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Abstract

Recently RGB-D sensors have become very popular in the
area of Simultaneous Localisation and Mapping (SLAM).
The RGB-D SLAM approach relies heavily on the accuracy
of the input depth map. However, refraction and reflection
of transparent objects will result in false depth input of
RGB-D cameras, which makes the traditional RGB-D
SLAM algorithm unable to work correctly in the presence
of transparent objects. In this paper, we propose a novel
SLAM approach called transfusion that allows transparent
object existence and recovery in the video input. Our
method is composed of two parts. Transparent Objects
Cut Iterative Closest Points (TC-ICP)is first used to
recover camera pose, detecting and removing transparent
objects from input to reduce the trajectory errors. Then
Transparent Objects Reconstruction (TO-Reconstruction)
is used to reconstruct the transparent objects and opaque
objects separately. The opaque objects are reconstructed
with the traditional method, and the transparent objects
are reconstructed with the visual hull-based method. To
evaluate our algorithm, we construct a new RGB-D SLAM
database containing 25 video sequences. Each sequence
has at least one transparent object. Experiments show
that our approach can work adequately in scenes contain
transparent objects while the existing approach can not
handle them. Our approach significantly improves the
accuracy of the camera trajectory and the quality of
environment reconstruction.

1. Introduction

Nowadays, the interests in visual SLAM has been sig-
nificantly increased due to its variety of usages on many
other computer vision applications, such as augmented real-
ity, autonomous driving car, and robotics navigation. There
are rich types of sensors utilized for SLAM algorithm, such
as lidar, monocular camera, RGB-D camera, etc [7, 3, 2].
Among them, the RGB-D camera has been widely consid-
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Figure 1. Reconstruction result of two scene with our method
and Elasticfusion[31]. Due to the transparent object’s charac-
teristic, the passed RGB-D slam method can not reconstruct the
scene contains transparent objects properly. The first column is the
reconstruction result of Elasticfusion without transparent objects;
in the second column is the reconstruction result of Elasticfusion
with transparent objects; in the third column is the reconstruction
result of our algorithm with transparent objects.

ered for the visual SLAM since it can provide a rich source
of 3D information at a relatively low cost.

There is a lot of excellent SLAM methods that take
RGB-D as perception modules [31, 24, 5, 16]. They can
get more refined reconstruction results than the monocular
methods and can eliminate the scale drifting problem. How-
ever, they are all developed in an environment where there
are all opaque objects, and as shown in Fig. 1, they cannot
properly function when the environment contains transpar-
ent objects. But, transparent objects made of glass, such
as bottles, windows, are ubiquitous around us, so it is es-
sential to study the RGB-D SLAM algorithms that contain
transparent objects in the environment model.

RGB-D cameras usually equip infrared light emission
and receivers to measure the depth, such as Microsoft’s
Kinect and Intel’s RealSense. Unlike opaque objects, trans-
parent materials do not satisfy the classic geometric light
path assumptions of stereo vision algorithms. When in-
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Figure 2. Affect of transparent object to the depth map. (a) When infrared rays are emitted to transparent objects, both reflection and
refraction occur on their surface.(b) and c) are the RGB image and depth map of the scenes. (d) The 2.5D view by combining the depth map
with RGB image. The area in the red circle is where the transparent object locates. The yellow circle is the area affect by the transparent.
The green circle is the opaque object

frared rays (IR) are emitted to transparent objects, both re-
flection and refraction occur on their surface. As shown in
Fig. 2, some rays reflect on the surface of a transparent ob-
ject or reflect on the surface of the object behind the trans-
parent object. Thus when RGB-D cameras are used to ac-
quire the environment’s depth, there is a high probability of
getting erroneous results due to these objects. The transpar-
ent objects often show up as noisy or distorted surfaces in
the depth inputs. Meanwhile, the object behind transparent
materials will be distorted due to their occlusion, making it
challenging for RGB-D cameras to produce accurate depth
estimates in the area occluded by transparent objects.

On the other hand, the RGB-D SLAM approach relies
heavily on the accuracy of the environmental depth ob-
tained, which is in nature of the Iterative Closest Points
(ICP) algorithm. The RGB-D SLAM systems often lever-
age the ICP algorithm in the tracking stage. ICP algorithm
takes the depth map as input then estimates camera pose
through 3D points registering. Inaccurate depth will lead
the ICP algorithm to get the wrong camera pose.

This leads to another challenge of recovering the con-
crete shape of transparent objects in the reconstruction
phase because the RGB-D camera cannot get its correct
depths. Moreover, the reconstruction of objects behind
them will also be affected because transparent objects also
distort their depth. As illustrated in Fig. 2, wrong depth
destroyed the system’s reconstruction results.

In this paper, we propose a novel RGB-D SLAM ap-
proach that can handle scenes include transparent objects.
Our method can simultaneously reduce tracking errors and
recover the whole scene’s correct shape.

Firstly, Transparent Objects Cut Iterative Closest Points
(TC-ICP) algorithm is used to estimate the camera pose.
TC-ICP can detect transparent objects’ location and remove
them from the input, which will reduce the depth error
caused by transparent objects. Then Transparent Objects
Reconstruction (TO-Reconstruction) algorithm is used to
recover the whole scene’s 3D model. Transparent object re-
construction only takes advantage of the RGB image, mask,

and camera pose information, which can be readily inte-
grated into the traditional RGB-D methods.

Since our main task is making the SLAM algorithm work
adequately in scenes containing transparent objects, and
there is no existing database dedicated to this task. To eval-
uate our algorithm, we construct a new database with 25
video sequences. In every sequence, there is at least one
transparent object.

In summary, the main contributions of our paper are:

• We propose a novel RGB-D SLAM approach called
Transfusion, which shows excellent performance in
camera pose estimation and scene reconstruction in en-
vironments containing transparent objects.

• We construct a new RGB-D database Trans-SLAM for
the research of SLAM algorithms in the environment
that contains transparent objects.

2. Related Works
2.1. Visual SLAM

SLAM algorithm is an attractive research topic in com-
puter vision and robotic fields. They can be roughly
divided into two classes by the sensor they take. The
MonoSLAM [6] system is the first real-time monocular re-
construction system, which uses extended Kalman filtering
(EKF) as the back-end. Later, PTAM [17] is proposed as
a new framework for parallel tracking and mapping, which
can reduce map updates’ computational complexity. Then
LSD-SLAM [8] introduces a direct tracking method based
on Lie algebra, which improves the trajectory accuracy.
However, the monocular SLAM method suffers from the
scale drifting problem and can hardly generate dense recon-
struction results. The other methods are the RGB methods.

The other one is the RGB-D SLAM. Newcombe et al.
propose KinectFusion [24], which preprocesses the raw
input depth image by a bilateral filter to reduce noise.Then
DVO-SLAM [16] combines dense visual odometry with
pose SLAM. ElasticFusion [31] models the scene as a set of
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Figure 3. System Overview. Our system consists of two main parts: TC-ICP and TO-Reconstruction. The TC-ICP aims to estimate the
camera pose without the influence of transparent objects, and the TO-Reconstruction is to recover the correct shape of the environment
containing transparent objects.

surfels deformed to accommodate loop closures. Compared
with the monocular method, they can reconstruct a dense
point cloud map of the environment. Moreover, these
methods can get the scale factor from the input, eliminating
the scale drifting problem. However, all these methods
apply to cases containing opaque objects only.

2.2. Transparent Objects Detection

Since the emergence of the computer vision field, trans-
parent object detection has been a challenging problem.
Due to their refractive and reflective nature, their appear-
ance can vary drastically according to background and illu-
mination conditions. Classic methods for detecting trans-
parent objects mostly relied on idiosyncrasies such as spec-
ular reflections or local characteristics of edges due to re-
fraction [25, 22, 21, 11]. Later methods rely on deep
learning models like SSD [20] or Fast-RCNN [13] to pre-
dict bounding boxes enclosing transparent objects. Seib et
al. [28] propose a method to exploit sensor failures in the
depth map for transparent object localization using con-
volutional networks. Wang et al. [30]propose localizing
glass objects using a Markov Random Field to predict glass
boundary and region jointly from multiple modalities from
an RGB-D camera. These methods are only tested on small
datasets and do not work properly in the wild.

2.3. Transparent object reconstruction

The reconstruction of transparent objects is a challenging
problem in the field of computer vision. Murase first pro-
poses the 3D reconstruction of the refractive surface [23],
using the optical flow method and pixel tracking method
to restore the water surface model. Masaki Yamazaki et
al. propose a transparent object reconstruction method [33]
based on the phase shift method using a stereo camera.
The reconstruction result is finally obtained by analyzing
the distortion of the stripe pattern on the transparent object
photographed by the camera. On this basis, Qian et al. pro-

pose a transparent object reconstruction method [26] based
on directed light measurement. The method solves the re-
construction by using the position-normal consistency as a
constraint. However, this algorithm cannot generate com-
plete object reconstruction results. N. Alt et. al [9] pro-
posed an method to reconstruct the transparent objects via
depth camera, however their method needs first to estimate
the background model using a video sequence that excludes
transparent objects. S. Albrecht et. al [1] use the noisy
point cloud data to recover the shape of transparent objects,
but they assume that there is a planar surface underneath or
behind the transparent object. Zheng proposes a transparent
object reconstruction method [19] based on deep learning.
This method uses a visual hull for initialization, then an au-
tomatic encoder is designed to learn the propagation path
of light in a transparent object, and finally generate a point
cloud by PointNet.This method can recover the whole shape
of transparent objects, but they require the information of
the environment and this method is time-consuming.

3. Methods

3.1. Transfusion System

In this paper, we propose a novel RGB-D SLAM ap-
proach called Transfusion that can work adequately in
scenes containing transparent objects. Our Transfusion sys-
tem can significantly improve the performance in both pose
establishment and scene reconstruction.

We adopt the state-of-the-art ElasticFusion system as our
base system, which provides excellent reconstruction and
camera pose estimation results by combining the color and
brightness information with the ICP algorithm. ElasticFu-
sion works well when all objects in the environment are
opaque. However, as shown in Fig. 1, if there are trans-
parent objects, the whole system will get the wrong results.

Our improved framework consists of two main parts:
TC-ICP and TO-Reconstruction. The TC-ICP in Sec.
3.2 aims to eliminate the adverse influence of transpar-
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ent objects and get the accurate camera pose, and the TO-
Reconstruction in Sec. 3.3 aims to reconstruct the correct
geometry structure of the scene.

3.2. Transparent Cut Iterative Closest Points

To eliminate the influence of the incorrect depth infor-
mation of transparent objects on the pose calculation, we
design a novel ICP algorithm called TC-ICP to replace the
traditional ICP part used in Elasticfusion.

First, we will recap the traditional ICP algorithm. ICP
algorithm estimates camera pose through 3D point cloud
registration, which can be converted to a optimization prob-
lem by Lie algebra as follow:

Eicp =
∑
k

((
vk − exp(ξ̂)Tvk

t

)
· nk

)2
(1)

where vkt is the back-projection of the k−th vertex in depth
map, vk and nk are the corresponding vertex and normal
represented in the previous frame. T is the current estimate
of the transformation from the previous camera pose to the
current one, and exp(ξ̂) is the matrix exponential that maps
a member of the Lie algebra se3 to a member of the cor-
responding Lie group SE3. The Gauss-Newton non-linear
least-squares method is used to optimise this function.

The traditional RGB-D methods cannot handle transpar-
ent objects because they take all the depth information given
by the RGB-D camera for pose estimation, which contains
the distorted depth caused by the transparent object.

In our TC-ICP approach, we first segment the transparent
from the input image to get the rough segmentation result
Mr, which is done by applying a pre-trained transparent
objects segmentation network.

The results of the segmentation network usually have
some defects when used in world situations due to poly-
tropic illumination and perspective. Consequently, a mask
adjustment procedure is essential to get the final resultMf

(Sec. 3.2.2)
Next, theMf is processed by the equation bellow to get

the processed depth map:

Dp = D ∩Mf (2)

where Dp is the processed depth map which has less wrong
information.

ETC ICP =
∑
k

((
vk
p − exp(ξ̂)Tvk

pt

)
· nk

p

)2
(3)

Then we leverage the same optimizer in traditional ICP
to estimate the camera pose.

3.2.1 Transparent Objects Segmentation Nework

To segment transparent objects from the surroundings, we
propose a novel transparent object segmentation network

based on SINet [10], which takes the RGB image as input
to find the coverage object in the surroundings.

Unlike SINet, our model is composed of two parallel
branches: segmentation branch and boundary branch. The
segmentation branch is for transparent object segmenta-
tion, while the boundary branch is for boundary prediction.
ResNet50 [14] is used as the backbone network to extract a
set of features {Xk}4k=0.

The network agriculture is shown in Fig. 4. For the seg-
ment branch, the Receptive Field (RF) components are used
to expand the receptive field. As shown in Fig. 4, first we
concatenation the low-level features {X0,X1}, and then the
fused feature is downsampled twice. Then the RF compo-
nent is employed to generate rf4s features. After combin-
ing the three levels of features, a set of enhanced features
{rfsk, k = 1, 2, 3, 4} are acquired.

Recent evidences have shown that low-level features
in shallow layers preserve more spatial details, so in the
boundary branch, we directly use the low-level feature
{X0,X1} generate from ResNet50. Then the Atrous Spa-
tial Pyramid Pooling module (ASPP) is employed to en-
large the receive field in {X4}.Then integrate three feature
maps mentioned above into the input feature map {f bk , k =
1, 2, 3} for the boundary decoder.

Fig. 4 illustrates the detailed structure of the decoder we
used in the segmentation network. For the segment branch,
Partial Decoder Component (PDC) integrating four levels
of features {rfsk, k = 1, 2, 3, 4} is used to get the segment
result. For the boundary branch, a series of up sampling and
convolution operations are performed on the feature map
{f bk , k = 1, 2, 3} to get the boundary prediction. We define
our training loss function as follows:

L = Ls + Lb (4)

where Ls and Lb represent the losses for the segmentation
text and boundary, respectively. Here Ls and Lb are the
standard Cross-Entropy (CE) loss.

3.2.2 Mask Adjustment

The segmentation results obtained by segmentation network
still have deviations in practical applications. As shown in
Fig. 5, the algorithm will recognize parts of opaque objects
as transparent objects. Besides, because of the gap between
the data we captured and the data used for training, the net-
work often generates undersized masks.

Accordingly, we propose mask adjustment to address
these issues, which is interleaved performed with pose es-
timation. Mask adjustment can detect the wrong segmen-
tation results and optimize the size of the mask through a
scale factor s. Its core idea is that when the number of error
depth points dropped, the ICP algorithm’s error is reduced.
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Figure 4. Network Architecture. Our model is composed of two parallel branches: segmentation branch and boundary branch. Above the
dotted line is the overall architecture of our network, and below the dotted line is the decoder structure we use in our model.

Figure 5. Wrong segmentation. (a)the algorithm may rec-
ognize parts of non-transparent objects as transparent objects.
(b)The mask gained from segmentation generally cannot com-
pletely cover the entire transparent object.

Our mask adjustment contains two steps. In the first
step, we check each mask Mi in segmentation results in
turn whether it contains incorrect segmentation results. For
each mask, we can calculate the contribution of removing it
to reducing the registration error. This contribution can be
compute as Einit−Em. Em is the registration error with-
out the area covered by Mi computed by ICP algorithm.
Einit is the registration error with all depth input. If the
contribution is less than 5e−04, this mask will be regarded
as the wrong segmentation. Then remove it from the initial
segmentation result and repeat the above operation until the
optimized segmentation resultMd is acquired.

In the second step, we optimize the size of masks inMd

through scale factor s. As is shown in Fig. 5, the size of
the transparent object’s mask is often smaller than its real
size, so let each mask inMd be multiplied by a scale factor
s to increase its size appropriately. In the step n, compute

Figure 6. The effect of motion blur on segmentation. The seg-
mentation results of the image with a high degree of motion blur
is worse.

the registration error Es without the area covered by sMi

through ICP algorithm. If Einit−Es < 1e−05 or Es −
Em < 0, stop the algorithm and return the (n − 1)th s,
otherwise, increase s by 0.005 and continue this algorithm.

3.3. Transparent Objects Reconstruction

TO-Reconstruction is proposed to reconstruct the envi-
ronmental model that containing transparent objects, and it
can be divided into two parts, traditional RGB-D method
and visual hull based method. The traditional RGB-D
method integrated in Elasticfusion is used to reconstruct the
opaque objects, and the visual hull based method is used
to reconstruct transparent objects. After the mask adjust-
ment part described in Sec.3.2.2, the left opaque objects can
be reconstructed, so next we will concentrate on the recon-
struction of transparent objects in the following.
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As analyzed in Sec. 1, it is hard to get the accurate depth
of the transparent objects, so we can not use the traditional
RGB-D reconstruction methods to reconstruct transparent
objects. Inspired by [19], we propose a visual hull based
method to recover the shape of transparent objects.

3.3.1 Key Frame Selection

Taking a video sequence as the algorithm input is different
from taking a single image as the algorithm input, which
will suffer from the motion blur problem. From Fig. 6,
some frames extracted from the video sequences contains
motion blur, which will directly lead to imprecise segmen-
tation and reconstruction results.

Since the visual hull algorithm does not need all frames
of video input for reconstruction, we can select key frames
that contain very little or no motion blur as the input set.
Laplace value is used to measure the blur of RGB image.
We first compute the Laplacian response by:

∇2f = I ∗

 0 1 0
1 −4 1
0 1 0

 (5)

Then take the standard deviation squared of the response
as the Laplacian value. In the experiments, we set the
threshold to 50 and the images with Laplace value below
the threshold are considered to be blurry and not suitable
for reconstruction. Then we will get the input set S that can
be used in the reconstruction stage.The key frame is only
used to reconstruct the transparent objects. In the tracking
period, we use all the frames to do frame-to-frame tracking.

3.3.2 Transparent Object Reconstruction

We propose our transparent object reconstruction method
based on visual hull. Traditional visual hull based algo-
rithms require cameras to be fixed or slightly moving in Z-
axis, but the pose of the input frame usually changes within
a relatively large range of motion. So we transform the Z-
axis range of the obtained pose to -0.5m to 0.5m, and per-
form affine transformation on the corresponding mask.

From the key frame selection stage, we can get the key
frame set S. To recover the shape of transparent objects, we
first compute viewing cone of each image in S with its mask
and camera pose.Then the intersection of viewing cones is
determined as the initial volume V . After that, V is opti-
mized by the space carving method proposed in [27].

The viewing cone of input images can be calculated by
projecting the mask in images to the 3D space. We use the
equation 6 to project the pixel in mask to the 3D space.

v(u) = TK−1u (6)

where u is pixels in the mask. K and T are the intrinsic ma-
trix and transformation matrix of camera, respectively, and

Figure 7. Viewing cone. Along with the camera viewing parame-
ters, the mask defines a back-projected generalized cone that con-
tains the actual object. This cone is called a viewing cone.

Figure 8. Equipments used in data construction.

v(u) is the project result. With given K, T and the mask, a
generalized cone called viewing cone can be calculated that
contains the actual object as shown in Fig. 7. The intersec-
tion of these cones of the images in S can be regarded as
the initial volume V for the next volume optimize stage.

Then initial volume V will be optimized by space carv-
ing, which employs the photo-consistency measure to de-
cide if voxels v in V should be carved away or retained. A
voxel is considered to be photo-consistent when its colors
that can be seen by all the cameras appear to be similar.

We take the criterion in [27] to determine the photo-
consistency of v, which can deal with the textureless regions
and specular highlights. If there is a non-photo-consistent
vn in V , we will set V = V − vn and repeat this operation
until all the v is photo-consistent. Then the final V is set as
the optimal volume V∗, which is the final result.

4. Experiments
4.1. Database Construction

There are many database [29, 4, 12] published for SLAM
research. They provide RGB images, depth images, and
ground truth trajectory. However, all the scene in these
databases exclude transparent objects. To evaluate the
SLAM algorithm in the scene containing transparent ob-
jects, we collect a new RGB-D database called Trans-
SLAM, which contains 25 video sequences and every se-
quence contains at least one transparent object.

The RGB image and depth map is recorded by a Re-
alSense D435i RGB-D camera at the frame rate of 30 Hz
and sensor resolution of 640x480. Every video sequence
has about 2000 images, 60 seconds. Each scene comprises
three opaque objects and at least one transparent object in
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Scene ATE ↓ R.RPE ↓ T.RPE ↓
RGB-D SLAM V2 Elasticfusion ours RGB-D SLAM V2 Elasticfusion ours RGB-D SLAM V2 Elasticfusion ours

Long-Necked Vase 0.446 0.334 0.158 0.135 0.124 0.018 0.220 0.192 0.024
Cylindrical Glass 0.351 0.288 0.131 0.245 0.143 0.084 0.253 0.132 0.025
Angular glass 0.349 0.350 0.128 0.135 0.145 0.016 0.223 0.253 0.035
Belly Glass Vase 0.465 0.544 0.169 0.174 0.204 0.021 0.374 0.404 0.043
Glass Fish Tank 1.921 2.375 0.919 0.273 0.135 0.028 0.825 0.544 0.423
fr1/desk 0.023 0.020 0.021 0.015 0.010 0.011 0.012 0.008 0.007
fr2/xyz 0.008 0.011 0.010 0.003 0.005 0.008 0.002 0.004 0.006
Mean 0.509 0.560 0.219 0.141 0.109 0.027 0.273 0.220 0.080

Table 1. SLAM results

Figure 9. Reconstruction results. The first row and second row are the results of Elasticfusion and RGD-SLAM V2, and the third row is
the results of our method.

Methods IOU ↑ MAE ↓ BER ↓ Acc ↑
DSC [15] 0.776 0.084 0.091 90.860
BDRAR [34] 0.759 0.081 0.087 89.860
R3Net [18] 0.765 0.072 0.103 91.860
SINET [10] 0.765 0.070 0.084 92.140
TransLab [32] 0.872 0.070 0.083 92.310
Ours 0.856 0.071 0.081 92.871

Table 2. Segmentation results

front of them. The transparent objects in our database in-
clude five typically transparent objects in the real world,
such as vases, glass cups, and fish tanks. All scenes are
captured indoor, and the camera is moved by hand.

The reference poses for SLAM should have high accu-
racy in both local relative 6DoF transformations and global
positioning. Thus, the ground-truth trajectory and 6DoF
pose of the camera in our experiments are obtained from the
Quality motion capture system, which consists of 8 high-
end motion capture units that can record the high accuracy
trajectory and 6DoF pose.

Fig. 8 shows the object and equipments we used in the
data construction stage. We put four marks on the RGB-D

camera for the motion capture system to locate the camera’s
global position and its 6DoF pose. And the detail of our
database can be find in the supplementary martial.

4.2. Datasets and Parameter Setup

The Transfusion system is built and tested in C++.
To evaluate the performance of the proposed approach in
scenes containing transparent objects, we test our system
on the Trans-SLAM database. The transparent object seg-
mentation network is implemented with pytorch and trained
with the Adam optimizer. The transparent object seg-
mentation network is trained and tested on the trans10k
database [32]. During the training stage, the batch size is set
to 32, and the learning rate starts at 1e-4. We use 2×V100
GPU for the training and testing of the segmentation net-
work. Furthermore, the whole Transfusion system is run-
ning on one Nvidia 3080 GPU, and the segmentation net-
work is converted into libtoch model, which can be used in
the C++ environment.

4.3. Evaluation Criteria

We use Absolute Trajectory Error (ATE) and Rota-
tion/Translation Relative Pose Error(R./T.RPE) to evaluate
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Scene ATE ↓ R.RPE ↓ T.RPE ↓
No-Mask Adjustment Use SINet Ours No-Mask Adjustment Use SINet Ours No-Mask Adjustment Use SINet Ours

Long-Necked Vase 0.168 0.191 0.158 0.021 0.033 0.018 0.048 0.094 0.024
Cylindrical Glass 0.147 0.218 0.131 0.056 0.095 0.084 0.048 0.084 0.025

Angular glass 0.143 0.275 0.128 0.064 0.087 0.016 0.054 0.107 0.035
Belly Glass Vase 0.209 0.371 0.169 0.047 0.109 0.021 0.092 0.154 0.043
Glass Fish Tank 1.057 1.284 0.919 0.634 0.104 0.028 0.488 0.624 0.423

Mean 0.345 0.468 0.301 0.164 0.086 0.034 0.146 0.213 0.110
Table 3. Ablation study

Time(s)
Segmentation 0.03913
Mask Adjustment 0.01537
TO-Reconstruction 0.6715
Table 4. Time consumption of Main Part

camera trajectory performance. Moreover, we use four met-
rics widely used in semantic segmentation to evaluate the
segmentation result, they are Intersection over Union (IoU),
Pixel Accuracy Metrics (Acc), Mean Absolute Error (MAE)
metrics, and Balance Error Rate (BER).

4.4. Results And Analysis

We provide the averaged quantitative comparisons of
tracking tasks on all sequences in table 1. From table 1,
we can observe that our method has significantly improved
all metrics’ performance on the tracking task in the Trans-
SLAM database. The fr1/desk and fr1/xyz are from the
TUM RGB-D dataset and exclude transparent objects. The
Elasticfusion, RGB-D SLAM V2 and our approach all work
well when there is no transparent object. However, when
there is a transparent object, their performances have de-
creased dramatically, while our approach can still works ad-
equately in the environment contains transparent objects.

From table 2, we can observe that our segmentation
method achieves the best performance in the trans10k
database compared with the other methods.

Fig. 9 shows the reconstruction results in the Trans-
SLAM database. When the environment contains transpar-
ent objects, Elasticfusion and RGB-D SLAM V2 can not
recover the scene’s shape correctly, especially the transpar-
ent objects and the area behind them. Corresponding, our
method can recover the correct shape of the whole scene.

Table 4 represents the time consumption of each part.
The whole system operates at an interactive frame rate,
which can run in real-time except for transparent object re-
construction, and the transparent object reconstruction can
be done off-line by the saved masks and camera trajectory.

Table 1 shows that the degree of transparent objects’ in-
fluence on the SLAM system is also related to their curva-
ture and the size of the area they occupied. Compared with
angular glass, the cylindrical glass’s error correspondingly
greater because the ray has more distortion when it hits the
transparent object with extensive curvature. Furthermore,

the fish tank has the most significant error. Because fish
tank occupies a larger volume, the area influenced by it is
more significant.

4.5. Ablation Study

We conduct ablation studies (table 3) to investigate the
individual contribution of our method’s component on the
Trans-SLAM. For the ”No-Mask Adjustment,” we remove
the mask adjustment part from the algorithm. For the ”Use
SINet,” we use the SINet as our segmentation network.

From table 3, we can observe that by cutting transparent
objects from depth input, all the algorithms have improved
in the pose estimation. The mask adjustment part also has
contributed to reducing the error because the mask adjust-
ment part can adjust the mask and get the most accurate
result. When using SINet as our segmentation network , the
algorithm also has an improvement, but it is worse than the
other method listed in the table 3. This result proves that the
performance of our network is better than SINet.

5. Conclusion
We propose a novel RGB-D SLAM system called

Transfusion, which can correctly estimate the camera
trajectory and reconstruct the scene when there are trans-
parent objects in the environment. Transfusion uses the
TC-ICP to estimate the camera pose without transparent
objects’ influence by cutting them out. Then use the
TO-reconstruction to recover the shape of the transparent
object. Experiments show that our method can improve the
performance in both pose establishment and reconstruction.
Limitation. Because the scene of database is small, the
camera moves have some close loop, so the reconstruction
result has some noises. Although our method achieve good
performance to recover the shape of transparent objects,
the quality of reconstruction results still needs to be
improved. Moreover, the speed of the reconstruction period
still has space for improvement for real-time reconstruction.
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