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Abstract

Although CNNs have achieved remarkable progress on

the shadow detection task, they tend to make mistakes in

dark non-shadow regions and relatively bright shadow re-

gions. They are also susceptible to brightness change.

These two phenomenons reveal that deep shadow detec-

tors heavily depend on the intensity cue, which we refer to

as intensity bias. In this paper, we propose a novel fea-

ture decomposition and reweighting scheme to mitigate this

intensity bias, in which multi-level integrated features are

decomposed into intensity-variant and intensity-invariant

components through self-supervision. By reweighting these

two types of features, our method can reallocate the atten-

tion to the corresponding latent semantics and achieves bal-

anced exploitation of them. Extensive experiments on three

popular datasets show that the proposed method outper-

forms state-of-the-art shadow detectors.

1. Introduction

Shadows may appear when lights cannot directly reach
an object surface. While they provide cues on light source
directions and scene illuminations, which facilitate scene
understanding [20, 22], they may adversely affect the per-
formance of computer vision tasks [7, 28]. Hence, shadow
detection is crucial.

Earlier, many works were proposed to detect shadows
using hand-crafted features. However, these methods are
unreliable and may fail in complex scenes. Recently, deep
learning based shadow detection methods have shown supe-
rior performance over traditional methods by a large mar-
gin. Being trained in an end-to-end manner, deep shadow
detectors can automatically learn discriminative features for
detection, without the efforts to specify which cues to use
and how they should be represented. However, there is a
cost to this convenience. There are signs that existing deep
shadow detectors heavily rely on the intensity cue. While
they may mis-recognize relatively bright shadow regions
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Figure 1. Intensity bias in shadow detection. Rows 1 and 3 show
two original images, while rows 2 and 4 show the two images with
20% increase in intensity. Existing methods [16, 50, 5] heavily
rely on the intensity cue, and suffer from two problems. On the
one hand, they mis-recognize a relatively brighter region inside
the shadow as non-shadow (e.g., yellow lanes in row 1), and dark
non-shadow region as shadow (e.g., the traffic cone in row 3). On
the other hand, their predictions change significantly due to the
brightness change (rows 2 and 4). Our method mitigates this in-
tensity bias and produces more consistent and accurate results.

as non-shadows (Fig. 1 row 1) or dark non-shadow regions
as shadows (Fig. 1 row 3), with a small shift in brightness
(which should not change the image semantics), the detec-
tion results may change significantly (Fig. 1 rows 2 and 4).

Although low intensity is a strong indication of shadows,
other cues such as object-shadow correspondences, shadow
edges, and region connectivity may also contribute to the
shadow detection task [33]. However, deep models tend
to be attracted by some dominant cues while leaving the
less dominant ones underexplored. For example, Geirhos
et al. [12] show that ImageNet-trained classifiers typically
have a bias towards textures, and increasing the attention
to shapes helps improve classification accuracy and robust-
ness. Choi et al. [6] also show that reducing scene bias
improves the generalization of action recognition networks.

To mitigate such a bias towards the intensity cue in
shadow detection, the most straightforward solution is to
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Figure 2. Augmenting the training data with a brightness shift of
different extents (vertical bars) increases the balanced error rate
(BER, lower is better), compared to the result without using data
augmentation (dash horizontal line). Our method mitigates the
intensity bias and produces a much better performance. All results
are from a FPN-like network [26] trained on the SBU dataset [40].

apply data augmentation, such as random brightness shift,
to implicitly impose the intensity-invariant constraint on the
network. Unfortunately, such a simple strategy does not
work and may even degrade the detection accuracy in prac-
tice, as shown in Fig. 2. This is due to distributional dis-
crepancy between the true data and the augmented data [5].
Alternatively, existing works have tried to explicitly intro-
duce or reinforce other cues. For example, Hu et al. [16]
propose a module to model the contrast information in a
direction-aware manner. Chen et al. [5] propose to incorpo-
rate shadow edges and shadow count in the detection. How-
ever, introducing these specific cues cannot address this in-
tensity bias problem well, as demonstrated in Fig. 1.

Instead, we propose in this paper a novel feature decom-
position and reweighting scheme to combat the undue at-
tention to intensity. Specifically, we first decompose deep
shadow features into intensity-variant (i.e., responding to
intensity changes) and intensity-invariant (i.e., without re-
sponding to intensity changes) components, so that the net-
work can mine the two types of features individually, and
then re-integrate them with appropriate weights.

The challenge of this approach is how to decompose
highly coupled features into intensity-variant and intensity-
invariant components. To guide the learning of such de-
composition, we construct two novel self-supervised tasks.
While one aims to minimize the difference between the
intensity-invariant features extracted from the input image
and its brightness-shifted counterpart, the other is to pre-
dict the brightness shift from the intensity-variant features
(Sec. 3.1). To reallocate the attention to the decomposed
features, during the training stage, we gradually shift the
learning focus from the intensity-variant features to the
intensity-invariant features via cumulative learning [51].
We then search for an optimal weight on the validation set
and fix it for the inference stage (Sec. 3.2). In summary, our
main contributions are three-fold:

• We propose a novel feature decomposition and reweight-

ing scheme to mitigate the intensity bias in shadow de-
tection, which allows our shadow detector to reallocate
its attention between the intensity-variant and intensity-
invariant features.

• We propose a novel self-supervised approach, which is
tailored for shadow detection, to guide the decomposition
of deep features.

• Extensive experiments on three public datasets demon-
strate that the proposed method outperforms state-of-the-
art shadow detection methods.

2. Related Works

Shadow detection. To detect shadows in a single im-
age, earlier works propose physical models [11, 10, 38]
or machine learning classifiers based on handcrafted fea-
tures [23, 53, 14]. Typically, they exploit one or more
heuristic cues, such as chromacity [11, 10, 23, 14, 39],
edge [11, 23, 53, 17], intensity [38, 14, 53, 17, 39], and
texture [53, 14, 39]. However, these methods cannot han-
dle real-world complex scenes well, when the assumptions
(e.g., uniform illumination) made in these physical mod-
els are violated, or the hand-crafted features used in the
traditional machine learning classifiers fail to represent the
shadow patterns.

Recently, deep learning based methods have shown great
success in shadow detection. Nguyen et al. [29] first pro-
pose a tailored conditional GAN for this task. Hu et al. [16]
propose to detect shadows by learning global contextual
features in a direction-aware manner. Le et al. [24] pro-
pose to jointly learn a shadow detector with another net-
work for generating augmented training data using adver-
sarial training. Zhu et al. [55] propose to fuse multi-level
features recursively and bidirectionally. Wang et al. [41]
propose a stacked conditional GAN to jointly learn shadow
detection and removal. Zheng et al. [50] propose to learn
distraction-aware features for shadow detection by learning
from the false predictions of other deep shadow detectors.
Most recently, Chen et al. [5] introduce a teacher-student
framework [37] to exploit additional unannotated shadow
images. They also explicitly detect shadow boundaries to
improve the detection accuracy.

While compelling results are obtained by deep shadow
detectors, we note that they tend to predict a brighter re-
gion within a shadow as non-shadow and a dark region as
shadow. In addition, their predictions may change signifi-
cantly as we adjust the brightness of the input image. Such
phenomenons indicate that they rely too much on the inten-
sity cue to make their predictions. This motivates our work
in attempting to balance the impact of intensity-variant and
intensity-invariant features.

Self-supervised learning. Towards task-agnostic image
representation learning, self-supervised learning has re-
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ceived remarkable attention in the representation learning
community recently. As its name implies, in self-supervised
learning, the supervision signals are derived not from hu-
man annotations, but from the input images themselves.
One line of self-supervised learning relies on elaborate pre-
text tasks such as predicting relative patches [9], solving
jigsaw puzzles [31], colorization [47], and predicting the
degree of image rotation [13, 4, 25]. Without explicitly con-
structing artificial labels, another line of works adopt the
contrastive learning strategy [44, 2, 3], in which the image
representation is obtained by contrasting positive and nega-
tive pairs in the feature embedding space.

Unlike those methods designed for task-agnostic visual
representation, we apply self-supervised learning for a task-
specific objective: decomposing the discriminative shadow
features into intensity-variant and intensity-invariant com-
ponents. In addition, instead of constructing a single self-
superivised task, a pair of self-supervised tasks, including a
novel pretext task and the contrastive learning approach, are
jointly exploited to learn such a decomposition.

3. Proposed Method

Existing deep shadow detectors place undue importance
to the intensity cue. To mitigate such a bias, our key idea
is to readjust the network’s focus on the dominant inten-
sity cue and excavate other less dominant cues. However,
as deep features encode all cues together in a coupled man-
ner, it is not easy to reallocate the attention to some spe-
cific ones. Hence, we propose a feature decomposition and
reweighting (FDR) scheme to achieve such controllability.

Fig. 3 shows the workflow of the proposed FDR scheme,
with both training and inference stages.

3.1. Self-supervised Feature Decomposition

We introduce a pair of contradictory self-supervised
tasks to guide the learning of intensity-variant and intensity-
invariant features in the training stage. They are separately
applied to bilateral branches to encourage such a mutually
complementary decomposition.

Formally, given a training image I as input, we first ran-
domly shift its brightness to produce a counterpart I0:

I0 = I+ �, (1)

where � is the shift amount. It is a random variable uni-
formly sampled from the range of [��,�]. We then feed
both I and I0 to the Feature Extraction Subnetwork followed
by the FDR module. The bilateral projection branches of
the FDR modules output four intermediate feature maps:
Fi (intensity-invariant features of I), Fv (intensity-variant
features of I), F0

i (intensity-invariant features of I0), and F0
v

(intensity-variant features of I0).
Since we do not expect the intensity-invariant features

to change under such a brightness shift, we introduce the

first self-supervised task here to force these two intensity-
invariant features (i.e., F0

i and Fi) to be consistent, as:

Li = �MAE(Fi,F
0
i), (2)

where �MAE(·, ·) is a mean-absolute-error loss function.
In addition, we also expect that the intensity related infor-
mation is encoded in the intensity-variant features. Hence,
we formulate the second self-supervised task as learning to
predict the perturbation amount � from F0

v . Specifically,
we attach an auxiliary regression head �(·; ✓) parameter-
ized by global average pooling (GAP), followed by a fully
connected (FC) layer. It takes F0

v as input to predict �, and
the corresponding pretext loss is defined as:

Lv = �MAE(�(F
0
v; ✓), �). (3)

Obviously, predicting the brightness shift from I0 with-
out referring to the original image I is ill-posed and chal-
lenging. However, it is worth noting that an ill-posed pre-
text task is widely used in self-supervised representation
learning, such as predicting image rotation [13, 4, 25] or
flip [27] without reference. On the one hand, for represen-
tation learning, it is crucial to avoid the network learning
to solve the pretext task by exploiting low-level visual fea-
tures [32], which can easily happen when we provide refer-
ence images. On the other hand, as a pretext task, what we
concern about is the representation induced by it, instead of
how well the network can do for itself. In our case, pre-
dicting the brightness shift without reference images forces
the network to encode the intensity prior based on how a
given image should look like at the average exposure level.
Our experiments (Sec. 5.5.1) show that providing the refer-
ence image I (i.e., using a well-posed pretext task) would
deteriorate the final detection performance.

The two contradictory losses Li and Lv guide the net-
work to decompose coupled features into intensity-invariant
and intensity-variant features, allowing sufficient excava-
tion of both and further re-evaluation of their individual
contributions to the final prediction.

3.2. Feature Reweighting via Cumulative Learning

As discussed above, since intensity is still a dominant
cue in shadow detection, we should include both intensity-
variant features Fv and intensity-invariant features Fi into
the shadow detection task. What we need is to balance the
impact of the two types of features. Since the whole model
is trained in an end-to-end manner, we may formulate the
feature fusion step with a summation, as in the feature pyra-
mid network [26]. In addition, to re-weight the contribu-
tions of these features, we introduce a trade-off parameter µ
to formulate feature reweighting as:

Fr = µFv + (1� µ)Fi, (4)
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Figure 3. Training and inference pipeline of the proposed method. Our network incorporates three modules: (a) Feature Extraction
Subnetwork for extracting multi-level integrated features F; (b) Feature Decomposition and Reweighting Module for decomposing F
into intensity-variant features Fv and intensity-invariant features Fi, which are further re-combined by a weighted summation to produce
reweighted features Fr; and (c) Shadow Detection Head for predicting the shadow mask M̂. (d) In the training stage, we construct two
auxiliary self-supervised tasks to guide the learning of feature decomposition: jointly optimizing two auxiliary self-supervision losses Lv

and Li with the shadow detection loss Lce. Note that operation nodes with the same color share their parameters.

where Fr denotes the output shadow features.
A straightforward choice to determine µ is to learn it

from data, by setting it as a differentiable parameter [18]
or predicting it with a network branch [19]. However, these
two strategies do not work in our case, as the intensity bias
comes from the data. In fact, through experiments (more
details in Sec. 5.5.2), we observe that µ would continue
to grow to near 1 as training proceeds while the detection
performance shows no improvement. Instead, in the train-
ing stage, we adopt cumulative learning [51] to gradually
shift the focus of the network from intensity-variant fea-
tures to intensity-invariant features. Given the current train-
ing epoch T and total training epoch Tmax, µ is:

µ = 1� (
T

Tmax
)� , (5)

where � is a hyper-parameter to control the descending
pace of µ over the training stage.A larger � will induce a
smoother focus transition from intensity-variant features to
intensity variant features at the beginning of training.

Once the training is finished, we need to determine a
proper µ for inference. Since µ is a scalar between [0, 1],
its value can be obtained through a grid search on the vali-
dation set. In practice, we set the search step to 0.1.

The cumulative learning strategy is similar to
Dropout [35]. While in Dropout, some neurons are
randomly dropped in a hard manner, in cumulative learn-
ing, we progressively drop intensity-variant features in a
soft manner. The choice of µ is then to obtain the suitable
weights for the two types of features. This implicitly
creates an ensemble of the two detectors to exploit both.

Table 1. EfficientNet-B3 [36] has a similar classification perfor-
mance to ResNext101 [45] on ImageNet [8], but contains signifi-
cantly fewer parameters and requires less computation.

backbone #Params #FLOPS Top-1 Acc. Top-5 Acc.
EfficientNet-B3 12M 1.8 81.1 95.5

ResNext101 84M 32 80.9 95.6

4. Training and Test Strategies

Choice of backbone. We first explain our choice of
the backbone network for extracting the multi-level in-
tegrated features (MLIF). Recent state-of-the-art shadow
detectors [55, 50, 5] rely on a heavy backbone (e.g.,
ResNext101 [45]) to extract the backbone features. How-
ever, this is not suitable for us, as our method requires extra
forward and backward pass on brightness shifted input in
training stage. To maintain a stable training with a reason-
able batch size, we choose the light-weight EfficientNet-
B3 [36] as our backbone. Nonetheless, as shown in Ta-
ble 1, EfficientNet-B3 [36] has a similar classification per-
formance to ResNext101 [45] on ImageNet [8]. Such a re-
placement should not affect our shadow detection perfor-
mance and analysis.

With EfficientNet-B3 [36] as the backbone, we extract
multi-level features from every two consecutive blocks, pro-
ducing 13 groups of feature maps in total. We use bilinear
upsampling to keep their spatial resolutions to remain half
of that of the input, and use 1⇥1 convolution to reduce their
channels into 16. These features are then concatenated and
fused into 32-channel features via 1 ⇥ 1 convolution, pro-
ducing the multi-layer integrated features (MLIF) for fur-
ther feature decomposition and reweighting.
Loss function. Considering the imbalanced numbers of
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shadow and non-shadow pixels in natural scenes, we adopt
the balanced binary cross entropy as shadow detection loss:

Lce(M, M̂) = �
X

i

⇥Nn

N
Mi log M̂i+

Np

N
(1�Mi) log(1� M̂i)

⇤
,

(6)

where i is the index of the spatial location. M is the ground
truth shadow map. M̂ is the predicted shadow mask. Np,
Nn and N are the number of shadow and non-shadow pix-
els, and the total number of pixels in the image, respectively.

Together with the two proposed loss terms Li and Lv for
feature decomposition, the final loss function Ltotal is:

Ltotal = Lce + �iLi + �vLv, (7)

where �i and �v are two balancing parameters, which are
empirically set to 1 and 0.1, respectively.

Training details. Following recent state-of-the-art shadow
detectors [50, 5, 55, 16], we initialize the backbone with
weights pretrained on ImageNet [8]. Other newly intro-
duced trainable parameters are randomly initialized. We
optimize the whole network for 10 epochs using the Adam
optimizer, with an initial learning rate of 5e�4, which is ad-
justed by the exponential decay strategy (decay rate = 0.7).
In each training iteration, the input images are resized to
a resolution of 400 ⇥ 400 and fed into the network with a
mini-batch size of 6. We apply random horizontal flipping
for data augmentation. � (for determining the maximum
amount of intensity shift for feature decomposition) is set
to 0.3, and � (for controlling the cumulative learning pace)
is set to 2. The training is run on a single RTX2080Ti GPU.
As the datasets (SBU [40] and ISTD [41]) used in our train-
ing do not provide validation split, as suggested in [1], we
randomly hold out 10% of the data in the training set for
validation. For fair comparison to existing works, once the
optimal µ is determined, we put them back and retrain the
model with the whole training set. Training takes 2 hours
on SBU [40] and 1 hour on ISTD [41].

Inference. Following recent shadow detection works [16,
55, 24, 50, 5], we use the fully connected CRF [21] to refine
our predictions (with a threshold value of 0.5) to obtain the
final shadow mask. The inference of images at a resolution
of 400⇥ 400 runs at 161 frames per second.

5. Experiments

5.1. Evaluation Datasets and Metric

Evaluation datasets. We conduct our experiments on three
public datasets, i.e., SBU [40], UCF [54] and ISTD [41],
to evaluate our shadow detector. The UCF dataset contains
135 training images and 110 test images. The SBU dataset

contains 4,089 training images and 638 test images. The
ISTD dataset contains 1,330 training images and 540 test
images. We follow previous shadow detection methods to
train on the SBU training set, and test on both SBU and
UCF test sets. For the evaluation on the ISTD test set, we
train our model on its training set.

Evaluation metric. For quantitative performance evalua-
tion, we use the popular metric, balanced error rate (BER):

BER = (1� 1

2
(

TP

TP + FN
+

TN

TN + FP
))⇥ 100, (8)

where TP, TN, FP, and FN denote the number of true posi-
tives, true negatives, false positives, and false negatives.

Methods for comparison. We first compare our
method with 11 state-of-the-art shadow detectors, in-
cluding MTMT [5], DSD [50], DC-DSPF [43], AD-
Net [24], DSC [16], BDRAR [55], ST-CGAN [41],
patched-CNN [15], scGAN [30], stacked-CNN [40], and
Unary-Pairwise [14]. All of them are deep-learning based
methods, except Unary-Pairwise [14], which is based on
handcrafted features.

As shadow detection is a kind of pixel-level classification
problem, it is related to saliency object detection (SOD) and
semantic segmentation. For a comprehensive study, we also
compare our method with four state-of-the-art SOD meth-
ods, EGNet [49], ITSD [52], SRM [42], and Amulet [46],
and one semantic segmentation method, PSPNet [48]. All
these methods are deep learning based. They are trained
and tested in the same way as the deep shadow detectors.

5.2. Quantitative Comparison

Table 2 shows the quantitative results on the three bench-
mark datasets. We can see that our method achieves the best
BER scores over all state-of-the-art methods, on the three
datasets. Compared to the second best-performing method,
MTMT-Net [5], our method reduces the BER scores by
3.49%, 2.14% and 9.9% on SBU [40], UCF [54], and
ISTD [41], respectively. Note that MTMT-Net is a semi-
supervised method that exploits both full labeled shadow
images as well as extra unlabeled shadow images. Our
proposed method does not require additional training data.
This demonstrates the effectiveness of our proposed decom-
position and reweighting scheme on mining both intensity-
variant and intensity-invariant features.

5.3. Qualitative Comparison

We further compare our method with the most recent
shadow detectors qualitatively, as shown in Fig. 4. We can
see that our method has clear visual advantages over exist-
ing shadow detection methods on challenging scenes. When
shadows are cast on dark objects (e.g., first three rows)
or regions with drastically varying colors (e.g., last three
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Table 2. Quantitative comparison of our method with the state-of-the-art methods on three shadow detection benchmark datasets. For each
dataset, we list the error rates for shadow region and non-shadow region as well as the balanced error rate (BER). The best results are
marked in bold. (*) MTMT is trained with extra unlabelled data; (**) DSD is trained with extra supervision from other models.

SBU [40] UCF [54] ISTD [41]
methods year BER# Shadow# Non Shad.# BER# Shadow# Non Shad.# BER# Shadow# Non Shad.#

FDRNet(Ours) - 3.04 2.91 3.18 7.28 8.31 6.26 1.55 1.22 1.88
MTMT* [5] 2020 3.15 3.73 2.57 7.47 10.31 4.63 1.72 1.36 2.08
DSD** [50] 2019 3.45 3.33 3.58 7.59 9.74 5.44 2.17 1.36 2.98

DC-DSPF [43] 2019 4.90 4.70 5.10 7.90 6.50 9.30 - - -
ADNet [24] 2018 5.37 4.45 6.30 9.25 8.37 10.14 - - -
DSC [16] 2018 5.59 9.76 1.42 10.54 18.08 3.00 3.42 3.85 3.00

BDRAR [55] 2018 3.64 3.40 3.89 7.81 9.69 5.44 2.69 0.50 4.87
ST-CGAN [41] 2018 8.14 3.75 12.53 11.23 4.94 17.52 3.85 2.14 5.55

patched-CNN [15] 2018 11.56 15.60 7.52 - - - - - -
scGAN [30] 2017 9.10 8.39 9.69 11.50 7.74 15.30 4.70 3.22 6.18

stacked-CNN [40] 2016 11.00 8.84 12.76 13.00 8.84 12.76 8.60 7.69 9.23
Unary-Pariwise [14] 2011 25.03 36.26 13.80 - - - - - -

ITSD [52] 2020 5.00 8.65 1.36 10.16 17.13 3.19 2.73 2.05 3.40
EGNet [49] 2019 4.49 5.23 3.75 9.20 11.28 7.12 1.85 1.75 1.95
SRM [42] 2017 6.57 10.52 2.50 12.51 21.41 3.60 7.92 13.97 1.86

Amulet [46] 2017 15.13 - - 15.17 - - - - -
PSPNet [48] 2017 8.57 - - 11.75 - - 4.26 4.51 4.02

rows), existing methods fail to differentiate such differences
well, by either over-segmenting or under-segmenting the
shadow regions. In contrast, our method detects the shad-
ows more accurately with fine structures and details. This
again demonstrates the effectiveness of our proposed de-
composition and reweighting scheme in mitigating the in-
tensity bias in shadow detection.
5.4. Feature Visualisation

In Fig. 5, we give an example of feature visualization us-
ing GradCAM [34]. In this example, we show the original
image and its two brightness shifted versions (one brighter
and one darker). We can see that: (1) while the activa-
tion map of the intensity-invariant features (column 3) is
uniformly distributed inside the shadow region, that of the
intensity-variant features (column 4) is highly correlated to
pixel intensity; and (2) under brightness shift, the activation
of intensity-invariant features remains stable, but that of the
intensity-variant features changes accordingly. These visu-
alizations show that our method can successfully decom-
pose these two types of features. More visualization results
are provided in supplemental materials.
5.5. Ablation Study

We first perform an ablation study on the SBU dataset, to
verify the design choices of our network, including the com-
ponents for feature decomposition and different cumulative
learning strategies. The average BER scores with CRF re-
finement are reported. We then analyze the model’s sensi-
tivity to µ in the test phase, to shed some light on the im-
portance of feature reweighting.

5.5.1 Components for Feature Decomposition

To verify the effectiveness of the components used in the
proposed feature decomposition, we compare the full model

Table 3. Ablation study on the components of the feature decom-
position. We show BER scores on SBU.

BB Li Lv BER #
basic ⇥ ⇥ ⇥ 3.32

basic+BB X ⇥ ⇥ 3.32
basic+BB+Li X X ⇥ 3.24
basic+BB+Lv X ⇥ X 3.36
well-posed Lv X X X 3.21

Ours X X X 3.04

(Ours) with the following configurations:

• Basic: we remove the bilateral branches after multi-level
integrated feature extraction, and the two corresponding
loss functions (i.e., Li and Lv) used for feature decompo-
sition. This forms our baseline.

• Basic+BB: we add the bilateral branches after the extrac-
tion of multi-level integrated features, without the two de-
composition losses (i.e. Li and Lv).

• Basic+BB+Li: we remove the Lv loss for guiding
intensity-variant projection, from our full model.

• Basic+BB+Lv: we remove the Li loss for guiding
intensity-invariant projection, from our full model.

• Well-posed Lv: in our full model, we replace Lv loss
(Eq. 3) with Lv = �MAE(�(F0

v � Fv; ✓), �). It yields
a deterministic pretext task where the brightness shift is
predicted with reference to both the brightness shifted and
the original image.

As shown in Table 3, with only the bilateral branches
added, the detection accuracy shows no improvement. This
means that a deeper architecture does not help improve de-
tection accuracy. In addition, by adding only Li, the per-
formance is improved as it moderately suppressed the ex-
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(a) Input Image (b) DSC [16] (c) ADNet [24] (d) BDRAR [55] (e) DSD [50] (f) MTMT [5] (g) ITSD [52] (h) Ours (i) GT

Figure 4. Qualitative comparison of the proposed method with the most recent state-of-the-art methods.

(a) Input Image (b) F (c) Fi (d) Fv (e) Fr

Figure 5. Feature map visualization using GradCAM [34]. We
show the original image (top row), its brighter counterpart (second
row) and its darker counterpart (third row). From left to right:
(a) input image, (b) F: features before decomposition, (c) Fi:
intensity-invariant features, (d) Fv: intensity-variant features, (d)
Fr: recombined features.

cessive attention to intensity. In contrast, adding only Lv

further emphasizes on intensity, and the result gets worse.
Overall, we can see that our improvement mainly comes

from the use of paired self-supervision losses (both Lv and
Li), instead of from just one of them. Intuitively, a joint
usage of them is crucial for feature decomposition: it guar-
antees that the two feature maps Fv and Fi projected by
the bilateral branches encode the expected information, as
these two tasks are contrary and complementary (i.e., while
one forces a part of the network to encode intensity related
information, the other one imposes intensity-invariant con-
straint on the other part of the network). In contrast, if only
one of them is used, as the bilateral branches stem from the
same backbone, the constraint will affect both of the pro-
jected features, making it difficult to decompose them well.

Finally, the last second row shows that using well-posed Lv ,
i.e. predicting brightness shift with reference to both the
brightness shifted and the original image, produces a per-
formance similar to the case where only Li is added. This
is because such a pretext task becomes too simple, as the
network can even solve it by just trivially learning an iden-
tity mapping from input to the intensity-variant features. As
a result, the intensity-variant features may fail to encode
high-level semantics for shadow detection.

5.5.2 Different Cumulative Learning Strategies

We observe from our experiment in Fig. 7 that if we just
leave the weight parameter µ learnable (i.e., setting it dif-
ferentiable [18]) or using an extra branch to predict it [19],
µ will continuously increase to ⇠1 before the training ends.
This verifies our observation that deep shadow detectors
tends to be biased to the intensity-variant features. Intu-
itively, this is because CNNs are biased towards local fea-
tures, and intensity is exactly a local feature. Besides, in-
tensity is indeed the most evident cue for shadow detection.
To avoid this, the cumulative learning strategy is introduced
to gradually shift the learning focus of the network from
the intensity-variant features to the intensity-invariant fea-
tures. Table 4 compares different strategies for adjusting
µ during the training stage. It is worth noting that decay
strategies (i.e., linear decay and parabolic decay) perform
better than increment strategies (i.e., linear increment and
parabolic increment). This suggests that we should grad-
ually shift the attention from intensity-variant features to
intensity-invariant ones. In addition, the parabolic decay
strategy gives better performance than the linear decay one.
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(a) Input (b) GT (c) µ = 0.4 (d) µ = 0 (e) µ = 1
Figure 6. Effect of varying µ in the test phase. Left: the BER score with respect to µ on SBU testset. Right: two visual examples. Setting
µ = 0 blocks intensity-variant features, µ = 1 blocks intensity-invariant features, and µ = 0.4 provides best trade-off of using the two.

Figure 7. A learnable µ continuously increases to a ⇠1, suggest-
ing that the network is biased to the intensity-variant features. For-

ward: we add an extra branch consisting of global average pooling
and a fully connected layer to predict µ from multi-layer integrated
features. Backward: we set µ as a differentiable parameter and let
it be optimized together with the network parameters.

Table 4. Ablation study of different cumulative strategies.
Strategy µ BER #
Constant 0.5 3.45
Backward - 3.47
Forward - 3.42

Linear increment T
Tmax

3.63

Parabolic increment ( T
Tmax

)2 3.73

Linear decay 1� T
Tmax

3.26

Parabolic decay (Ours) 1� ( T
Tmax

)2 3.04

This implies that a smooth transition at the beginning of
training is important, as it allows the detector to thoroughly
exploit intensity-variant features first.

5.5.3 Test-phase Sensitivity to µ

While we have determined an optimal value for µ by grid
search on the validation set (Sec. 3.2), we alter it here in
the test stage to see how the shadow detection performance
may respond to the change of µ. In Fig. 6(left), the BER
score with respect to the changing µ on SBU testset shows
that there is an optimal value of µ, which provides the best
trade-off between intensity-variant and intensity-invariant
features: putting more or less emphasis on the intensity-
variant features will degrade the detection performance.

Fig. 6(right) shows two visual examples to illustrate the
effect of changing µ. Note that setting µ = 1 means that

only the intensity-variant features are used for shadow pre-
diction, where the results are indeed susceptible to pixel in-
tensity (e.g., the regions pointed to by arrows in Fig. 6(e)).
In contrast, if we set µ = 0 (Fig. 6(d)), which means that
only the intensity-invariant features are used, there is only
a small proportion of shadow pixels being mis-classified as
non-shadow pixels. This justifies that the intensity-invariant
cues provide discriminative information for shadow detec-
tion. However, the best results are achieved when µ is set
to neither extreme. Overall, these observations verify the
importance of our idea to reallocate the attention between
intensity-variant and intensity-invariant features.

Figure 8. Failure case. It may fail on night-time image as the train-
ing set contains only day-time images.

6. Conclusion

This paper has presented a novel feature decomposi-
tion and reweighting scheme to mitigate the bias of deep
shadow detectors to the intensity cue. The key idea is
to decompose multi-level integrated features into intensity-
variant and intensity-invariant components, and then reallo-
cate the attention between them. We have introduced two
auxiliary self-supervised tasks to guide the learning of this
task-specific feature decomposition. Experimental results
on three datasets show that our model achieves favorable
performances, compared to the state-of-the-art methods.

Although our deep shadow detector achieves a balanced
exploitation of intensity-variant and intensity-invariant fea-
tures, which helps mitigate the intensity bias, in inference
time it still relies on the prior learned from the training set.
Hence, it may fail if the illumination of the image strongly
deviates from that of the training set, as shown in Fig. 8.
As a future work, we plan to explore domain adaptation for
shadow detection.
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