
Toward Human-Like Grasp: Dexterous Grasping via Semantic Representation
of Object-Hand

Tianqiang Zhu Rina Wu Xiangbo Lin Yi Sun*

Dalian University of Technology, China
{zhutq,hswrn}@mail.dlut.edu.cn,{linxbo,lslwf}@dlut.edu.cn

Figure 1: The left side shows the functional areas of the object, and each functional area is annotated with the semantic touch
code to guide our model to generate the functional grasp of dexterous hand, which are shown in the right side.

Abstract
In recent years, many dexterous robotic hands have been

designed to assist or replace human hands in executing var-
ious tasks. But how to teach them to perform dexterous op-
erations like human hands is still a challenging task. In
this paper, we propose a grasp synthesis framework to make
robots grasp and manipulate objects like human beings.
We first build a dataset by accurately segmenting the func-
tional areas of the object and annotating semantic touch
code for each functional area to guide the dexterous hand
to complete the functional grasp and post-grasp manipu-
lation. This dataset contains 18 categories of 129 objects
selected from four datasets, and 15 people participated in
data annotation. Then we carefully design four loss func-
tions to constrain the model, which successfully generates
the functional grasp of dexterous hand under the guidance
of semantic touch code. The thorough experiments in syn-
thetic data show our model can robustly generate functional
grasp, even for objects that the model has not see before.

1. Introduction

We have been pursuing to make robots grasp and ma-
nipulate objects like human beings, so as to help us com-
plete various tasks. Although there are already some dex-

terous manipulators like human hands, it is very challeng-
ing to control them to operate like a human. Generally, the
methods of dexterous grasp synthesis are mainly divided
into hand-centered methods and object-centered methods.
Previous work in hand-centered methods has focused on
recording grasping activity in the form of hand joint con-
figuration or grasp types by landmark tracking [19], model
based or data-driven based hand pose estimation [6, 18].
However, due to the high degree of freedom, self-occlusion
and self-similarity among fingers, it’s challenging to accu-
rately annotate the coordinates or angles of each hand joint.

Recently, researchers begin to shift their focus to the
object-centered grasp synthesis. Their methods pay more
attention to the pose [10, 34], shape [28, 39, 42, 43, 46–48,
50, 51, 59] and function [5, 16, 17, 23, 36, 44, 45, 60] of the
object for grasp and manipulation, observing where contact
between the object and the human hand. GraspIt! [37] is
used to predict feasible grasps for the object geometry with
force closure condition, but it cannot guarantee to gener-
ate anthropomorphic grasps. In order to predict human-like
grasps, it should be aware of where objects can be grasped
by a dexterous hand. ContactDB [4], as the first large-scale
dataset that records detailed contact maps for human grasps
of household objects, synthesizes the grasp from the contact
map and does not need manual specification of per-finger

15741

contact point. However, since each part of the hand does not
correspond to the specific part of the contact map, multiple
hand configurations may sometimes result in the same con-
tact pattern in this method. UniGrasp [52] considers both
the object geometry and gripper attributes as inputs to select
a set of contact points on the surface of the object such that
these contact points satisfy the force closure condition and
are reachable by the gripper without collisions, but it’s hard
to precisely make contact with these points under noise.

In contrast, our approach uses the real functional area of
the object to guide the generation of functional grasp, avoid-
ing the “multiple to one” issue caused by the contact map
and the difficulty of predicting contact points. Specifically,
we segment the functional parts of the object for grasping,
and record touch code to describe whether fingers or palm
of the hand contact each part of the object. In this case,
the positions of the hand are optimized to touch the object
3D surface. Furthermore, the proposed high-level semantic
touch code does not require low-level annotation of joint co-
ordinates or angles of the hand which greatly simplifies the
hand pose annotation in the grasping tasks. And most im-
portantly, the touch code also includes a grasp functional in-
tent that guides the fingers towards the task oriented human-
like grasp. Given both the segmented functional parts on
the object surface and the semantic touch code as input, we
train a deep learning model to seek a human-like grasp that
gracefully fit the functional parts and the specification of
the touch code. The proposed dataset and grasp synthesis
results are illustrated in Fig. 1. Moreover, we also train a
semantic segmentation network to predict the functional ar-
eas and semantic code of objects. At the same time, we
connect the segmentation network with the aforementioned
grasp synthesis network, and realized the functional grasp
synthesis based on the object point cloud on the test set.
Code and data will be provided here. The contributions of
this paper can be summarized as follows.

• We propose a grasp synthesis framework that consid-
ers both the object functional parts and touch code of
the dexterous manipulators for each part of the object.
This joint representation of object-hand interaction is
compact and effective which leads to successful task-
oriented grasps like human hands.

• We create a dataset to train our network. This dataset
contains 129 objects in 18 categories selected from 4
data sets. For each object, we segment the functional
areas of the object, and annotate the touch code for
each functional area to guide the dexterous hand to
complete the functional grasp and post-grasp task.

• We have validated our method in synthetic data and
showed that our model can also generate human-like
grasps. This proves the importance of the proposed
semantic object-hand representation on grasping.

2. Related Work
Dexterous Robotic Grasping In recent years, many re-

searches have been devoted to the grasp planning of dexter-
ous manipulators with high degrees of freedom [3, 10, 11,
14, 27, 31–33, 52]. Generally, these researches are mainly
divided into hand-centered methods and object-centered
methods. Most hand-centered methods [16, 23, 44, 45, 60]
focus on conveying the grasp intention to the robot through
human demonstrations. Among them, video [20] or kines-
thetic demos [21, 53, 54] are used to record human demon-
strations, data gloves [2, 13, 15] or visual recognition [49]
are used to capture hand pose. However, to map human
manipulation to different end-effector, different mapping
methods need to be designed, and mapping rules should be
carefully adjusted to be suitable for a variety of scenarios.

Recently, researchers begin to shift their focus to the
object-centered grasp synthesis [14, 27, 32, 33]. [12, 22, 38,
57] guide the robot to complete the manipulation task by
specifying the contactable area of the object, but this is not
enough to teach the robot to achieve the fine-grained and
dexterous manipulation. ContactGrasp [5] uses the contact
heatmap in ContactDB [4] as grasp affordances, and on-
line optimizes the stable grasps generated by GraspIt! [37]
to match the contact heatmap, so as to obtain a human-like
grasp. Similarly, [36] uses a deep reinforcement learning
(RL) model in the simulation environment to generate grasp
that conform to the contact heatmap. However, due to the
size of contact heatmap depends on the human hand, it is
unavoidable that the contact heatmap may be larger than
the functional area of the object, and there is no clear con-
tact guidance for the contact heatmap. Therefore, it may
lead to finger contact outside the functional area of the ob-
ject, and even make the wrong part of the hand touch the
functional area of the object. In contrast, we accurately seg-
ment the functional areas of objects, and use concise and
clear semantic code to guide the dexterous hand to interact
with objects like human.

Grasp affordances Grasp affordances is generally cen-
tered on the object, and is used to guide the interaction be-
tween the manipulator and the object. Previous researches
mainly focused on marking the contactable areas of objects
in images [9, 12, 23, 26, 29, 30, 35, 41], but it is too rough to
guide a dexterous hand to complete fine-grained manipula-
tion tasks. Recently, with the development of deep learning
in the field of computer vision, [10, 32, 33] proposed 3D
pose-based affordances by marking configurations of spe-
cific manipulator during grasping. However, these methods
are specific to the labeled manipulator, so that difficult to be
applied to other dexterous hands. ContactDB [4] presents
the contact heatmap of hand-object interaction on the ob-
ject as grasp affordances, and ContactPose [6] further an-
notates the hand pose during the interaction. But as men-
tioned above, because the contact heatmap is derived from

15742

10 0 0 00 0 00 0 01 0 01 0 01 0 0

00 0 0 00 0 00 0 00 0 00 0 00 0 0

(a) (c)(b)

Touch code

A D

Thumb RingMiddleIndex Little Palm

164 5 61 2 3 7 8 9 10 11 12 13 14 15

Intention code

B C

00 0 0 00 0 00 0 00 0 00 0 00 0 0

00 1 0 00 0 00 0 00 0 00 0 01 0 0

00 1 0 01 0 01 0 01 0 01 0 00 0 0

(a)

(b)

Points

Color

White

Green

White

Yellow

Red

·

Figure

Press Firmly

touch
Click Slide

1

4

2

3

5

6

7

8

9

10

11

12

13

14

15

16

Proximal

Middle

Distal

Figure 2: (a) describes the demonstration of the participant and the segmentation of object functional areas when opening
the bottle. (b) is another example. The 16 parts of hand in (c) correspond to the 16 bits of the ‘touch code’ in turn. The table
records the 20-bit semantic code of each functional area of the object in (a) and (b)

the human hand, it may not match the functional areas of
the object, and may not applicable to other manipulators.
In contrast, we perform fine-grained semantic segmentation
of objects according to their functions and structures, and
use the annotated touch code to guide the manipulator to
correctly contact the functional areas of the object.

3. Method
To make dexterous hands grasp and manipulate objects

like human beings, it is necessary to let the robot understand
which parts of the object should be grasped under the cur-
rent task, which hand parts should be used to contact these
object parts, and what kind of action should be taken after
the contact. Therefore, in order to achieve the above three
requirements, this paper proposes a new dataset, which seg-
ments the functional parts of the object for grasping to in-
tuitively show the manipulator which object parts can be
grasped, and uses explicit semantic annotation to tell the
dexterous hand which finger or palm should contact these
parts, and what kind of actions should be taken after com-
pleting the predetermined grasp. Moreover, we propose a
deep learning approach to generate functional grasp of dex-
terous hand, which uses the above-mentioned semantic in-
formation as a object-hand interaction constraint. Because
the main purpose of this paper is to propose a new dataset
and discuss how to use the dataset to guide dexterous hand
to generate functional grasp, we present the semantic seg-
mentation network in the supplementary material due to
limited space. This section is organized as follows: Section
3.1 describes our dataset in detail, Section 3.2 describes

how to achieve functional grasp, and Section 3.3 describes
the loss function used in our approach.

3.1. Dataset of Object-Hand Semantic Representa-
tion for Grasping

Many household objects are designed to be used by hu-
man hand, and to correctly use an object often requires us
to touch specific parts of this object, which we call the func-
tional area of the object. Meanwhile, the correct grasping
or manipulation is also inseparable from the cooperation of
the hand, which needs to use specific parts of the hand to
touch these functional areas [8], and then performs specific
actions. For example, as shown in Fig. 2(a), when opening a
bottle, most people will grasp the bottle with their left hand,
while the thumb, index finger and middle finger of the right
hand will firmly grasp the bottle cap. Based on this observa-
tion, we propose our semantic segmentation dataset, which
contains the interaction between the right hand and the ob-
ject when the object is manipulated. As for other situations,
such as the interaction between the left hand and the object
will be our future research work. The generating process of
the dataset is as follows.

We select 129 objects in 18 categories with clear us-
age from four commonly used object datasets, namely Big-
BIRD [55], KIT Object Models Database [25], YCB Bench-
marks [7], and Grasp Database [24], where meshes of var-
ious household objects are included. The 18 categories of
objects are electric drill, clamp, hammer, flashlights, bot-
tles, screwdriver, scissor, spatula, spray can, spray bottle,
banana, pitcher, camera, dumbbell, light bulb, pliers, nail

15743

(100,100,…,0001) (000,100,…,1000) (100,000,…,0100) (100,000,…,1000) (100,000,…,1000)

(100,000,…,1000) (100,100,…,0001) (000,100,…,1000) (100,000,…,1000) (111,111,…,0001) (100,000,…,0100)

(111,111,…,0001) (111,111,…,0001) (111,111,…,0001) (100,000,…,0001) (100,100,…,0001) (110,000,…,1000)

(000,100,…,1000)

Figure 3: A brief presentation of the segmentation of func-
tional areas and ‘touch code’ of 18 categories of objects in
our dataset.

gun, and stapler. We perform segmentation according to
functional parts of the objects. The functional parts are de-
termined either according to user’s manual of this object,
or by votes of 15 participants who are able-bodied males
and females between the ages of 20 and 65. To ensure the
accuracy and consistency of semantic segmentation of ob-
ject functional parts, two PhD students use the ’semantic-
segmentation-editor‘ software to annotate and check to-
gether. Finally, one segmentation scheme remains for one
task per object.

Specifically, to clearly express the grasping behavior be-
tween hand and object, as shown in Fig. 2, each func-
tional part is labeled with 16-bit ’touch code‘ indicating
whether it can be touched by corresponding hand part
(Fig. 2(c)) and 4-bit ’intention code‘ indicating four ac-
tion intentions of press, click, slide and firmly touch af-
ter contact. For example, the stapler shown in Fig. 2(b) is
segmented into the head (yellow), the base (red) and the
other parts (white). And the code of the stapler head is
‘100, 000, 000, 000, 000, 0|1000’, indicating that the robot
should touch the stapler head by its distal thumb, and then
perform a pressing operation. The 20-bit semantic code
is necessary and important for the dexterous hand to learn
to manipulation like human hands, because the first 16-bit
‘touch code’ can guide the dexterous hand to correctly touch
the functional area of the object, so as to guide the synthesis
of functional grasp, and the last 4-bit ‘intention code’ can
tell each hand part what post-grasp action needs to be per-
formed, so that the object can be used correctly. Therefore,
although this paper only discusses how to use ‘touch code’
to generate functional grasp, in order to facilitate subse-
quent research and ensure the integrity of the dataset, we an-
notate both ‘touch code’ and ‘intention code’ in the dataset.

In summary, our dataset describes the necessary condi-
tions for manipulating objects with intuitive segmentation
and concise and clear semantic touch code. As shown in

Fig. 3, there are 18 categories of objects, and the functional
areas of each object are segmented and annotated with 20-
bit semantic code.

3.2. Network structure

Functional grasp synthesis is a challenging research task
in robotics [5]. A good functional grasp means that the
dexterous hand needs to correctly touch the functional area
of the object, so as to facilitate to perform the post-grasp
action, such as using electric drill, the index finger should
touch the On/Off switch while other parts of hand holding
the drill handle. In this section, we will describe how to use
the 16-bit ‘touch code’ we annotated to guide the network
to generate the functional grasp of ShadowHand, without
laborious annotation of hand pose [6], nor to use the grasp
synthesis and feedback of the simulation software [36]. We
formulate the process of functional grasp synthesis as fol-
lows: given an object point cloud O, and the ‘touch code’
C, we train a model M which outputs the configurations of
ShadowHand to achieve functional grasp. The hand config-
urations include the angle of each joint (J), as well as the
spatial rotation (R) and translation (T) of the hand relative
to the object. The overall formulation is:

M : {O,C} ⇒ {J,R,T} (1)

As shown in Fig. 4, we concatenate the original point
cloud of the object with the 16-bit ‘touch code’ as the input
of the model. The input data first passes through the point
cloud feature extraction network built with kernel point con-
volution (KPConv) [56], which realizes the convolution op-
eration on the unordered point cloud by designing a spheri-
cal convolution kernel. Subsequently, the features extracted
by the point cloud feature extraction network are fed into
the fully connected layers, which outputs the hand con-
figurations{J,R,T}. To avoid our model from trapping in
local optimum, while improving the stability of the gen-
erated grasp, we pre-train the model with the grasp data
from [32, 33], which generates adequate and stable grasps
of ShadowHand with GraspIt! [37]. However, it is obvious
that pre-training can only ensure that the grasp generated by
the network is stable, which is far from the requirements of
functional grasp with the functional areas of the object to be
touched by specific parts of the dexterous hand.

To meet the basic requirement of functional grasp, we
propose the attraction loss (Lattraction), which matches
each functional area with the parts of the dexterous hand
that need to touch this functional area according to the 16-
bit ‘touch code’, and then minimizes the distance between
them. To make the 16-bit ‘touch code’ applicable to Shad-
owHand, we select 16 from the 21 links of ShadowHand
as shown in Fig. 5(a), which correspond to the 16 parts of
the human hand in Fig. 2(c). Then, in order to calculate the

15744

Langle

J, R, T Lattraction

Lrepulsion

Lself-collision

FK layer

Key points

Input Network

……

output Network output

Loss

Loss

J: joint angles

R: rotation

T: translation

Joint angles Key points

Strided Kpconv

Kpconv

Fully connected

J (x,y,z)

…

J

R，T

Points(3×n) Touch code(16×n)

(x1, y1, z1) (000,100,…,1000)

(x2, y2, z2) (000,100,…,1000)

… …

(xn, yn, zn) (000,000,…,0000)

Figure 4: The overall architecture of our functional grasp synthesis framework. The original point cloud of the object with
the 16-bit ‘touch code’ is fed into the network, which generates the configurations of the hand that conform to the functional
grasp under the guidance of four loss functions.

1

4

2

3
5 6

7 8 9

10 11 12

13 14 15

16

Distal Middle Proximal

(a) (b)

17

18

19

20
21

Figure 5: The 21 links of ShadowHand are marked as shown
in (a), and 1 to 16 links are selected that correspond to 16
parts of the human hand in Fig. 2. (b) shows the 16 key
points for calculating the loss function on the selected links.

distance, we select 16 keypoints of 16 hand links on the in-
ner surface of the palm as shown in Fig. 5(b), and represent
the distance between the link and the functional area by the
minimum distance between the link’s keypoint and the point
set of the object functional area. The necessary condition of
using these keypoints to calculate the distance is that their
spatial coordinates need to be obtained in real time during
the model training process. To this end, we use Pytorch [40]
to write a differentiable forward kinematics derivation (FK)
layer of ShadowHand, which can calculate the spatial coor-
dinates of each key point according to the dexterous hand
configurations{J,R,T}. A similar work of Tensorflow [1]
version can be seen in [58]. In this way, we can force the
hand links to close to corresponding functional area by min-
imizing Lattraction, which is the weighted sum of those dis-
tances between each link’s keypoint and its corresponding
functional area. However, due to the high degree of free-
dom of ShadowHand, the following problems may arise
when only Lattraction is used to constrain model to gener-
ate functional grasp: i) Those links that are not constrained
by Lattraction may appear anywhere. Such as opening a
bottle, Lattraction can only ensure that the distal thumb,
distal index finger and distal middle finger are on the bottle

cap, but the remaining links may appear inside the bottle; ii)
Lattraction cannot limit the generated joint angle of dexter-
ous hand, so they may exceed their motion limits, resulting
in an unreasonable hand shape; iii) Some functional areas
can be touched by multiple links at the same time, such as
bottle cap, so it may happen that multiple links approach the
same point, which leads to self-collision of the robot hand.

To solve the above three problems, we propose the fol-
lowing solutions respectively. For the first problem, we pro-
pose repulsion loss (Lrepulsion), which aims to keep each
link away from the part of the object that does not corre-
spond to this link. As shown in Fig. 4, while the switch
of the electric drill attracts the distal index finger through
Lattraction, it also repels the remaining hand links through
Lrepulsion. In this way, those links that are not constrained
by Lattraction will be constrained by Lrepulsion. Mean-
while, since all the links are on the same kinematic chain,
the hand pose can be basically constrained by the combina-
tion of attraction loss and repulsion loss.

For the second problem, because each joint of the robotic
hand has a limited range of motion, we propose angle loss
Langle) to keep the generated joint angle θn between its
lower bound θmin

n and upper bound θmax
n . As for the

third problem, it can be solved by keeping the links away
from each other, so that the self-collision avoidance loss
(Lself−collision) is proposed. The details of these four loss
functions are described below.

3.3. Loss Functions

As mentioned before, attraction loss (Lattraction) is the
weighted sum of the distances between the point set of
each object functional area and its corresponding link’s key-
points. In the training process, we force the hand links to
approach their corresponding functional areas by making
Lattraction close to 0. The Lattraction is defined as follow:

15745

Lattraction =

N∑
i=1

16∑
j=1

αj · dis (kj , oij)) (2)

where, in each training batch, N objects’ data are fed into
the model. αj is the weight determined by the importance
of each link. For example, the thumb is used the most in
daily manipulation, so we set a higher weight for it. And
dis (kj , oij) represents the minimum Euclidean distance be-
tween each link’ kepoints and the point set of its object
functional area, in which kj is the key point on the j-th
hand link, and oij is the point set of the functional area cor-
responding to the j-th hand link on the i-th object.

Repulsion loss (Lrepulsion) restricts the links that are not
constrained by Lattraction through exclusion. As shown in
the following formula:

Lrepulsion =

N∑
i=1

16∑
j=1

γj ·max

(
log

βj

dis (kj , õij) + ε
, 0

)
(3)

where γj is the weight for each link. The max function
and the threshold βj can realize that when the dis (kj , õij)
exceeds the threshold βj , the punishment for the j-th link
will be reduced to 0. And the dis (kj , õij) represents the
Euclidean distance between the j-th link’s key point kj and
the part õij of the i-th object that the link needs to stay away
from. Here, we adopt a logarithmic (log) function to punish
this distance based on its properties that the punishment gets
stronger as the distance diminishes, while the punishment
drops rapidly as the distance slightly increases. In this way,
it can not only play a good repulsive effect, but also help
to balance with Lattraction, so as not to repel the hand far
away from the object. Besides, ε is a small positive number
to prevent the denominator from being 0.

Angle loss (Langle) is a linear punishment for the an-
gle θn generated by the model, keeping it between its lower
bound θmin

n and upper bound θmax
n . The expression of an-

gle loss is as follow, where N is the total number of joints:

Langle =
N∑

n=1

max (θn − θmax
n , 0) +max

(
θmin
n − θn, 0

)
(4)

The function of the self-collision avoidance loss
(Lself−collision) is to keep the links away from each other,
and the expression of which is as follow:

Lself collision =

16∑
i=1

16∑
j=1

µij ·max (δij − dis (ki, kj) , 0) (5)

where δij is the distance threshold to ensure that when the
Euclidean distance between the ith and jth links exceeds
δij , punishment won’t occur. And µij is the weight.

Finally, attraction loss, repulsion loss, angle loss and
self-collision avoidance loss are linearly combined into the
final loss L, which is minimized in the training process:

L =λ1 · Lattraction + λ2 · Lrepulsion

+ λ3 · Langle + λ4 · Lself collision

(6)

4. Results
As mentioned in Section 3.2, we take the semantic infor-

mation of the object-hand interaction as a guide, and lead
the model to generate functional grasp for the dexterous
hand through well-designed pre-training and loss functions.
This section will evaluate our results through experiments.
After a brief introduction of the experimental setup, we will
present how our proposed loss functions lead the model to
generate functional grasp step by step, and the impact of
pre-training on the final generated grasp in section 4.1. In
Section 4.2, we will further discuss the performance and ex-
isting problems of the trained grasp synthesis model in the
training set, as well as show the grasp results generated on
the test set after connecting the semantic segmentation net-
work and grasp synthesis network.

We split the set of 129 labeled objects into a 104 train-
ing set and a 25 testing set. All experiments are carried
out on a desktop with an Intel® CoreTM i7-7700 CPU @
3.60GHz × 8, 32GB RAM, and an NVIDIA® Geforce GTX
1080 graphics card with 8GB memory, on which training
the model presented in this paper takes above 24 hours.

4.1. Ablation Studies

In section 3.2, we describe in detail the role of pre-
training and the four loss functions including attraction loss,
repulsion loss, angle loss and self-collision avoidance loss.
Next, we will verify the contribution of each component
through experiments.

Fig. 6 shows some functional grasps generated by con-
straining the network with different combinations of 4 loss
functions after pre-training. The first row of images shows
the segmented parts of each object for grasp, the second row
of images presents the results of using only Lattraction. It
can be seen that the hand links are trying to get close to
the functional areas of the object, such as grasping stapler
in the first image of Fig. 6 with distal thumb pointing to the
head of the stapler while the distal of the remaining four fin-
gers are close around the bottom of the stapler. However, as
analysed in section 3.2, those links that are not constrained
by Lattraction will run into the object, such as most part of
the hand entering the interior of the stapler. With the addi-
tion of Lrepulsion, as shown in the third row of Fig. 6, the
hand basically run out of the object. But it can be seen that
the hand shape is very strange. For example, the grasp of
pliers on the fourth image of this row, the little finger has
unreasonable joint angles, and several links collide. With
the addition of Langle and Lself−collision in sequence, as
shown in the fourth and fifth rows, it can be seen that the

15746

attraction

repulsion

angle

self-collision

attraction

attraction

repulsion

angle

attraction

repulsion

Figure 6: The first row shows the function areas of each
object, while the second to the fifth rows show the gen-
erated grasp results of the network after adding attraction
loss, repulsion loss, angle loss and self-collision avoidance
loss these four loss functions in turn.

w/o

pre-training

with

pre-training

Figure 7: The comparison of the grasp results with or with-
out pre-training.

joint angles of the dexterous hand in the fourth row are
within a reasonable range, and the hands in the fifth row
do not have self-collision. Meanwhile, the hand poses in
the last row satisfy the expected functional grasps. For ex-
ample, to use the flashlight in the fifth column, the distal
thumb presses the switch, while the remaining links grasp
the flashlight body, or to use the camera in seventh column,
the distal thumb presses the function button, and the distal
index finger presses the shutter button at the same time.

For pre-training, which is used to initialize the network
with good parameter and enable the network to generate
more stable grasps, we use two numerical metrics to illus-
trate its function. The first is the average distance between
the object function areas and their corresponding links’ key
points. The smaller the distance is, the closer the hand link
to its functional area. We abbreviate this distance as Mean
DoC. The second is QM (Grasp Quality Metrics) calculated
by GraspIt! [37], which refers to the ability of a grasp to
resist interference from external forces. When the grasp is
stable, the QM value is between 0 and 1, and the higher the
value is, the more robust the grasp is. When the grasp is
unstable, the value is -1. Specifically, we use QM>0 to rep-
resent the rate of stable grasp, and the average of all stable

Pre-train Dataset Mean Doc(cm) QM>0 Mean QM

without Train 1.24 65.05% 0.032
Test 1.73 60.0% 0.029

with Train 0.62 81.73% 0.081
Test 1.06 80.0% 0.059

Table 1: Mean DoC is the average distance between the
object function areas and their corresponding links’ key
points, while the smaller the Mean DoC is, the closer the
hand links to their functional areas; QM is used to measure
the robustness of a grasp. When QM>0, the grasp is stable,
and the higher the QM value, the more robust the grasp is.
Here, we use QM>0 to represent the rate of stable grasp
and Mean QM to measure the stability of all grasps.

grasp’s QM (Mean QM) to represent the overall stability.
As shown in Tab. 1, it can be seen from Mean DoC that

the average distance between the functional area and their
corresponding links becomes smaller after pre-training.
This is because after pre-training, as shown in Fig. 7, the
dexterous hand is more inclined to contact the surface of
the object, which alleviates the situation of penetrating or
staying away from the object. From QM>0 and mean QM,
we can see that the model can generate more and better sta-
ble grasps after pre-training. The above observations are
consistent with our original intention of using pre-training.

4.2. Experimental Results and Discussion

In the section 4.2, we prove that the semantic segmen-
tation of our annotation can effectively guide the model to
generate the functional grasp of dexterous hand, and also
prove that the proposed constraint functions and training
methods have their own important roles. In this section,
we will further analyze the results generated by our model.

As mentioned earlier, our model is trained without ac-
curate hand annotation of functional grasp. Instead, it is
trained by our proposed dataset and four well-designed loss
to make the model try to fit the correct functional grasp.
Therefore, this section first analyzes the performance of the
network on the training set, and then discusses whether the
grasp generation network can be generalized to objects that
have not been seen by the grasp network and whose func-
tional areas and semantic code are predicted by the segmen-
tation network.

Fig. 8 shows some representative results on the train-
ing set. It is obviously that for most objects, the functional
grasps we generate are in line with humans’ habits of ma-
nipulating these objects. For example, the first image in
Fig. 8 shows the use of nail gun. The grasp in this fig-
ure is very helpful to the execution of the post-grasp ac-
tion to complete the binding task. Compared with the re-
search work aiming at the force closure of dexterous hand,
as shown in Fig. 9, it can be found that our method explic-

15747

Bad

Good

Figure 8: The quality results of functional grasp about the
object in training set.

Graspit！

Ours

Figure 9: Comparisons between GraspIt! and ours.

itly directs the dexterous hand to touch the functional areas
of the object. For example, when using the pliers, as shown
in the first image in the second row of Fig. 8, our method
can ensure that the two handles of the pliers can be correctly
touched by different fingers. In contrast, the hand in Fig. 9
grasps the head of the pliers.

However, there are still some problems in our method,
such as grasping the bulb in the first image in the last row of
Fig. 8. Although all the fingertips are on the bulb, the bulb
thread is facing the palm of the hand, so the operation of
installing the bulb cannot be completed. To solve this prob-
lem, we plan to further constrain the approaching direction
of dexterous hand in future work.

In order to further verify the practicability of our pro-
posed functional grasp synthesis model, we input the ob-
jects of test set into the semantic segmentation network to
obtain the predicted functional areas and ‘touch code’. Then
the prediction results of the segmentation network are fed
into the trained grasp synthesis model to generate the final
grasp results. As shown in Fig. 10, from left to right, each
image shows the object function area we annotated, the ob-

Good

Bad

Figure 10: The quality results of functional grasp. Images
in the 1st column show the semantic segmentation labels
of the objects in test set, while that in the 2nd and 3rd illus-
trate the predicted semantic segmentation results and grasps
generated from the results respectively.

ject function area predicted by the segmentation network,
and the final grasp result generated by the above process.
From the first three lines, it can be found that the grasp gen-
eration network can still synthesize good functional grasps
for objects with good segmentation results, while from the
last line, it can be concluded that the quality of the seg-
mentation results directly determines whether the functional
grasp can be generated.

5. Conclusion and Future Work

To make robots manipulate objects like human beings,
we accurately segment the functional area of the object for
grasping, and annotate touch code for each functional area
to guide the dexterous hand to complete the functional grasp
and post-grasp task. The rich experimental results show that
our proposed grasp synthesis framework can teach dexter-
ous hands to achieve functional grasp. For some of the ex-
isting problems, we have also described them in detail, and
will solve them by enriching the annotation of the dataset
or proposing new constraint function in future work. Ad-
ditionally, we also plan to use annotated ‘intention code’ to
guide the dexterous hand to perform the post-grasp action
for completing manipulation task in future work, so as to
truly enable the robot to manipulate objects like a human.

Acknowledgments

This paper was supported by the National Natural Sci-
ence Foundation of China (No. U1708263, 61873046).

15748

References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation
({OSDI} 16), pages 265–283, 2016. 5

[2] Keni Bernardin, Koichi Ogawara, Katsushi Ikeuchi, and
Ruediger Dillmann. A sensor fusion approach for recog-
nizing continuous human grasping sequences using hidden
markov models. IEEE Transactions on Robotics, 21(1):47–
57, 2005. 2

[3] Antonio Bicchi and Vijay Kumar. Robotic grasping and
contact: A review. In Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No. 00CH37065),
volume 1, pages 348–353. IEEE, 2000. 2

[4] Samarth Brahmbhatt, Cusuh Ham, Charles C. Kemp, and
James Hays. Contactdb: Analyzing and predicting grasp
contact via thermal imaging. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 1, 2

[5] Samarth Brahmbhatt, Ankur Handa, James Hays, and Dieter
Fox. Contactgrasp: Functional multi-finger grasp synthesis
from contact. arXiv preprint arXiv:1904.03754, 2019. 1, 2,
4

[6] Samarth Brahmbhatt, Chengcheng Tang, Christopher D
Twigg, Charles C Kemp, and James Hays. Contactpose: A
dataset of grasps with object contact and hand pose. arXiv
preprint arXiv:2007.09545, 2020. 1, 2, 4

[7] Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srini-
vasa, Pieter Abbeel, and Aaron M Dollar. Benchmarking
in manipulation research: The ycb object and model set and
benchmarking protocols. arXiv preprint arXiv:1502.03143,
2015. 3

[8] Umberto Castiello. The neuroscience of grasping. Nature
Reviews Neuroscience, 6(9):726–736, 2005. 3

[9] Enric Corona, Guillem Alenya, Antonio Gabas, and Carme
Torras. Active garment recognition and target grasping point
detection using deep learning. Pattern Recognition, 74:629–
641, 2018. 2

[10] Enric Corona, Albert Pumarola, Guillem Alenya, Francesc
Moreno-Noguer, and Grégory Rogez. Ganhand: Predicting
human grasp affordances in multi-object scenes. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5031–5041, 2020. 1, 2

[11] Hao Dang and Peter K Allen. Semantic grasping: Planning
robotic grasps functionally suitable for an object manipula-
tion task. In 2012 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 1311–1317. IEEE, 2012.
2

[12] Renaud Detry, Jeremie Papon, and Larry Matthies. Task-
oriented grasping with semantic and geometric scene under-
standing. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3266–3273.
IEEE, 2017. 2

[13] Staffan Ekvall and Danica Kragic. Learning and evaluation
of the approach vector for automatic grasp generation and
planning. In Proceedings 2007 IEEE International Confer-
ence on Robotics and Automation, pages 4715–4720. IEEE,
2007. 2

[14] Chiara Gabellieri, Franco Angelini, Visar Arapi, Alessandro
Palleschi, Manuel G Catalano, Giorgio Grioli, Lucia Pallot-
tino, Antonio Bicchi, Matteo Bianchi, and Manolo Garabini.
Grasp it like a pro: Grasp of unknown objects with robotic
hands based on skilled human expertise. IEEE Robotics and
Automation Letters, 5(2):2808–2815, 2020. 2

[15] Oliver Glauser, Shihao Wu, Daniele Panozzo, Otmar
Hilliges, and Olga Sorkine-Hornung. Interactive hand pose
estimation using a stretch-sensing soft glove. ACM Transac-
tions on Graphics (TOG), 38(4):1–15, 2019. 2

[16] Abhishek Gupta, Clemens Eppner, Sergey Levine, and Pieter
Abbeel. Learning dexterous manipulation for a soft robotic
hand from human demonstrations. In 2016 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems
(IROS), pages 3786–3793. IEEE, 2016. 1, 2

[17] Henning Hamer, Juergen Gall, Thibaut Weise, and Luc
Van Gool. An object-dependent hand pose prior from sparse
training data. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 671–678.
IEEE, 2010. 1

[18] Henning Hamer, Konrad Schindler, Esther Koller-Meier, and
Luc Van Gool. Tracking a hand manipulating an object. In
2009 IEEE 12th International Conference on Computer Vi-
sion, pages 1475–1482. IEEE, 2009. 1

[19] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. Honnotate: A method for 3d annotation of hand
and object poses. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3196–3206, 2020. 1

[20] Ankur Handa, Karl Van Wyk, Wei Yang, Jacky Liang,
Yu-Wei Chao, Qian Wan, Stan Birchfield, Nathan Ratliff,
and Dieter Fox. Dexpilot: Vision-based teleoperation of
dexterous robotic hand-arm system. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 9164–9170. IEEE, 2020. 2

[21] Alexander Herzog, Peter Pastor, Mrinal Kalakrishnan, Lu-
dovic Righetti, Tamim Asfour, and Stefan Schaal. Template-
based learning of grasp selection. In 2012 IEEE Interna-
tional Conference on Robotics and Automation, pages 2379–
2384. IEEE, 2012. 2

[22] Martin Hjelm, Carl Henrik Ek, Renaud Detry, and Danica
Kragic. Learning human priors for task-constrained grasp-
ing. In International Conference on Computer Vision Sys-
tems, pages 207–217. Springer, 2015. 2

[23] Divye Jain, Andrew Li, Shivam Singhal, Aravind Ra-
jeswaran, Vikash Kumar, and Emanuel Todorov. Learning
deep visuomotor policies for dexterous hand manipulation.
In 2019 International Conference on Robotics and Automa-
tion (ICRA), pages 3636–3643. IEEE, 2019. 1, 2

[24] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. Lever-
aging big data for grasp planning. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pages 4304–4311. IEEE, 2015. 3

15749

[25] Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. The
kit object models database: An object model database for
object recognition, localization and manipulation in service
robotics. The International Journal of Robotics Research,
31(8):927–934, 2012. 3

[26] Mia Kokic, Danica Kragic, and Jeannette Bohg. Learning
task-oriented grasping from human activity datasets. IEEE
Robotics and Automation Letters, 5(2):3352–3359, 2020. 2

[27] Marek S Kopicki, Dominik Belter, and Jeremy L Wyatt.
Learning better generative models for dexterous, single-view
grasping of novel objects. The International Journal of
Robotics Research, 38(10-11):1246–1267, 2019. 2

[28] Robert Krug, Dimitar Dimitrov, Krzysztof Charusta, and
Boyko Iliev. On the efficient computation of independent
contact regions for force closure grasps. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 586–591. IEEE, 2010. 1

[29] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning
for detecting robotic grasps. The International Journal of
Robotics Research, 34(4-5):705–724, 2015. 2

[30] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz,
and Deirdre Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-scale data col-
lection. The International Journal of Robotics Research,
37(4-5):421–436, 2018. 2

[31] Hui Li, Jindong Tan, and Hongsheng He. Magichand:
Context-aware dexterous grasping using an anthropomorphic
robotic hand. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 9895–9901. IEEE,
2020. 2

[32] Min Liu, Zherong Pan, Kai Xu, Kanishka Ganguly, and Di-
nesh Manocha. Generating grasp poses for a high-dof grip-
per using neural networks. arXiv preprint arXiv:1903.00425,
2019. 2, 4

[33] Min Liu, Zherong Pan, Kai Xu, Kanishka Ganguly, and Di-
nesh Manocha. Deep differentiable grasp planner for high-
dof grippers. arXiv preprint arXiv:2002.01530, 2020. 2, 4

[34] Qingkai Lu, Kautilya Chenna, Balakumar Sundaralingam,
and Tucker Hermans. Planning multi-fingered grasps as
probabilistic inference in a learned deep network. In
Robotics Research, pages 455–472. Springer, 2020. 1

[35] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey,
Richard Doan, Xinyu Liu, Juan Aparicio Ojea, and Ken
Goldberg. Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics. arXiv
preprint arXiv:1703.09312, 2017. 2

[36] Priyanka Mandikal and Kristen Grauman. Dexterous robotic
grasping with object-centric visual affordances. arXiv
preprint arXiv:2009.01439, 2020. 1, 2, 4

[37] Andrew T Miller and Peter K Allen. Graspit!: A versatile
simulator for grasp analysis. In in Proc. of the ASME Dy-
namic Systems and Control Division. Citeseer, 2000. 1, 2, 4,
7

[38] Anh Nguyen, Dimitrios Kanoulas, Darwin G Caldwell, and
Nikos G Tsagarakis. Detecting object affordances with con-
volutional neural networks. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
2765–2770. IEEE, 2016. 2

[39] Van-Duc Nguyen. Constructing force-closure grasps. The In-
ternational Journal of Robotics Research, 7(3):3–16, 1988.
1

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019. 5

[41] Lerrel Pinto and Abhinav Gupta. Supersizing self-
supervision: Learning to grasp from 50k tries and 700 robot
hours. In 2016 IEEE international conference on robotics
and automation (ICRA), pages 3406–3413. IEEE, 2016. 2

[42] Domenico Prattichizzo, Monica Malvezzi, Marco Gabiccini,
and Antonio Bicchi. On the manipulability ellipsoids of un-
deractuated robotic hands with compliance. Robotics and
Autonomous Systems, 60(3):337–346, 2012. 1

[43] Markus Przybylski, Tamim Asfour, and Rüdiger Dillmann.
Planning grasps for robotic hands using a novel object rep-
resentation based on the medial axis transform. In 2011
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1781–1788. IEEE, 2011. 1

[44] Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra
Malik. State-only imitation learning for dexterous manipu-
lation. arXiv preprint arXiv:2004.04650, 2020. 1, 2

[45] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giu-
lia Vezzani, John Schulman, Emanuel Todorov, and Sergey
Levine. Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017. 1, 2

[46] Maximo A Roa, Max J Argus, Daniel Leidner, Christoph
Borst, and Gerd Hirzinger. Power grasp planning for anthro-
pomorphic robot hands. In 2012 IEEE International Con-
ference on Robotics and Automation, pages 563–569. IEEE,
2012. 1

[47] Máximo A Roa and Raúl Suárez. Computation of indepen-
dent contact regions for grasping 3-d objects. IEEE Trans-
actions on Robotics, 25(4):839–850, 2009. 1

[48] Alberto Rodriguez, Matthew T Mason, and Steve Ferry.
From caging to grasping. The International Journal of
Robotics Research, 31(7):886–900, 2012. 1

[49] Javier Romero, Hedvig Kjellstrom, and Danica Kragic.
Modeling and evaluation of human-to-robot mapping of
grasps. In 2009 International Conference on Advanced
Robotics, pages 1–6. IEEE, 2009. 2

[50] Carlos Rosales, Raúl Suárez, Marco Gabiccini, and Antonio
Bicchi. On the synthesis of feasible and prehensile robotic
grasps. In 2012 IEEE International Conference on Robotics
and Automation, pages 550–556. IEEE, 2012. 1

[51] Jungwon Seo, Soonkyum Kim, and Vijay Kumar. Planar,
bimanual, whole-arm grasping. In 2012 IEEE International
Conference on Robotics and Automation, pages 3271–3277.
IEEE, 2012. 1

[52] Lin Shao, Fabio Ferreira, Mikael Jorda, Varun Nambiar,
Jianlan Luo, Eugen Solowjow, Juan Aparicio Ojea, Ous-
sama Khatib, and Jeannette Bohg. Unigrasp: Learning a uni-
fied model to grasp with multifingered robotic hands. IEEE
Robotics and Automation Letters, 5(2):2286–2293, 2020. 2

15750

[53] Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav
Gupta. Multiple interactions made easy (mime): Large scale
demonstrations data for imitation. In Conference on robot
learning, pages 906–915. PMLR, 2018. 2

[54] Pratyusha Sharma, Deepak Pathak, and Abhinav Gupta.
Third-person visual imitation learning via decoupled hierar-
chical controller. arXiv preprint arXiv:1911.09676, 2019. 2

[55] Arjun Singh, James Sha, Karthik S Narayan, Tudor Achim,
and Pieter Abbeel. Bigbird: A large-scale 3d database of
object instances. In 2014 IEEE international conference
on robotics and automation (ICRA), pages 509–516. IEEE,
2014. 3

[56] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6411–6420, 2019. 4

[57] Nikolaus Vahrenkamp, Leonard Westkamp, Natsuki Ya-
manobe, Eren E Aksoy, and Tamim Asfour. Part-based grasp
planning for familiar objects. In 2016 IEEE-RAS 16th In-
ternational Conference on Humanoid Robots (Humanoids),
pages 919–925. IEEE, 2016. 2

[58] Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak
Lee. Neural kinematic networks for unsupervised motion re-
targetting. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 8639–8648,
2018. 5

[59] Yuting Ye and C Karen Liu. Synthesis of detailed hand ma-
nipulations using contact sampling. ACM Transactions on
Graphics (TOG), 31(4):1–10, 2012. 1

[60] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey
Levine, and Vikash Kumar. Dexterous manipulation with
deep reinforcement learning: Efficient, general, and low-
cost. In 2019 International Conference on Robotics and Au-
tomation (ICRA), pages 3651–3657. IEEE, 2019. 1, 2

15751

