution of pos/neg
pairs affects the model’s capability. The visualization
also helps us come into some significant observations.

* Inspired by the observations on the model visualiza-
tion, we propose a simple yet effective feature trans-
formation, which creates both “hard positives” and
“diversified negatives” to enhance the training. The
feature transformations enable to learn more “view-
invariant” and discriminative representations.

* We conduct thorough experiments and our model
achieves the state-of-the-art performance. In addition,
the experiments on the downstream tasks successfully
demonstrate our model is less task biased.

2. Related Work

Contrastive Learning: Contrastive losses have been
widely used in self-supervised learning and brought signifi-
cant improvements on classification [13, 1, 14, 39, 40, 6, 7,
12, 4, 18, 2, 57, 47, 50, 9, 3, 39, 43, 49, 54, 45, 44, 23]
and detection [46, 51, 52, 53]. InfoMin [40] uses the
lower bound of NCE to demonstrate that incremental data
augmentations lead to decreasing mutual information be-
tween views and thus improve transfer performance. In
other words, relatively harder data augmentation for con-
trastive learning boosts the transfer performance[20, 6]. We
show that our proposed feature transformation can be easily
adopted on current state-of-the-art models.

MixUp for contrastive learning Mixup [56] and its nu-
merous variants [42, 55, 21] provide highly effective data
augmentation strategies when paired with a cross-entropy
loss for supervised and semi-supervised learning. Mani-
fold mixup [42] is a feature-level regularization for super-
vised learning while Un-mix [36] proposes using mixup in
the image/pixel space for self-supervised learning; And in
MoChi [20] the authors propose mixing the negative sample
in the embedding space for hard negatives augmentation but
hurt the classification accuracy. i-Mix [24] proposed a strat-
egy mixing instances in both input and virtual label spaces
to regularize contrastive training. In this paper, we proposed
to use feature transformation rather than data augmentation.
Positive features are extrapolated to increase the hardness of
positives, and negative features in the memory queue are in-
terpolated to increase the diversity. Our FT provides more
efficacy compared with augmentations.

Generating examples for metric learning: The idea of
generating new examples for metric learning has been ex-
plored by [26, 10, 22]. The Embedding Expansion [22]
work uses uniform interpolation between two positive and
negative points, creates a set of synthetic points, and then
selects the hardest pair as negative. [26, 10] generate new
hard examples by generators and improve performance for
metric learning. Different from the approaches [26, 10] for
supervised metric learning, our pos/neg FTs are aiming at
self-supervised learning and doesn’t require labels, extra
parameters and loss terms to be optimized.
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Figure 2. Feature Transformation Contrastive learning pipeline.

3. Visualization of Contrastive Learning
3.1. Preliminaries

Let us start from the basic procedures of contrastive
learning, as shown in Figure 2. Each data sample x passes
through two separate data augmentation pipeline ¢, and ¢,
which are randomly sampled from the same data augmen-
tation pool, and two views v, and vy will be acquired to
construct positive pairs [6, 12]. The encoder ¢ and k 2
will respectively map two views into feature embedding
space. An {5 normalization is applied on feature vector h,
and hy, to project the corresponding vector hy and hy, (i.e.,
2q = hq/||hql|2) onto the unit sphere and obtain z, and 2.
Their inner product will produce the cos similarity score,
namely one positive pair score S;.;+ and K negative pair
scores S, - . These pair scores are input to InfoNCE loss 1
for contrastive learning:

exp (Sq4k+/7')
exp (Sq‘,d /7') + > exp (Sq,kf /7’)

L= —log (1

Here we roughly defined Feature Transformation process as
certain manipulations on encoder embeddings hg and Ay, in
order to reshape the distribution of the output pos/neg pair
score (Sy.x+ and Sy.j-.), for better contrastive learning in
the follow-up InfoNCE loss. The most common FT applied
in current SOTA is the [4, 6, 40, 7, 14] unit-sphere projec-
tion of /5 normalization. We provide empirical studies of
this regular FT and illustrate it importance for significant
constriction of feature length (¢2) in Supp F.

3.2. Score Distribution Visualization

We choose to visualize the score distribution of pos/neg
pairs instead of the loss curves and transfer accuracy, as the
inside training dynamics can unearth the learning capabil-
ity of the model. Specifically, there are two practical rea-
sons: (1) The basic idea of InfoNCE loss is to compare the
pos/neg scores in a log-softmax manner, so visualizing the
input score pairs can help study the contrastive learning pro-
cess. (2) The normalized feature vectors z, and zj, are high-
dimensional, which is challenging for storage and visual-
ization; The exponential amplification of scores is too large
to observe the details of characteristics of pos/neg scores.

2Encoder ¢ and k might be the same [6] or different network [14, 12].

m ‘ <05 06 07 08 09 099 099 1
acc (%)‘collapse 21.2 32.8 39.3 46.5 56.2 53.1 31.2

Table 1. The parameter experiments of m on MoCo (7 = 0.07).

However, S,.;; is one-dimensional and limited to [—1, 1],
which is suitable to observe inside the contrastive process.
Notice that this practical visualization tool is offline and
doesn’t affect training speed with negligible computation.
Even with larger datasets and batch size, it’s still feasible.
The details of the visualization tool are present in Supp A.

3.3. Visualization Examples with MoCo

We choose the computationally-efficient model, MoCo
[14] as an example to demonstrate our visualization design.
Momentum Update Mechanism: Memory queue [49] is
an initial approach for solving the large batch computational
burden which stores K negative features in the memory that
will be updated using the output of the encoder at each train-
ing step. However, the rapid change of the encoder (f; and
fx) could bring inconsistency into the memory queue which
usually contains outdated features. MoCo solves the incon-
sistency issue by leveraging a momentum update mecha-
nism [38] where only f, is updated by back-propagation
and the fj, is updated by momentum mechanism:

ka — mefk + (1 — m)efq 2)

where m € [0,1) is the momentum coefficient and has a
huge influence to the final transfer accuracy. The memory
queue is then updated using the features from fj, because the
momentum update of f; brings a smoother change of fea-
tures that could reduce the inconsistency in memory queue.

In the following sections, we provide thorough experi-
ments and visualization analysis to show how the parameter
m affects the contrastive learning process. We attempt vari-
ous m for MoCo on ImageNet-100 (denoted as IN-100) [39]
with linear readout protocol for evaluation (details in Supp
B). As the Tab 1 shown, with the decrease of m (increasing
the update speed of encoder f;), the accuracy presents an
inverse U-shape and the max 56.24% locates at m = 0.99
and the model collapse3 when m < 0.5. The trend of these
results is similar with BYOL [12].

We choose three non-trivial statistics to visualize the
score distribution: the mean of pos/neg scores (indicating
the approximate average of the pos/neg pair distance) and
the variance of negative scores (indicating the fluctuation
degree of the negative samples in the memory queue). As
shown in Fig 3(a), when m becomes smaller, the update
speed of encoder £ is increasing, leading to incremental dif-
ferences of features among training steps, which is reflected
as the growing variance of negative scores of the queue,

3Model collapse means that the transfer accuracy with linear readout
protocol can not achieve the accuracy of training from random initializa-
tion, i.e., 15.90%, indicating the negative effect brought by pre-train.
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Figure 3. Pos/neg score statistics of various m in MoCo training
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Figure 5. 2D view of pos/neg score statistics of various m

namely the inconsistency. Specifically, when m = 1 (no
update of f; during training), the variance is closed to zero
(blue line) while the variance of m = 0.9 (red) is larger
but relatively unstable. m = 0.5 (grey) brings more violent
fluctuations/inconsistency in the memory queue, leading to
a poor transfer accuracy even model collapse.

Inside Analysis of Model Collapse: The model collapse is
caused by various reasons. Small m (fast update speed of
fx) brings not only the inconsistency, but also the confusion
of negative scores. For the mean of neg scores (lines in Fig
3(b)), the volatility degree of m = 0.6 (pink) and m = 0.5
(grey) is much sharper than the best model m = 0.99
(green). The mean of neg scores reflects the approximate
score for all the negative pairs in the memory queue. If it be-
comes drastically volatile with the training process, the cor-
responding loss value and gradient will fluctuate violently,
resulting in bad convergence. As shown in Fig 4, the smooth
and stable gradient landscape of m = 0.99 (Fig 4(a)) be-
comes sharp and messy with the decrease of m (Fig 4(b)
for m = 0.6 and Fig 4(c) for m = 0.5). Details of gradi-
ent landscape are put in Supp C. Basically, to learn a better
pre-trained model, we need to prepare negative pairs that
can maintain the stability and smoothness of score distribu-
tion and gradient for the training process, which is similar
to supervised learning [35].

ez | - 02 04 06 14 16 20
acc (%) | 71.1 716 718 719 727 724 728

Table 2. Various a., for positive extrapolation, the best result is
marked in bold. We employ ResNet-50 [16] for the results. ’-’
indicates MoCo baseline without using extrapolation.

Hard Positive Boosts Performance: Small m not only in-
dicates the faster update speed, but also more similarity be-
tween encoder fj and fy, i.e., in an extreme case, when
m = 0, the parameters 6}, is completely the same with 0,
in each training step. The increasing similarity of encoder
fq and fi, will reduce the dissimilarity between z, and zj+,
and only the view variance brought by data augmentations
remains, leading to a higher positive score. Fig 3(c) shows
that high positive scores of m < 0.9 will produce easy pos-
itive pairs with the close distance and little view variance in
feature space.

However, in Fig 5(c), when we increase m from 0.9
(green) to 0.99 (orange), the easy pos pair becomes hard
pos pair (from very similar 0.9 to less similar 0.7), lead-
ing to a higher transfer accuracy (46.5% v.s 56.2%, 9.7%
increased). Note that this observation (converting easy pos-
itive to hard one) could be explained by InfoMin principle
[40]: Raising the view variance between z; and zy+ corre-
sponds to increasing the mutual information for contrastive
learning, which forces the encoder learns a more robust em-
bedding and thus improves the transfer accuracy.

In the guarantee of stable and smooth score distribution
and gradient, we can adopt some feature transformation
methods which create hard ones by decreasing easy posi-
tive scores. Thus, we propose a positive feature extrapola-
tion method to improve transfer accuracy in section 4.1.

4. Proposed Feature Transformation Method

The learning objective of Info-NCE is to draw the posi-
tive pair (z4 and z,+) closer while pushing away negative
pairs (2, and all the z;- in memory queue) in the em-
bedding space. Therefore, we could directly apply fea-
ture transformation on the pos/neg features, in order to pro-
vide appropriate regularization [42] or make the learning
harder [40]. Specifically, we develop positive extrapolation
to transform the original positive pair to be further to in-
crease the hardness and negative interpolation of memory
queue to increase the diversity of negative samples, as Fig 6
shown. Notably, our method does not change the loss terms
because it only replaces original pair scores with the new
transformed pos/neg scores for calculating loss term.

4.1. Positive Extrapolation

Following the discussion in Sec 3.3 which indicates that
lowering the easy positive pair scores to create hard positive
pairs during training could be beneficial for the final trans-
fer performance. Thus we would like to explore a way to
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(a) Negative Interpolation

(b) Positive Extrapolation

Figure 6. The process of our proposed negative interpolation and
positive extrapolation. For the negative interpolation, we ran-
domly interpolate two features in memory queue to produce a new
negative. For positive extrapolation, the two positive features are
pushed away from each other using extrapolation, changing easy
positives to hard positives, which is better for contrastive learning.

manipulate the positive features z, and zj+ to increase the
view variance between them during training.

First, we simply adopt weighted addition for the two pos-
itive features to generate new feature:

Zg = Aexzqg + (1 —
et = Aewzpr + (1 —

)\e:l;)zk‘f’
Aex)Zq 3)

where Z, and Z;+ are the transformed new features. Mean-
while, considering the design principle of mixup [42, 56],
we make sure that the summation of weights equals to
1. More importantly, we should guarantee than the trans-
formed pos score S*q_k+ is smaller than the original pos
score S+, namely 2,2+ < z42p+. Take Equation 3 into
the transformed score:

Sgt = 2Xea(1 = Aew)(1 = Syt ) + Sqi+ < Sqp+ (4)
Because S, ,+ € [—1,1] and thus (I — S,x+) > 0.
To make sure the lower score Sq.k+ < Sg.k+, we need
to set Az > 1 tolet 2 - Aep(1 — Aez) < 0. So we
choose Aoy ~ Beta(ey,er) + 14 is sampled from a
beta distribution and then adding 1 results in a range of
(1,2). And the range of transformed pos score will be
Sq-k+ S [—4 + 5Sq.k+ > Sq-k*]-

Intuitively, it can be seemed as a simple approach to push
away z, and zi+ in feature space. After extrapolation, the
distance between the extrapolated feature vector is enlarged.
Therefore the extrapolation can serve as a feature transfor-
mation to create hard positives from easy ones. As shown in
Fig 6(b), it brings a minor direction change for two positive
vectors and meanwhile conveying a larger view variance of
a sample for better contrastive learning. The visualization
of lowering pos score by extrapolation is shown in Fig 1(c).

We evaluate the efficacy of positive extrapolation on IN-
100 and attempt various a., in Tab 2. The positive ex-
trapolation with various «., consistently improves the ac-
curacy from the baseline MoCo (71.1%), which clearly

4We choose to set the two parameter e Of the beta distribution to be
the same, because the two mixed features are symmetrical. And the same
applies to the negative feature interpolation.

Method oz

MoCo 0.2 69.1/71.6
(baseline: 71.1) 2.0 67.4/72.8

Table 3. Positive extrapolation v.s. interpolation. Interpolation
hurts the performance while extrapolation improves.

pos interpolation/extrapolation

demonstrates the efficacy of positive extrapolation. It is
interesting that a.,>1 will get better results than those of
e <1. Because the beta distribution with a., <1 provides
extreme large or small ., with high probability, e.g., 1.1
or 1.9, while the beta distribution with a.,>1 gives neutral
Aez = 1.5 with high probability 3. According to Equation
4, extreme A, will bring too much/little hardness, so the
corresponding performance is not robust as the neutral one.
What if Positive Interpolation? To further verify our con-
jecture that extrapolation can create hard positives while in-
terpolation won’t, we also conduct experiments for the in-
terpolation of positive features, shown in Tab 3. We can
observe a clear performance drop (5.4% drop for neutral
Qe = 2) for this experiment. The reason is that the inter-
polation between positive features pulls the positive pairs
together thus reducing the hardness in the training process.
In other words, the view variance of positive pairs is de-
creasing, and thus easy to cause non-robust features.

4.2. Negative Interpolation

Previous contrastive models [6, 14] do not make full use
of negative samples. e.g., In MoCo, there are many repeti-
tive negative features stores in the memory queue iteration
by iteration. Thus we could design a new strategy to fully
utilize negative features and increase the diversity of the
memory queue. With sufficient randomness, we propose the
negative interpolation in memory queue, which intuitively
provides diversified negatives for each training step.

Specifically, we denote the negative memory queue of
MoCo as Z,cq = {z1,22,...,2x} where K is the size
of the memory queue, and Z,,, as the random permu-
tation of Z,.,. We propose to use a simple interpola-
tion between two memory queue to create a new queue

Zneg = {31,205, 2K}

Zneg = /\in : Zneg + (1 - /\m) : Zperm (5)
where \;,, ~ Beta(ay, a;y,) is in the range of (0, 1), as Fig
6(a) shown. The transformed memory queue Zneg provides
fresh interpolated negatives for contrastive loss iteration by
iteration, where the random permutation and \;,, ensure the
diversity of Zneg of each training step. The diversity makes
the model to compare with much more linear combinations

5The beta distribution with cvez>1 shows an inverted U shape which
samples 0.5 with a greater probability and thus making A¢; to have a
greater chance to be 1.5.
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@n | - 02 04 06 14 16 20
acc (%) | 71.1 733 741 742 735 746 741

Table 4. Various «;,, for negative interpolation, the best result is
marked in bold. We employ ResNet-50 [16] for the results. ’-’
indicates MoCo baseline without using negative interpolation.

Method Qin  Zpn queuesize Acc
moco+ original queue - ey K 71.10
moco+ original queue - Zneg 2K 71.40

moco+ Neg FT queue 1.6 Zpney K 74.64
moco+ Neg FT+original 1.6 Z,.q 2K 74.73
Table 5. Ablation results for using different queue of negative

features (Res50). The transformed queue Zneq can completely
replace the extended queue Z,,., with small computations.

of previous negatives in each training step. Positive extrapo-
lation increases the view variance between two pos features
while the negative interpolation similarly boosts the “sam-
ple variance” (diversity) of the memory queue. We conjec-
ture that original queue Z,,., provides discrete distribution
of negative samples but our method can fill in the incom-
plete sample points of the distribution by random interpo-
lation, leading to a more discriminative model We evaluate
the efficacy of negative interpolation on IN-100 and attempt
various v, in Tab 4. The neg interpolation is fairly robust
with various a;,,, with the improvement of 2.2%-3.5% from
the baseline (71.1%). More interesting discussions about
negative feature transformation (hard negatives & negative
extrapolation) are shown in Supp G.

Previous works have explored the method leveraging
image-level [36] and feature-level [20] mixing in con-
trastive learning. Our method differs from the previous
works in three ways, first is the motivation, we are moti-
vated by our observation in Sec 3.2 to propose the feature
transformation strategies. Second, the way we extrapolate
between two positive features is novel and outperforms the
other two methods on several experiments in Tab 8 and 9.
Third, the negative interpolation aims at fully utilizing neg-
ative samples in each training step. Both FT methods fo-
cus on exploring an effective way to perform feature trans-
formation, not simply extending hard negatives to mem-
ory queue [20], neither the image-level mixup [36]. In
the following sections, we provide inside discussions for
the proposed FT, including (1) What if extending memory
queue instead of FT. (2) When to add FT? (3) Dimension-
level mixing rather than linear mixup. (4) Could the gains
brought by FT vanish if training longer?

4.3. Discussions

Extending memory queue instead of FT: Previous
works [14, 6] show that increasing the number of nega-
tive example (K) in contrastive learning could be beneficial
for the final performance, thus they either uses a memory

neg_mean pos_mean
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Figure 7. Visualization of when to add FT, including score distri-
bution and Gradient (¢2 norm) landscape.

FT begin epoch | 0 2 30 50 80 -

Resl8acc (%) | 626 633 629 61.8 59.2 56.2
Res50 acc (%) | 769 764 759 740 722 71.1

Table 6. When to add feature transformation. We employ Res-18
(total 100 epochs) and Res-50 (total 200 epochs) on IN-100 for the
results. ’-” indicates MoCo baseline without using any FT.

queue [14] or a large batchsize [6] to obtain more negative
examples. Specifically, [30, 17, 40] shows that increasing
K will improve the lower bound of the mutual information.
The negative interpolation method could also be leveraged
to enlarge the number of negative examples: We use the
union queue of original negatives and interpolated queue,
Zneg = Aneg U Zpeg» Which contains twice the number of
negative examples (2K) than Zneg.

We compare the performance of using only the interpo-
lated queue Zneg, original Z,., with K/2K negative sam-
ples, and their combination Zneg, in Tab 5. We found
that using the combination queue shows negligible improve-
ment over the performance (74.73%) of using the interpo-
lated queue alone (74.64%). We consider that the interpo-
lated negative features contain sufficient diversified nega-
tives compared with the original queue. So even the dou-
ble negative samples (more mutual information) of the ex-
tended queue (Zneg) cannot boost the performance. No-
tably, the extended queue requires double times computa-
tion for each contrastive loss. Thus we recommend fea-
ture transformations with less computation but more effi-
cacy rather than feature augmentation.

When to add feature transformation? Here we present
the efficacy of FT by analysis of starting FT in various train-
ing stages. As shown in Tab 6, starting FT (pos extrapo-
lation + neg interpolation) from various epoch can consis-
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tently boost the accuracy of baseline, and starting from ear-
lier can improve more (7.1%/5.8% boosts with Res-18/Res-
50). With the visualizations of score distribution and gradi-
ent landscape in Fig 7, we can see that our FT brings hard
positives (lowering pos scores in Fig 7(b)) and hard nega-
tives (rising neg scores in Fig 7(a)) simultaneously when the
combined FT is inserted in various stages. Besides, with the
comparison of the gradient (/2 norm) landscape, we can ob-
serve that our FT brings a greater gradient for the training,
which makes the model escape from the local minima and
avoid over-fitting. These analyses indicate our FT is a plug-
and-play method and brings persistent view-invariance and
discrimination for the training of contrastive models. More
detailed discussions and visualizations are put in Supp D.
How about Dimension-level mixing: Besides the pro-
posed linear feature interpolation and extrapolation on the
feature-level (128-d vector), we also extend the transforma-
tion to a dimension-level where the parameter \ is a vector
rather than a scalar number, this dimension-level mixing can
be described as follows:

énew:AQZi_"(l_)\)@Zj (6)

where @ stands for Hadamard product, and A € [0,1]™ is a
vector with the same dimension as the feature vector. The
value of each dimension of A is randomly sampled from
a beta distribution A; ~ Beta(c, «). This formulation is
used for negative interpolation; For positive, A is added 1 to
perform extrapolation. For neg/pos features, the dimension-
level mixing could introduce more diversity/more view vari-
ance (hardness) because every dimension is performed with
transformation. Experiments of dimension-level mixing on
IN-100 shows improvement over the feature-level mixing
(the 5th row in Tab 7).

Could the gains brought by FT vanish if training longer?
Simply training longer leads to significant performance
boost for contrastive pre-train. So here we provide the
results of MoCov2/MoCov2+FT (500 epoch) on IN-100:
80.7%->81.5%. Compared with 200 epoch results (75.6%-
>78.3% in Tab 7), longer training actually minimizes the
improvement over the baseline. More training epochs can
lead to comparing much more pos/neg pairs to increase the
diversity. However, our proposed FT accelerates this pro-
cess by providing diversity and results in fast convergence,
which responds to the motivation of learning diversified and
discriminative representations.

5. Experiments

In this section, we evaluate our Feature Transformation
methods from four perspectives: (1) Ablation studies (2)
FT on various contrastive models. (3) Evaluating the repre-
sentation on ImageNet-1k. (4) Finetuning on various down-
stream tasks. We keep the fairness of the experiments, espe-
cially when compared with other methods. Notice that the

Method MoCovl MoCov2 simCLR Infomin swav SimSiam

baseline® 71.10 75.61 7432 819 821 77.1
+pos FT 7280 76.22  75.80 - - 77.8
+neg FT 7464 77.12 76.71 - -
+both 76.87 7833 7825 832 832
+bothgir, 77.21  79.21 78.81 - -

Table 7. Ablation studies of proposed methods on various con-
trastive models. The models are pre-trained for 200 epochs with
Res50 on IN-100. * indicates reproduced baseline results.

pre-train IN-1k inat-18 CUB200 FGV C-aircraft
supervised 76.1 66.1 81.9* 82.6*
mocov1[14] 60.6 656 82.8*  83.5*
mocov 1+ours 619 673 832 84.0
mocov2([7] 67.5 66.8* 82.9* 83.6*

mocov2+ours 69.6 67.7 83.1 84.1
mocov2+MoCHi[20] 68.0 - - -
mocov2+UnMix[36] 68.6 - - -

Table 8. Classification results. * indicates our reproduced results.

data augmentations are followed with the baseline methods.
Details of experiments and datasets are put in Supp B.

5.1. Ablation study

We adopt the linear readout protocol [14] to compare
performance for image classification on IN-100, where we
freeze the features and train a supervised linear classifier
using softmax. Tab 7 summarizes the results of ablation
studies. We observe that the positive extrapolation and neg-
ative interpolation components are complementary which
can improve the top-1 accuracy by 5.77%/2.72% when
combined on MoCoV1/MoCoV2. The dimension-level mix
also shows improvement based on the already high perfor-
mance of both components. The performance-boosting of
ablation studies over MoCo shows the efficacy of our FT.
Notice that the transformed features are not necessarily on
the unit sphere (i.e., has a norm of 1), we did not need to
re-perform {5 norm for transformed features, because the
performance difference is negligible (76.87% v.s post-norm
76.68%). More discussions about ¢, for vector length are
put in Supp F. Here we strongly recommend to re-perform
£ norm for the transformed features on all the datasets, for
the sake of contrasting all the scores on the unit-sphere.

5.2. FT on various contrastive models

We apply our FT to various contrastive models in Tab 7.
It presents that our FT brings 5.77%, 3.93% , 1.3%, 1.1%,
and 0.7% improvement over MoCo [14], SimCLR [6], In-
foMin [40], SWAV [4] and SimSiam [8], respectively on
IN-100 dataset (200 epoch). It is worthy to point out that
the series of ablation studies of our FT can boosts the Sim-
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etrain IN-1k | Faster [33] R50-C4 VOC Mask R-CNN [15] R50-C4 COCO
P Top-1 | AP APy  APrz | AP AP APR | AP™  APZF  APZY
random init* - 338 602 331 | 264 440 278 | 293 469 308
supervised* 761 | 535 813 588 | 382 582 412 | 333 547 352
infomin* 70.1 | 576 827 646 | 390 585 420 | 341 552 363
mocoV1[14] 60.6 | 559 815 626 | 385 583 416 | 336 548 356
mocoV 1+ours 619 | 561 820 620 | 390 587 421 | 341 551  36.0
mocoV2[7] 675 | 570 824 636 | 390 586 419 | 342 554 362
mocoV2+ours 69.6 | 581 833 651 | 395 592 421 | 346 556 365
mocoV2+mochi[20] | 68.0 | 57.1 827 641 | 394 590 427 | 345 557 367
DetCol[51] 68.6 | 57.8 826 642 | 394 592 423 | 344 557 366
InsLoc[53] - 579 829 653 | 395 591 427 | 345 560 368

Table 9. Object detection. All model are pre-trained for 200 epochs on ImageNet-1k. * means that the results are followed from respective

papers [14, 40]. The COCO results of mocoV2 is from [20]. Our results are reported using the average of 5 runs.

CLR model. The experiments shows our FT is generic and
robust for various contrastive models.

5.3. Evaluating the representation on ImageNet-1k

After ablations on IN-100 dataset, we use the best set-
tings of «;, and ., to train a model on ImageNet-1k
(IN-1K). Note that the dimension-level mix is not used
for the experiments on IN-1K due to computational con-
straints. We apply our method on the baseline MoCo [14]
and MoCoV?2 [7], which are both trained on IN-1K with
200 epochs. The results and comparison are summarized
in Tab 8. Our method improves MoCoV1 and MoCoV2 by
1.3% and 2.1% on Top-1 accuracy respectively which are
significant on a large dataset like IN-1K. UnMix [36] and
MoCHi [20] are the methods that also leverage mixup to
better aid the contrastive learning process. Notably, we can
observe that our method with MoCoV2 can provide larger
performance gain than UnMix and MoCHi respectively.

5.4. Downstream Tasks

Fine-grained image classification We evaluate the effi-
cacy on real world fine-grained classification datasets, e.g.,
large scale long-tail iNaturalist2018 [41], CUB-200 [48]
and FGVC-aircraft [29]. As shown in Tab 8, our FT sig-
nificantly boosts the transfer performance on iNat-18, with
1.7% and 0.9% improvement based on MoCo and MoCo-
V2. Besides, our FT brings consistent improvement on
CUB-200 and FGVC-aircraft.

Object Detection Recent works [46, 51, 52, 53, 57] have
shown that the transfer accuracy of state-of-the-arts (SO-
TAs) models [4, 6, 40, 7, 14] on classification and detection
are inconsistent and have low correlation, denoted as “task-
bias”. One important reason is that pre-tasks of SOTA are
specifically designed and optimized for classification, such
as instance discrimination [49, 14] and clustering [4], lead-
ing to substantial enhancement on classification but slight

gain for detection. Therefore we evaluate our FT on detec-
tion/instance segmentation tasks. As summarized in Tab 9,
our FT can boosts the baseline model MoCo-V2 on vari-
ous datasets and metrics respectively. Our FT strongly im-
proves the transfer accuracy] on VOC [11] and MSCOCO
[25]. Besides, our FT with MoCo-V2 can get slightly bet-
ter accuracy than those contrastive models specifically de-
signed for detection tasks, e.g., DetCo[51] and InsLoc [53].
Moreover, our FT can get much better classification results
than DetCo. Notice that our FT is not aiming at the local in-
formation during pre-task design, but more invariance from
feature transformation. These experiments indicate that our
FT is less task-bias than the pre-task-based contrastive mod-
els. The performance boosts suggest the efficacy and ro-
bustness of our proposed FT, and enable us to learn more
“view-invariant” and discriminative representations.

6. Conclusions

In this work, we have developed a visualization tool to
visualize the score distributions of positive and negative
pairs. Leveraging this visualization tool, we can under-
stand the inside of the contrastive learning process. More
specifically, we discover significant observations inspiring
our novel Feature Transformation, including positive ex-
trapolation such that more hard positives are created for
the training. Besides, we propose the interpolation among
negatives, which makes full use of negatives and provides
diversified negatives. The feature transformations enable
to learn more view-invariant and discriminative representa-
tions. Experiments show that our proposed Feature Trans-
formation can improve at least 6.0% accuracy on ImageNet-
100 over MoCo, and about 2.0% accuracy on ImageNet-1K
over the MoCoV?2 baseline. Transferring to the downstream
tasks successfully demonstrate our model is less task-bias.
In our future work, we will explore more feature manipula-
tion strategies with the help of our visualization tool.
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