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Abstract

Recently, some works found an interesting phenomenon
that adversarially robust classifiers can generate good im-
ages comparable to generative models. We investigate
this phenomenon from an energy perspective and provide
a novel explanation. We reformulate adversarial example
generation, adversarial training, and image generation in
terms of an energy function. We find that adversarial train-
ing contributes to obtaining an energy function that is flat
and has low energy around the real data, which is the key
for generative capability. Based on our new understanding,
we further propose a better adversarial training method,
Joint Energy Adversarial Training (JEAT), which can gen-
erate high-quality images and achieve new state-of-the-art
robustness under a wide range of attacks. The Inception
Score of the images (CIFAR-10) generated by JEAT is 8.80,
much better than original robust classifiers (7.50). In par-
ticular, we find that the robustness of JEAT is better than
other hybrid models.

1. Introduction

Adversarial training can improve the robustness of a
classifier against adversarial perturbations imperceptible to
humans. Unlike a normal classifier, an adversarially robust
classifier can generate good images by gradient descending
the cross-entropy loss from random noises. Recently, some
works discovered this phenomenon, and the quality of gen-
erated images is even comparable to GANs [21, 7]. The
generative capability of an adversarially robust model from
a classification task is interesting and surprising. However,
it is unclear why an adversarially trained classifier can gen-
erate natural images. As image generation is a crucial topic,
understanding the generative capability of adversarially ro-
bust classifiers could be inspiring and can give hints to many
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other generative methods.

In this paper, we aim to understand the generative capa-
bility of an adversarially trained classifier and further im-
prove the quality of generated images from the energy per-
spective. For Energy-Based Model (EBM) [10], it first gen-
erates low energy samples from random noises, then in-
creases the energy of generated samples by updating model
parameters. In this way, EBM can obtain a good energy
function that is smooth and has low energy near the real
data, as illustrates in Fig. 1(a). Thus, EBM can generate
good images by sampling with Langevin Dynamics with the
good energy function [5].

We show that adversarially trained classifiers can also
obtain such a good energy function, which is flat and has
low energy near the real data. This implies the generative
capability of the adversarially robust classifier. For a clas-
sifier, we can define energy functions on the output logits.
We reformulate the original adversarial training and image
generation in terms of energy functions. In fact, the adver-
sarial examples are high-energy samples near the real data,
and adversarial training is trying to decrease the energy of
these examples by updating model parameters. This proce-
dure can also help us to learn a flat energy function with low
energy near the real data, as illustrated in Fig. 1(b). More-
over, based on our understanding, we find another interest-
ing phenomenon that a normal classifier is able to generate
images if we add random noise to images during training.
Though injecting noises to training data can generate high-
energy samples, the perturbation direction may not be ef-
ficient compared with the adversarial attack. Thus, larger
noise is needed in training for generating high-energy sam-
ples.

The cross-entropy loss can be expressed as the differ-
ence between Fy(z,y) and Ey(x). We show that Ey(z,y),
which is flat and has lower energy around the real data,
plays a key role in the conditional generation task. How-
ever, making the energy Ey(x,y) flat and low near the real
data is just a by-product of original adversarial training.
Thus we propose Joint Energy Adversarial Training (JEAT)
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Figure 1. EBM training and adversarial training make the energy functions smooth near the real data in different ways. (a) EBM starts from
random samples, then moves along the direction of energy descent for fixed steps to obtain low energy samples. During optimization, the
energy of these points is increased. Thus EBM obtains a smooth energy region around real data. (b) Adversarial examples are high-energy
samples around real data. Adversarial training decreases the energy of adversarial examples by updating model parameters, thus obtains a

flat region around real data.

to directly optimize the Fy(z,y). We generate adversarial
examples by directly increasing the Ey(z,y) as Eq. (18)
and update model parameters by maximizing the likelihood
of joint distribution pg(z,y) as Eq. (19). We show that
JEAT further improves the quality of the generated images.

The main contributions of our paper are summarized be-
low:

e We propose a novel explanation of the image gener-
ation capability of a robust classifier from an energy
perspective.

e We find the generative capability of normal classifiers
with injecting noise in the training process and explain
it from the energy point of view.

e We propose a training algorithm JEAT from an energy
perspective that improves image generative capability.

2. Preliminaries
2.1. Adversarial Training

Adversarial training, first proposed in [8], can effectively
defend against adversarial attacks by solving a bi-level min-
max optimization problem [18]. It can be formulated as:

ming B, )~p[L(x + 6%, y;0)], !

§* = argmax|s| < L(x+9d,y;0), (L
where y is the ground-truth label of the input x, §* denotes
the adversarial perturbation added to x, £ denotes the loss
function, [|-[|,, denotes the £,-norm that constrains the per-
turbated sample in an £,-ball with radius € centered at .

The ¢, adversarial perturbation is usually approxi-
mately solved by the fast gradient sign method (FGSM) [8]
and projected gradient descent (PGD) [18]. For FGSM at-
tacks d, takes the form:

0p = € Sign(vm‘c(xv Y; 9))7 2

where sign is the sign function. PGD attack is a kind of
iterative variant of FGSM which generates an adversarial
sample starting from a random position in the neighborhood
of the clean image. PGD can be formulated as:

{ Ty =Tp—1+0" Sign(vmnf1£<xnfla Y; 0))7 (3)
Xy = clip(Tn,xo — €,T0 + €),

where z is a clean image and 7 is the perturbation step.

2.2. Image Generation of Robust Model

Generating images with an adversarially trained classi-
fier is first raised by Santurkar, Madry, etc. [20] where
they demonstrate that a robust classifier alone suffices to
tackle various image synthesis tasks such as generation. For
a given label y, image generation minimizes the loss £ of
label y by:

v =x— 13-V L(x,y;0)+ /N 4)

Starting from sample zo ~ N(uy,%,) where p, =
E,p,,(2) and 5, = Equp, (2 — p,)" (x - p,)). we
can obtain a better image by minimizing the loss £. Some
simple improvements such as choosing a more diverse dis-
tribution to start with could further improve the quality of
generated images [20]. However, it is not the focus of this

paper.
2.3. Energy Based Model

Energy Based Models [16, 10] show that any probability
density p(x) for x can be expressed as

exp(—Ep(z))

Z ; ®)

po(z) =

where Fy(x) represents the energy of = and is modeled by
neural network, Zyg = [exp(—Ey(z))dz is the normal-
izing factor parameterized by 6 also known as the parti-
tion function. The optimization of the energy-based model
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Figure 2. Energy contour of different models. (a) The energy Fg(z,y) contour of a naturally trained model; (b) The energy contour of an
adversarially trained model; (c) The energy contour of PreJEAT (ours); (d) The energy contour of JEAT (ours). Darker colors in the plots
represent lower energy values. The blue star point in the center of each figure is a chosen real image from CIFAR-10. We perturb the image

in two random directions to get the energy landscape.

is through maximum likelihood learning by minimizing
L (0) = Egopp, [— log pg(z)]. The gradient is [5]:

VoLur(0) = Eptmpp[VoEo(a)]~Ep-np, [VoEo(z7)].
(6)
Because sampling from pg is not feasible for an EBM,
Langevin Dynamics is commonly used to approximately
find samples from py [11]. Thus, EBM training usually con-
tains two stages: approximately generating samples from
pp by Langevin Dynamics along the direction of energy de-
scent and optimizing model parameters to increase the en-
ergy of these samples and decrease the energy of real sam-
ples by SGD. In this way, as illustrated in Fig. 1 (a), EBM
could obtain a smooth energy function around real data and
generate samples through Langevin Dynamics.
From energy perspective, we can also define py(z,y) as

follows: (—Bo(z.)
exp(—Ep(z,
pola,y) = = m )
Zg
where Zy = J > exp(—Eg(z,y))dz. Thus we also get

po(y|z) expressefil by Ey(x) and Fy(z,y):
) = po(x,y)  exp(—Ey(z,y)) - Zo
(yle) = @) on(E(e) By (8)

2.4. Sampling with Langevin Dynamics

Using V. log(p(x)), Langevin Dynamics could generate
samples from density distribution p(x). The process starts
from an initial point Z( from a prior distribution 7 and re-
cursively updates x by:

Bo=F o+ gvm log(p(F1-1)) + /e, (9)

where € ~ N(0, ) and 7 is a fixed step size. Whenn — 0
and T' — oo, & is exactly an sample from p(z) under some
condition [31]. If we want to sample from py(z, y) where y
is a certain label, we could use Eq. (9) as well. Based on the
energy framework as Eq. (7), we have V, log(pg(x,y)) =
—V.FEy(z,y). Hence the sampling process becomes:

gv@_lE (#-1,9) + Ve (10)

Ty = Tp—1 —

3. Energy Perspective on Robust Classifier
3.1. Energy Perspective on Adversarial Training

We denote f(+;0) as a classification neural network pa-
rameterized by 6. Let x be a sample. Then f(z; 8)[k] repre-
sents the k" output of the last layer and we define pg(y|z)

as:
polylz) = exp(f(2;0)[y])
> hey exp(f(x;0)[k])
which resembles Boltzmann distribution, and n represents

total possible classes. From Eq. (8) and (11), we define two
energy functions as follows:

{ o(z,y) = —log(exp(f(z;0)[y])),
By (z) = —log(3— 1eXp( (; 0)[K]))-

From Eq. (12), we have Zg = Zp . Furthermore, if the clas-
sification loss function is cross-entropy loss, it could also be
expressed as:

(1)
12)

L(z,y;0) = Eg(x,y) — Eg(x). (13)

In original adversarial training as in [18, 32, 24], by Fast
Gradient Sign Method, adversarial example could be found
by

Ey(z))), (14

which is the direction of gradient ascent of loss defined in
Eq. (13). The direction of adversarial perturbation relates to
not only Ey(x,y) but also Ey(z). And in original adversar-
ial training, the optimization process aims to decrease the
loss in Eq. (13) by updating model parameters.

As we mentioned in Sec. 2.3, a good energy function
Ey(z,y) which is smooth and has low energy around real
data is the key factor for generating good images for a given
label y. We define the change of energy Ey(x,y) after ad-
versarial attack and after optimization as:

{ AZEQ (‘7;7 y)
AQEG (CC, y)

Taay = T + 1 - sign(V(Eg(z,y) —

E6‘ (xoria y)a

— Ey (madva y)v
(15)

= E@ (xadva y) -
= Eaupdated (xadva y)
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Figure 3. We illustrate the changes of energy in original adversarial training [18] on CIFAR-10 in 50 epochs (model has converged). The
center points of the tags represent the mean value and the lengths represent the variance. (a) Adversarial examples increase the energy
Ey(z,y) as Ay FEg(x,y)>0 during the training. The energy Fy(x,y) of adversarial examples decrease after updating parameters as
AgEy(x,y)<0 during the training. (b) The value of AgFy(x) fluctuates around zero, sometimes positive and sometimes negative. Thus

Ey(x) has not been well optimized in the classification task.

where Eg(2 a4y, y) is the energy of 244, given label y before
updating parameters, Eg(Zo;, y) is the energy of z,,; given
label y before updating parameters, and Ep,,,,.,..(Tadv, ¥)
is the energy of .4, given label y after updating parame-
ters. The definition of A, Fy(z) and AgFEy(z) are similar
in (15) with removing y.

As illustrated in Fig. 3 (a), adversarial attacks generate
high-energy adversarial examples, and then the energy of
adversarial examples is decreased by updating model pa-
rameters. Compared to EBM, adversarial training flattens
the energy region around real data in a way different from
EBM training. Adversarial training finds adversarial exam-
ples with high energy Fy(z,y) near the data and then de-
creases the energy of those samples by updating model pa-
rameters. Noted that, in EBM, sampling from py(z,y) by
Langevin Dynamics follows the direction of energy descent,
which is the opposite direction of adversarial examples. As
illustrated in Fig. 1 (b), adversarial training can obtain a flat
energy function around real data.

We illustrate energy Fy(x, y) contours in Fig. 2 for a nor-
mal classifier and an adversarially trained classifier. From
Fig. 2 (a), the energy function around the center is sharp
for a normal classifier, and the energy of the real data is
high. Because the low-energy region deviates from the cen-
ter in a normal classifier, the generated images along the
direction of energy descent are likely to fall into a region
far away from the real data, which would not have good
quality. For a robust classifier, the energy function near the
center is smoother and lower, as shown in Fig. 2 (b).

Image generation by a robust classifier is introduced in
Sec. 2.2, if we transform the loss function to energy ex-
pression as Eq. (13), the generating procedure of images
becomes:

v =x— 13-V (Eo(x,y) — Eg(x)) + /7€, (16)
where € ~ A(0, 1) and 7 is step size. The term Fy(z,y) —
Ey(x) in Eq. (16) implies that the generation iterations
are related to both the energy of Ey(x,y) and the energy
of Ep(x). By exploring low energy region of Ey(x,y),
which corresponds to high probability py(z, y) region given

constant normalizing factor from Eq. (7), we could ob-
tain a good sample from high probability pg(x,y) region.
Minimizing Fy(z,y) contributes to maximizing pg(z, y) to
generate images corresponding to the label y as shown in
Eq. (10), but the energy of Ey(x) is irrelevant to label y.
As illustrated in Fig. 3 (b), Ey(z) has not been well opti-
mized in the classification task, which may introduce label-
independent noise. Thus, Fy(x) may be a factor restrict-
ing the generative capability of the robust classifier, and we
could drop Ey(x) while only using Ey(x,y) as:
2 Va(Eo(x,y)) + Vire.

/
=T =

5 A7)

Eq. (17) is closely relate to sampling from Langevin Dy-
namics as Eq. (10). Approaching low energy region of
Ey(x,y) is equivalent to approaching the high probability
region of py(x,y). As shown in Fig. 4(a) and (b), using
Eq. (17) gives better generated images than using Eq. (16).

Figure 4. Given the label ship, the images generated by different
methods. (a) shows ten images generated by original robust clas-
sifier using Eq. (16). (b) shows ten images generated by original
robust classifier using Eq. (17). (c) shows ten images generated by
robust classifier trained with adversarial examples got by Eq. (18)
using Eq. (17).

3.2. Endowing Generative Capability to Normal
Classifier

As analyzed before, we can generate high-energy sam-
ples from real data and reduce the energy of these samples
during the optimization process to obtain a classifier with
generative capability. The process of optimizing the energy
Ey(x,y) to be flat and low around real data contributes to
generating good images. Adversarial training follows the
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Bird

(a)Trained with big noise. ~ (b)Trained with medium noise. (c)Trained with small noise.

Figure 5. The images generated by the models injected different
strengths of noise in the training process. The clean accuracy of
these models is almost the same. We use ¢ to denote the noise
added to training data. (a) 6 ~ N(0,24/255). Obviously, this
model produces recognizable images. (b) § ~ N(0,16/255),
the shape of ship is visible. (¢) § ~ N'(0,8/255), it is hard to
recognize the shape of objects.

procedure and provides an effective way to find high-energy
samples with small perturbations. Meanwhile, a simple ran-
dom noise could also find high-energy samples but less ef-
fectively.

To verify our claim, we train normal classifiers by in-
jecting different strengths of random noise into training
data. As shown in Fig. 5, classifiers trained with differ-
ent strengths of noise generate images of different qualities
through the procedure in Sec. 3.1. Though the quality is
not good enough, cars, birds and ships can be recognized
with high confidence in Fig. 5 (a). From the comparison of
images generated by adding different strengths of noise, we
find that stronger random noise is needed to train a normal
classifier in order to generate recognizable images. This is
consistent with our explanation above that random noise is
a “blind” adversarial direction to find high-energy samples.
Because the direction is uncertain and very likely not the di-
rection to efficiently increase energy, stronger perturbations
may be needed. This experiment also shows that the process
which generates high-energy samples from real data and re-
duces the energy of these samples during the optimization
contributes to obtaining a classifier with generative capabil-

1ty.
3.3. Generating Adversarial Examples by Energy

As mentioned above, Fy(z, y) determines the generative
capability of a robust classifier. In original adversarial train-
ing, it does not increase the energy Fy(x,y) of original data
directly. In fact, only using Fy(x,y) can also make z to be
an adversarial sample x4, as shown in Tab. 1.

Using Fy(z,y) only in Eq. (14), we have:

Tage = T + 1 - sign(V.(EBy(z,y))). (18)

Adversarial examples generated by energy attack in
Eq. (18) have almost the same attack effect with the orig-
inal normal attack by Eq. (14). The difference between x
and x4, is unrecognizable, but their energy are quite dif-
ferent. We name the method which trained with adversar-
ial examples found by Eq. (18) and generates images by

Table 1. Normal attack and energy attack which just increases
Ey(z,y) on normal classifier (WideResNet-28-10). The pertur-
bation radius is 8/255. They perform similarly on the CIFAR-10
and CIFAR-100 datasets and they can successfully attack the clas-
sifier.

Attack CIFAR-10 | CIFAR-100
No Attack 94.39% 78.54%
Normal Attack 0.12% 0.08%
Energy Attack 0.11% 0.10%

Eq. (17) after training as Preliminary Joint Energy Adver-
sarial Training (PreJEAT).

As we illustrate in Fig. 2, in a PreJEAT trained classifier,
the energy around the natural image (center) is flatter and
lower than a normal classifier and original robust classifier.
In a robust classifier, the low energy region deviates from
the center. But in the PreJEAT trained classifier, the natu-
ral image has the lowest energy. Thus, directly generating
adversarial examples by Ejy(x, y) contributes to obtaining a
flat and low energy function near the real data. By adver-
sarial training with Eq. (18) we can obtain a robust classifier
with better generative capability, as shown in Fig. 4(c).

3.4. Joint Energy Adversarial Training

We verified that a PreJEAT trained model has good gen-
erative capability in the previous section. However, there
is still a discrepancy between training loss objective as Eq.
(13) and adversarial training as Eq. (18) in PreJEAT. And
we also find that the images generated by PreJEAT are not
smooth enough in Fig. 4(c). We hope that the optimiza-
tion process also optimizes Fy(z,y) more directly to re-
duce the energy around real data. Hence we propose a new
algorithm, Joint Energy Adversarial Training (JEAT), in Al-
gorithm 1 to improve the generative capability of a classi-
fier. In JEAT, we replace cross-entropy loss — log py (y|x)
in PreJEAT with :

—logpe(z,y) = —logpe(ylr) —logpe(x),  (19)

where py(x) is defined in Eq. (5). Optimizing pg(z,y)
helps to get better Fy(x,y) as shown in Eq. (7). The gradi-
ent of log pg(z) is

Vilog(pe(z)) = —VoEg(x) — Epy () [VoEp(x)]-
(20)
We use Stochastic Gradient Langevin Dynamics (SGLD) to
approximate E,,_ .y [6].

JEAT uses Eq. (18) to find adversarial example and
Eq. (17) to generate image like PreJEAT. With our proposed
JEAT, adversarial examples, adversarial training, and im-
age generation are connected to the energy Fy(z,y) in a
clear way. We also plot the energy contour of Fy(z,y) in
Fig. 2(d). Compared to the other three models, the energy
function of a JEAT trained classifier near the center is the
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Algorithm 1 Training and Generating of JEAT: Given net-
work f, E(x,y) = —log(exp(f(z)[y])) represent energy of
(2,y), E(x) = — log(3", exp(f () [y])) represent cnergy of
x, U adversarial perturbation radius ¢, SGLD step-size «,
SGLD steps K, replay buffer B, reinitialization probility p,
epochs T, dataset of size M, learning rate 7.
Training:
fori=1,2...,T do
for j =1,2..., M do
» Generating energy-based adversarial samples:
d=U(—¢€,¢)
d=0+e€- Sign(vm(EG(xa y)))
§ = max(min(J, €), —¢)
LTado = 2j + 0
» Generating samples by SGLD:
Zo ~ U(0,1) with probability p, else £ ~ B
fort=0,1,2,...., K —1do
Tpp1 =Ty — 5 - Vo, Eo(Z4) + Vo - N(0, )
end for
Add Zx to B
» Updating model parameters:
VoLyyzas) = Vo(Eo(Tadv,y) — Eg(Tadv))
VoLy(@ean) = Vo(Eo(Tadv) — Eo(Tx))
0 =0—1-(VoLpylraa) + VoLpras))
end for
end for

Generating:
xo ~ random sample
fort=0,1,2,..., K — 1do
Tiy1 =2 — 5 Vi, EBo(ze,y) + Va-N(0,1)
end for
Output: z4c, = Tk

flattest among the four classifiers. Moreover, the energy
contour is smooth across different energy levels. Hence
images generated from a JEAT trained classifier are more
likely a natural image and exhibits many natural details.
Moreover, a flat energy function is less sensitive to noise
perturbation. We will verify in experiments that JEAT im-
proves both quality of generated images and adversarial ro-
bustness systematically.

4. Experiments
4.1. Experimental settings

To verify the validity of our energy-based explana-
tion and the effectiveness of JEAT, we conducted experi-
ments on CIFAR-10, CIFAR-100 and compare them with
other methods. For network architecture, we use the
WideResNet-28-10 for all algorithms. We repeat our ex-
periments five times and report the mean and standard devi-

ation.

In terms of image generation, we compare our generated
pictures with JEM [10] and robust classifier [20]. We show
the images generated by different algorithms and the scores
of these methods based on Inception Score and Frechet In-
ception Distance metrics.

4.2. Image Generation

We use the procedure described in Sec. 3.1 to generate
images by using different classifiers. The images generated
by the adversarially trained classifier are shown in Fig. 6(a).
As analyzed in Sec. 3.1, Ey(x) can be the factor that re-
stricts the generative capability of a robust model. We show
the images generated by PreJEAT which uses Ey(x,y) in-
stead of Ey(x,y) — Eg(x) both in adversarial training and
generating images in Fig. 6(b). This approach greatly im-
proves the quality of generated images. The energy plots
of classifiers are presented in Sec. 3. By using PreJEAT,
the energy is smoother and has a larger low energy region
around real data, and it generates better quality images, es-
pecially in fine details and overall shape.

We also show the images generated by JEM [10] which
is an energy-based model utilizing a classifier in Fig. 6(c).
Compared to Fig. 6(b), JEM generates a more diverse back-
ground and is smooth in pixel. However, the features of
objects stand out and are more perceptible to human in the
images generated by PreJEAT.

As is shown in Fig. 6(d), our JEAT algorithm generates
the best images compared to the other three. The reason
behind is that JEAT is adversarially trained with energy
Ey(xz,y) as in Eq. (18), and directly optimize Ep(x,y) in
the training contributes to getting better Ey(x,y). The clas-
sifier trained by JEAT generates natural images with abun-
dant features. Moreover, JEAT has the best performance
based on the metrics of the Inception Score and Frechet In-
ception Distance.

We also validate the generalizability of the JEAT trained
classifier in the sense that the images generated differ from
any images in the training set, as shown in Fig. 7. Hence,
JEAT is not just memorizing training images it has seen but
generalizes as well.

4.3. Score Matching Metric

“Score” is defined here as sg(z,y) = V,logpe(x,y)
[25]. Score matching tries to match the vector field of the
gradient of log py(x, y) with respect to x to the real vector
field given in data distribution [25] by minimizing Fisher
Divergence:

% ’ Epdata(azly) [”v:r 10gp9(x7 y) -V, 1ngdata(x7 y)”g]
(2D
With the score defined in the distribution of (z,y) as
s¢(x,y), an equivalent optimization problem to (21) is min-
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Figure 6. The generated images of different models. (a) The images generated by standard adversarially trained classifier; (b) The images
generated by PreJEAT trained classifier; (c) The images generated by JEM [10] trained classifier; (d) The images generated by JEAT trained
classifier. Images in each line are generated for a class in CIFAR-10.

Training Dataset

Figure 7. JEAT generates different images different from train-
ing data. The left column is generated by JEAT, and the right
ten columns are images in the training dataset with the minimum
distance and highest similarity to the image generated by JEAT.
The image we generated is different from the original ones in the
training dataset. We use SSIM [30] to measure similarity.

imizing
Epgara (el [5 - 1s0(2,9) 3 +tr(Vaso(@, )], (22)

where V,s¢(x,y) denotes the Jacobian of sg(z,y) [13].

It is a simple and effective metric that a lower value in-
dicates V, log pg(z,y) is closer to V. log paata(z,y). So
smaller value of Fisher Score corresponds to better gener-
ative capability (not considering failure cases here). Fisher
Score could be used as a metric to assess the generative ca-
pability of models. Similarly, we denote Marginal Fisher
Score (MFS) as:

Epiara(@)3 * |VaEo(@)ll; —tr(ViEs(2))]l.  (24)

As shown in Tab. 2, both the Joint Fisher Score and the
Marginal Fisher Score for our JEAT are the smallest in all
the four models, which implies that the score of our model
matches well with the ground truth distribution. This also
means that JEAT can generate better images using Langevin
Dynamics. The score matching metric is also consistent
with the results of IS and FID, which are commonly used.

Table 2. Metrics for different models. “JFS” and “MFS” are the
scores to evaluate the Joint and marginal Fisher Scores. “Normal”
denotes normal training, “AT” denotes adversarial training.

From energy perspective, score sg(x,y) = —V,FEy(z,y). Method | Normal | AT [20] | JEM [10] | JEAT
Hence we denote objective in Eq. (22) as Joint Fisher Score JES) 6.97 2.83 0.330 0.023
(FS): MFS| 23.08 3.12 1.44 0.15
ISt - 7.50 8.66 8.80

]Epdm(ﬂy)[% - ||VmE9(x,y)||§ —tr(V2Ey(z,y))]. FID? - 60.90 38.40 38.24

(23)
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4.4. Robustness of JEAT

In this section, we show that the JEAT models not only
can generate good images but also has comparable robust-
ness with other hybrid models. We compare our model
among hybrid models, including Glow [14], IGEBM [4],
and JEM [10]. As shown in Tab. 3, we compare standard
classification accuracy, and robust accuracy under ¢/, PGD-
20 attack with e = 8/255. The experimental results show
that JEAT can both improve the generative capability and
adversarial robustness of JEM.

JEM [10] is a well-written paper, which proposes that
classifiers can also be trained as generative models and such
models have the robustness comparable to adversarial train-
ing. However, when we use standard method [3] for eval-
uation, JEM’s robustness is only 6.11% (under ¢, PGD-
20, €=8/255). We follow the same standard evaluation [3]
method to test our JEAT’s robustness and show it can im-
prove from 6.11% to 30.55% (under ¢, PGD-20, e=8/255).

Table 3. The performance comparison among four hybrid models
on CIFAR-10. We use ¢, PGD-20 attack with e = 8/255.

Model Standard Accuracy | Robustness
Glow [14] 67.6% -
IGEBM [4] 45.06% 32.19%
JEM [10] 92.90% 6.11%'
JEAT 85.16% 30.55%
5. Related Work

5.1. Adversarial Training

Adversarial attacks can give the wrong prediction
while adding negligible perturbations for humans to input
data [28]. Adversarial training first proposed in [8] can ef-
fectively defend against such attacks by training on both
clean data and adversarial examples. [18] formulates adver-
sarial training as a bi-level min-max optimization problem
and trains models exclusively on adversarial images rather
than both clean and adversarial images. Although it effec-
tively improves the adversarial robustness, expensive com-
putational cost and performance degradation on clean im-
ages are the two fatal shortcomings of it. Many works try
to reduce the computation cost to the natural training of a
model. [24] updates the perturbation and weights at the
same time, which reduces the bi-level problem to single-
level optimization. [32] samples the perturbation randomly

'We test the robustness of JEM’s [10] open-source model (from
https://github.com/wgrathwohl/JEM) by standard evaluation method [3]
(https://robustbench.github.io/). [17] also shows that the robustness of
JEM is 9.29% under the same setting (£~ PGD-20, €=8/255) by their im-
plementation.

in every iteration. Many works try to mitigate the perfor-
mance degradation on clean images. [34] gives a hint on
how to balance the trade-off between vanilla and robust ac-
curacy. [9] shows that additional unlabeled data can help to
increase accuracy in adversarial training. Interestingly, ro-
bust optimization can be recast as a tool for enforcing priors
on the features learned by deep neural networks [7]. More-
over, a robust classifier can tackle some challenging tasks in
image synthesis [22].

5.2. Energy-based Model

Recently, the energy-based model has attracted signifi-
cant attention. Effective estimating and sampling the par-
tition function is the primary difficulty in training energy-
based models [16, 12, 29]. Some research works have made
a contribution to improve the training of energy-based mod-
els, such as sample the partition function through amor-
tized generation [19, 2], utilize a separate generator network
for negative image sample generations [15, 27] and score
matching where the gradients of an energy function are
trained to match the gradients of real data [26, 23]. Kevin
Swersky et al. propose that treat classifier as an energy-
based model can enable classifiers to generate samples ri-
valing the quality of recent GAN approaches [10]. Kyung-
min et al. present a hybrid model which is built upon adver-
sarial training and energy based training to deal with both
out-of-distribution and adversarial examples [17].

Motivated by these discoveries, we investigate the gen-
erative capability of an adversarially trained model from an
energy perspective and provide a novel explanation. We
have further proposed an algorithm that can improve gen-
eration capacity.

6. Conclusion

We present a novel energy perspective on the generative
capability of an adversarially trained classifier and propose
our JEAT methods to obtain a classifier with stronger ro-
bustness that generates images with better quality. We find
that a normal classifier can also generate images by inject-
ing random noise in the training process, and we interpret
this as blind adversarial training, for that random noise may
find high energy examples accidentally. In summary, adver-
sarial examples, blind or not, aim to find high-energy exam-
ples, and the classifier’s optimization aims to lower the en-
ergy by optimizing model parameters. This process, as we
validate, is beneficial for the robustness of the model and
the quality of generated images. In addition, larger model
capacity [9, 18], smoother activation function [9, 33] and
unlabeled data [9, 1] are shown to improve adversarial ro-
bustness as well. We think these methods are promising
ways to boost the performance of JEAT further and leave
them for future work.
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