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Abstract

The nonlocal-based blocks are designed for capturing
long-range spatial-temporal dependencies in computer vi-
sion tasks. Although having shown excellent performance,
they still lack the mechanism to encode the rich, struc-
tured information among elements in an image or video.
In this paper, to theoretically analyze the property of these
nonlocal-based blocks, we provide a new perspective to in-
terpret them, where we view them as a set of graph filters
generated on a fully-connected graph. Specifically, when
choosing the Chebyshev graph filter, a unified formulation
can be derived for explaining and analyzing the existing
nonlocal-based blocks (e.g., nonlocal block, nonlocal stage,
double attention block). Furthermore, by concerning the
property of spectral, we propose an efficient and robust spec-
tral nonlocal block, which can be more robust and flexible
to catch long-range dependencies when inserted into deep
neural networks than the existing nonlocal blocks. Experi-
mental results demonstrate the clear-cut improvements and
practical applicabilities of our method on image classifica-
tion, action recognition, semantic segmentation, and per-
son re-identification tasks. Code are available at https:
//github.com/zh460045050/SNL_ICCV2021.

1. Introduction
Capturing the long-range spatial-temporal dependencies

between spatial pixels or temporal frames plays a crucial
role in computer vision tasks. Convolutional neural networks
(CNNs) are inherently limited by their convolution operators,
which are devoted to concern local relations (e.g., a 7 × 7
region), and they are inefficient in modeling long-range de-
pendencies. Deep CNNs model these dependencies, which
commonly refers to enlarge receptive fields, via stacking mul-

tiple convolution operators. However, two unfavorable issues
are raised in practice. Firstly, repeating convolutional oper-
ations comes with higher computational and memory costs
as well as the risk of over-fitting [10]. Secondly, stacking
more layers cannot always increase the effective receptive
fields [23], which indicates the convolutional layers may still
lack the mechanism to model these dependencies efficiently.

A common practice to tackle these challenges is to ag-
gregate the feature in a non-local way with fewer learning
weights. Thus the aggregation can act on not only the k-hop
neighbors but also the long-range positions [1, 30, 4, 36, 35].
Typically, inspired by the self-attention strategy, the Non-
local (NL) block [30] firstly creates a dense affinity matrix
that contains the relation among every pairwise position, and
then uses this matrix as an attention map to aggregate the
features by weighted mean. Nonetheless, because the dense
attention map concerns humongous amounts of feature pairs
(e.g. the relations between background and background), the
aggregation feature map contains too much noise.

To solve this problem, recent state-of-the-art methods fo-
cus on creating a more reasonable attention map for the NL
block [2, 28, 34, 17, 28]. Chen et al. [2] propose the Double
Attention (A2) block that firstly gathers the features in the
entire space and then distributes them back to each location.
Yue et al. [34] propose the Compact Generalized Nonlocal
(CGNL) block to catch cross-channel clues, which also in-
creases the noise of the attention map inevitably. Huang et
al. [17] propose a lightweight nonlocal block called Criss-
Cross Attention block (CC), which decomposes the position-
wise attention of NL into conterminously column-wise and
row-wise attention. To enhance the stability of the NL block,
Tao et al. [28] propose the Nonlocal Stage (NS) module that
can follow the diffusion nature by using the Laplacian of the
affinity matrix as the attention map.

In general, though the above works can generate a better
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Figure 1: The spatial (A) and spectral (B) view of a nonlocal block. The pink dots indicate each patch in the feature map and
the “Aggregation” means calculating the weighted mean as the numerator of Eq. (1). The dotted arrows mean “copy” and full
arrows mean “feed forward”. The green bars are the node features and the length means their strength (best view in color).

aggregation feature map by improving the attention mech-
anism of the nonlocal block, their parameterized filter step
still lacks the long-range dependence concerning where only
localization filters (usually 1× 1 convolutions) are used as
shown in Fig. 1 A. To conquer the limitations, we aim at com-
bining the nonlocal aggregation with the local filter step of
nonlocal block via graph filters. We call this perspective “the
spectral view of the nonlocal block”. Specifically, as shown
in Fig. 1 B, a fully-connected graph is firstly constructed
based on the input features to contain the similarity among
different positions. Then the output is generated by directly
filtering the features with learnable graph filters. Under this
perspective, long-range cues are maintained by the affinity of
graph structure, and the graph filters provide more learning
flexibility when catching long-range dependencies.

Moreover, the proposed “spectral view” also provides
a valid tool to theoretically analyze the nonlocal-based
blocks [30, 28, 2, 17, 34], which are all experimentally de-
signed and lacks theoretical supports to explain their effec-
tiveness. With the proposed “spectral view”, a unified for-
mulation of these nonlocal-based blocks can be deduced. It
shows that they all utilize “an incomplete formation” Cheby-
shev graph filter, which limits their performance and ro-
bustness. Profited by our “spectral view”, these incomplete
aspects can be easily solved by concerning the graph nature.
Hence, a novel nonlocal block called the Spectral Nonlocal
Block (SNL) with a stronger theoretical basis is proposed,
which uses a more accurate approximation and can avoid
complex eigenvalue. The proposed SNL is more flexible
when inserted into the neural network and achieves superior
performance over other nonlocal-based blocks. This shows
the effectiveness of the proposed “spectral view” in defining
novel nonlocal blocks on the basis of graph signal process-
ing [26] or with the help of graph neural networks [5, 21, 31].

In a nutshell, our contributions are threefold:

• We provide a novel perspective for the model design of
nonlocal-based blocks, which can help to catch long-

range dependencies more flexibly. In this context, we
seamlessly make the connection between different vari-
ants of nonlocal methods and graph signal processing.

• We present, for the first time, that five well-known
nonlocal blocks can be unified and interpreted under
the proposed perspective with the help of Chebyshev
approximation. This motivates our advocate of other
potential nonlocal blocks embodied with discrimination
capability and theoretical basis as an alternative.

• We propose a novel nonlocal block with a stronger
theoretical basis that using an accurate approximated
filter with the concern of the graph nature. The pro-
posed block works universally well across a wide array
of vision tasks, including image classification, action
recognition, semantic segmentation, and person Re-
identification, offering significantly better performance
than other nonlocal-based counterparts.

2. Preliminary
In this paper, bold we use uppercase characters to denote

the parameter matrix and italic bold uppercase characters to
denote other matrices. Vectors are denoted with lowercase.

2.1. Nonlocal Block

The NL block calculates a weighted sum of pairings be-
tween the features of each position and all possible positions
as shown in Fig. 1 A. The nonlocal operator is defined:

F (Xi,:) =

∑
j

[
f(Xi,:,Xj,:)g(Xj,:)

]
∑
j f(Xi,:,Xj,:)

, (1)

where X ∈ RN×C1 is the input feature map, i, j are the
position indexes in the feature map, f(·) is the affinity kernel
with a finite Frobenius norm. g(·) is a linear embedding that
is defined as: g(Xj,:) = Xj,:WZ with WZ ∈ RC1×Cs .

12293



Here N is the total positions of each feature. C1 and Cs are
the numbers of channels for the input and the transferred
features, respectively.

When inserting the NL block into the network structure,
a linear transformation with weight matrix W ∈ RCs×C1

and a residual connection are added:

Yi,: =Xi,: + F (Xi,:)W. (2)

It is worth noting that, though NL block and the Vision
Transformers (ViT) [7, 22, 19] both utilize the self-attention
mechanism, the former is added on a certain stage of CNNs
to perceive long-range dependencies rather than using to
replace all convolutional operators in CNN as the latter.

2.2. Graph Fourier Transform & Graph Filter

Assuming that a graph G contains N vertices, an arbitrary
function (or signal) vector f = {f1, f2, · · · , fN} can be de-
fined, where the ith component of the vector f(i) represents
the function value at the ith vertex of the graph G. Then,
the graph Fourier transformation [26] f̂ of f on vertices of
G can be formulated as the expansion of f in terms of the
eigenvectors of the graph Laplacian:

f̂(λl) =

N∑
i=1

f(i)u∗l (i), (3)

where λ = [λ1, · · · , λl, · · · ] and U = [u1, · · ·ul, · · · ] are
the eigenvalues and eigenvectors of the graph Laplacian.
f̂(λl) is the corresponding spectral coefficient under ul. u∗l
is the lth row vector of U>. The inverse graph Fourier
transformation is then given by f(i) =

∑N
i=1 f̂(λl)ul(i).

A graph filter is an operator that modifies the components
of an input signal x based on the eigenvalues U , according
to a frequency response gθ acting on λ. Thus, based on the
graph Fourier transformation, the output of filtering x under
graph G can be defined as:

O(i)x∗Ggθ =

N∑
l=1

Ô(λl)ul(i) =

N∑
l=1

x̂(λl)ĝθ(λl)ul(i)

(4)
where x̂, ĝθ, Ô are the graph Fourier transformation of input
signal x, filter gθ and the output signalOx∗Ggθ respectively.
Further, the formulation of the output signal can be also
derived as (more details of this derivation and graph signal
process refer to the survey [26]):

Ox∗Ggθ = Udiag([ĝθ(λ1), · · · , ĝθ(λl), · · · ])U>x (5)

3. Approach
The nonlocal operator can be explained under the graph

spectral domain, where it is the same as operating a set
of graph filters on a fully connected weighted graph. This

process can be briefly divided into two steps: 1) generating
a fully-connected graph to model the similarity among the
position pairs, and 2) converting the input features into the
graph domain and learning a graph filter. In this section, we
firstly propose our framework which gives the definition of
the spectral view for the nonlocal operator. Then, we unify
five existing nonlocal-based operators from this spectral view.
We further propose a novel nonlocal block based on the
framework, which is more effective and robust.

3.1. The Spectral View of Nonlocal-based blocks

To define the spectral view of nonlocal, we start from
taking the matrix form of the nonlocal operator into Eq. (2)
and decompose the parameter matrix W into Ws1 and Ws2:

Y =X + F (X)W =X +AZWs1Ws2, (6)

In this Eq. (6), A = D−1M M is the affinity matrix and
M = [Mij ] is composed of pairwise similarities between
pixels, i.e.Mij = f(Xi,:,Xj,:) where f(·) is usually the dot
product. DM is a diagonal matrix containing the degree of
each vertex ofM . Z =XWZ ∈ RN×Cs is the transferred
feature map that compresses the channels ofX by a linear
transformation with WZ ∈ RC1×Cs . Ws1 ∈ RCs×Cs and
Ws2 ∈ RCs×C1 are two parameter-matrices that are used
to filter discriminative features and restore the number of
channels respectively. Then based on Eq. (6), the nonlocal
block can be formulated in the spectral view by generalizing
Ws1 into a set of graph filters gθ = {g1

θ , · · · ,giθ, · · · ,g
Cs
θ }:

Y =X +F(A,Z,Ws1)Ws2 =X +F(A,Z,gθ)Ws2,
(7)

where F(A,Z,gθ) is the “nonlocal operator in the spectral
view”. For clarity, we omit Ws2 by assuming C1 = Cs,
abbreviate F(A,Z,gθ) into F(A,Z) and call it “nonlocal
operator” in following paper.

In this view, the nonlocal operator firstly computes the
affinity matrix A that defines a graph spectral domain and
then learns filters gθ for graph spectral features. Specifically,
a fully-connected graph G = {V,A,Z} is constructed, in
which V is the vertex set. Then, for each column vector zi ∈
RN×1 of Z, a graph filter giθ is generated to enhance the
feature discrimination. From this perspective, the nonlocal
operator can be theoretically interpreted in the spectral view
as below:

Theorem 1. Given an affinity matrix A ∈ RN×N and the
signal Z ∈ RN×C , the nonlocal operator is the same as fil-
tering the signalZ by a set of graph filters {giθ,g2

θ , · · · ,gCθ }
under the graph domain of a fully-connected graph G:

F(A,Z) = [Oz1∗Gg1
θ
, · · · ,Ozi∗Ggiθ

, · · · ,OzC∗GgCθ
] (8)

where the graph G = (V,Z,A) has the vertex set V, node
feature Z and affinity matrix A. Ozi∗Ggiθ

∈ RN×1 is the
output signal on zi.
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Table 1: Summary of five existing nonlocal-based blocks in the spectral view.

Models Vertex (|V|) Edge (|E|) Affinity Matrix (A) Node Feature (Z) Formulation of F (A,Z)

Chebyshev - - - - ZW1 +AZW2 +
∑K−1

k=2 AkZWk

NL N N ×N D−1
M M XWZ AZW

A2 N N ×N M XWZ AZW

CGNL NCs NCs ×NCs D−1

MfM
f vec(XWZ) AZW

NS N N ×N D−1
M M XWZ −ZW +AZW

CC N N ×N D−1
C�M (C �M) X AZW

Remark 1. The main difference between Theorem. 1 and
the original spatial view of nonlocal [30] is that the for-
mer learns a graph filter to obtain the feature under the
spectral domain while the latter filters the feature by the con-
volutional operator without concerning the graph structure.
Moreover, to confirm the existence of the graph spectral
domain, Theorem.1 requires that the graph Laplacian L
should be diagonalized and not contain complex eigenval-
ues and eigenvectors. Thus the affinity matrixA should be
symmetric.

Specifically, a generalized implementation [6] of the out-
put signal on each column vector zi can be used for Theo-
rem. 1 by setting the graph spectral filter as a set of diagonal
parameter matrix Ωi ∈ RN×N :

Ozi∗Ggiθ
= UΩiU>zi (9)

where Ωi = diag([ω1, ω2, · · · , ωn]) contains n parameters.
In addition, new nonlocal operators can also be theoretically
designed by using different types of graph filters to obtain
output signal in Theorem. 1, such as Chebyshev filter [6, 20],
graph wavelet filter [8], Cayley filter [21].

3.2. Unifying Existing Nonlocal-based Blocks

The proposed “spectral view” provides a valid tool to
analyze the experimental designed nonlocal block on basis
of graph signal processing. To unify other nonlocal-based
blocks based on Theorem. 1, here we use the Chebyshev filter
for illustration (Cayley filter is also presented in appendix
2), i.e. using Chebyshev polynomials [6] to reduce the n
parameters in Ωi into K (K is the order of polynomials,
and K � N ). For simplicity, we firstly assume that both
the input and output signals have one channel, i.e. Z = z1
and F(A,Z) = UΩ1U>Z. Then the parameter matrix Ω1

of the graph filter approximated by Kth-order Chebyshev
polynomials is formulated as:

F(A,Z) =

K−1∑
k=0

θ̂kTk(L̃)Z, (10)

s.t. Tk(L̃) = 2L̃Tk−1(L̃)− Tk−2(L̃),

where L̃ = 2L/λmax − In, T0(L̃) = IN , T1(L̃) = L̃, and
θ̂k is the coefficient.

Note that the affinity matrix A is affected by the input
feature X rather than using a fixed graph structure. Thus,
an upper-bound exists for the maximum eigenvalue on all
possible affinity matrices, i.e. λmax = 2, when all their graph
Laplacian L are normalized graph Laplacian [26]. With this
assumption, we can get L̃ = −A and take it into Eq. (10):

F(A,Z) = θ0Z + θ1AZ +

K−1∑
k=2

θkA
kZ, (11)

where θk can be learned via SGD. Then, extending Eq. (11)
into multiple channels, we can get a generalized formulation
of the nonlocal operator with Chebyshev filter:

F(A,Z) = ZW1 +AZW2 +

K−1∑
k=2

AkZWk+1, (12)

where F (A,Z) is the nonlocal operator, Wk ∈ RCs×Cs
is a parameter matrix. Note that, when Cs 6= C1, it is
straightforward to merge Ws2 with Wk, which makes
Wk = Wk ∗Ws2 ∈ RCs×C1 .

Eq. (12) gives the connection between spatial view and
spectral view of the nonlocal operator, in which the graph
filter is expressed by the aggregation among the kth neighbor
nodes. Thus, existing nonlocal-based structures can be theo-
retically analyzed by Eq. (12) in the spectral view. Here we
elaborate 5 types of existing nonlocal-based blocks that can
be unified. They can be interpreted under certain graph struc-
tures and assumptions as shown in Table 1. More derivation
details can be found in appendix 1.
(1) NL block [30]: The NL block in the spectral view is
the same as defining the graph as G = (V,D−1M ,Z) and
then using the second term of the Chebyshev polynomials to
approximate the generalized graph filter.
(2) NS module [28]: The NS module in the spectral
view can be considered as the graph in the form of G =
(V,D−1M M ,Z). The 1st-order Chebyshev polynomials is
utilized to approximate the graph filter with the condition
W1 = −W2 = −W.
(3) A2 block [2]: The Double Attention Block can be viewed
as the graph G = (V,M ,Z) and then we can use the second
term of the Chebyshev polynomial to approximate the graph
filter, i.e F (A,Z) =MZW.
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Figure 2: The implementation of our SNL. A. Three feature maps φ, ψ, Z are generated by feeding the X into three 1× 1
convolutions. B. The second term of Eq. (13) is calculated with Z and a normalized symmetrization affinity matrix A.
Each row of A contains a N -dimension spatial attention map (heat maps) and z1, z2, · · ·, zn are the column vectors of Z
(for simplicity, here we pick n = 4 where the white squares are the central positions we visualize). C. The graph filter is
approximated by respectively feeding the 0th-order and 1st-order term into convolutions to obtain the output Y.

(4) CGNL block [34]: When grouping all channels into
one group, the CGNL can be viewed as the graph G =
(Vf ,D−1

MfM
f , vec(Z)), where Vf contain both spatial po-

sition and feature channel. Again we can also use the second
term of the Chebyshev Polynomial to approximate the graph
filter, i.e F (A,Z) =D−1

MfM
fvec(Z)W.

(5) CC block [17]: In the CC block, G = (V,D−1C�MC �
M ,X) with maskC and then the second term of the Cheby-
shev is used to approximate filters with node featureX .

3.3. Designing Spectral Nonlocal Blocks

Except for unifying the existing nonlocal blocks, our pro-
posed “spectral view” can also help to design novel nonlocal-
based blocks with theoretical guarantees. As an example, we
elaborate a more rational nonlocal block called Spectral Non-
local Block (SNL), which is still based on the Chebyshev
filter but has a stronger theoretical basis and robustness.

Based on the above section, existing nonlocal-based oper-
ators use the random walk normalized (NL, NS, CGNL, CC)
or the non-normalized affinity matrix (A2). The symmetry
property is not guaranteed and the performance depends on
the affinity kernel. This leads to the non-existence of the
graph spectral domain and causes large amounts of complex
eigenvalues for the graph Laplacian as discussed in Sec.3.1.
This problem is also magnified under the fully-connected
graph model of the nonlocal-based blocks.

Moreover, existing nonlocal blocks only use the second
term (NL, A2, CGNL, CC) or the 1st-order approximation
with sharing weight (NS) rather than the complete form
of the 1st-order approximation, which also hinders their
performance. Thus considering these factors, the proposed
SNL block applies a symmetry affinity matrix with a more

complete approximation as:

Y =X + Fs(A,Z) =X +ZW1 +AZW2, (13)

s.t. A =D
− 1

2

M̂
M̂D

− 1
2

M̂
, M̂ = (M +M>)/2

where Fs(A,Z) is the SNL operator, W1, W2 are two
parameter matrices.

Remark 2. The proposed SNL uses Chebyshev filter as the
generalized graph filter but has a more thorough formulation
analyzed by our proposed spectral view. Specifically, it uses
a symmetric affinity matrix A = D

− 1
2

M̂
M̂D

− 1
2

M̂
to ensure

the existence of the real eigenvalue. This makes it more sta-
ble when inserted into the deep neural networks. Moreover,
the proposed SNL also uses the complete form of 1st-order
Chebyshev Approximation that is a more accurate approxi-
mation of the graph filter. Thus, it can give the parameters a
liberal learning space with only one more parameter matrix.

The implementation details of the SNL block are shown
in Fig. 2 (A,B,C). The input feature map X ∈ RW×H×C1

is firstly fed into three 1×1 convolutions with the weight
kernels: Wφ,ψ,g ∈ RC1×Cs to subtract the number of chan-
nels and then be reshaped into RWH×Cs . One of the output
Z ∈ RWH×Cs is used as the transferred feature map to
reduce the calculation complexity, while the other two out-
puts Φ,Ψ ∈ RWH×Cs are used to get the affinity matrixA
with the affinity kernel function f(·). Then, A is made to
be symmetric and normalized as in Eq. (13). Finally, with
the affinity matrixA and the transferred feature map Z, the
output of the nonlocal block can be obtained by the Eq. (13).
Specifically, the two weight matrices W1,2 ∈ RCs×C1 are
yielded by two 1×1 convolutions.
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Table 2: The Performance of Nonlocal-based Blocks with Different Number of Transferred Channels on CIFAR-100

Non-Reduction Half-Reduction Quarter-Reduction
Models Top-1 (%) Top-5 (%) Models Top-1 (%) Top-5 (%) Models Top-1 (%) Top-5 (%)
PreResNet56 75.33↑0.00 93.97↑0.00 PreResNet56 75.33↑0.00 93.97↑0.00 PreResNet56 75.33↑0.00 93.97↑0.00

+ NL 75.29↓0.04 94.07↑0.10 + NL 75.31↓0.02 92.84↓1.13 + NL 75.50↑0.17 93.75↓0.22

+ NS 75.39↑0.06 93.00↓0.97 + NS 75.83↑0.50 93.87↓0.10 + NS 75.61↑0.28 93.66↓0.31

+ A2 75.51↑0.18 92.90↓1.07 + A2 75.58↑0.25 94.27↑0.30 + A2 75.61↑0.28 93.61↓0.36

+ CGNL 74.71↓0.62 93.60↓0.37 + CGNL 75.75↑0.42 93.74↓0.23 + CGNL 75.27↓0.06 93.05↓0.92

+ Ours 76.34↑1.01 94.48↑0.51 + Ours 76.41↑1.08 94.38↑0.41 + Ours 76.02↑0.69 94.08↑0.11

Table 3: The Performance of Nonlocal-based Blocks Inserted into Different Position of Deep Networks on CIFAR-100

Stage 1 Stage 2 Stage 3
Models Top-1 (%) Top-5 (%) Models Top-1 (%) Top-5 (%) Models Top-1 (%) Top-5 (%)
rereResNet56 75.33↑0.00 93.97↑0.00 PreResNet56 75.33↑0.00 93.97↑0.00 PreResNet56 75.33↑0.00 93.97↑0.00

+ NL 75.31↓0.02 92.84↓1.13 + NL 75.64↑0.31 93.79↓0.18 + NL 75.28↓0.05 93.93↓0.04

+ NS 75.83↑0.50 93.87↓0.10 + NS 75.74↑0.41 94.02↑0.05 + NS 75.44↑0.11 93.86↓0.11

+ A2 75.58↑0.25 94.27↑0.30 + A2 75.60↑0.27 93.82↓0.15 + A2 75.21↓0.12 93.65↓0.32

+ CGNL 75.75↑0.42 93.74↓0.23 + CGNL 74.54↓0.79 92.65↓1.32 + CGNL 74.90↓0.43 92.46↓1.51

+ Ours 76.41↑1.08 94.38↑0.41 + Ours 76.29↑0.96 94.27↑0.30 + Ours 75.68↑0.35 93.90↓0.07

4. Experiments

In this section, we validate the robustness of nonlocal-
based blocks with varying numbers, channels, and positions.
Then, we show the performance of the proposed SNL in
image classification tasks on Cifar-10/100, ImageNet, action
recognition tasks on UCF-101 dataset, and semantic segmen-
tation on Cityscapes dataset. The experimental results of
fine-gaining classification on CUB-200 datasets and person
re-identification task on ILID-SVID [29], Mars [27], and
Prid-2011 [14] datasets are given in the appendix 3. All the
methods are implemented using PyTorch [24] toolbox with
an Intel Core i9 CPU and 8 Nvidia RTX 2080 Ti GPUs.

4.1. Ablation Studies

Experimental Setup. Following Tao et al. [28], the robust-
ness testings are conducted on CIFAR-100 dataset containing
50k training images and 10k test images of 100 classes. Pre-
ResNet56 [12] is used as the backbone network. Unless
otherwise specified, we set Cs = C1/2 and add 1 nonlocal-
based block right after the second residual block in the early
stage (stage 1). The SGD optimizer is used with the weight
decay 10−4 and momentum 0.9. The initial learning rate is
0.1, which is divided by 10 at 150 and 250 epochs. All the
models are trained for 300 epochs.
The number of channels in transferred feature space.
The nonlocal-based block firstly reduces the channels of
original feature map C1 into the transferred feature space Cs
to reduce computation. The larger Cs is, the more redundant
information tends to be contained. This introduces the noise
when calculating the affinity matrixA. However, if Cs is too

small, the output feature map is hard to be reconstructed due
to inadequate features. To test the robustness for the value
of the Cs, we generate three types of models with differ-
ent Cs settings: Non-Reduction (Cs = C1), Half-Reduction
(Cs = C1/2), and Quarter Reduction (Cs = C1/4). Table 2
shows the experimental results of the 3 types of models with
different nonlocal-based blocks. Our SNL block outperforms
other models profited by the flexibility for learning.

Moreover, from Table 2, we can see that the performance
of the CGNL steeply drops when adopts large transferred
channels. The reason is that the CGNL block concerns the
relations among channels. When the number of the trans-
ferred channels increases, the relations among the redundant
channels seriously interfere with its effects. Overall, our
SNL block is the most robust for a large number of trans-
ferred channels (our model rises 1.01% in Top-1 while the
best of others only rise 0.18% over the backbone).
The stage/position for adding the nonlocal-based blocks.
The nonlocal-based blocks can be added into the different
stages of the PreResNet to form the Nonlocal Network. Tao
et al. [28] add them into the early stage of the PreResNet
to catch the long-range relations. Here we show the perfor-
mance of adding different types of nonlocal-based blocks
into the 3 stages (the first, the second, and the third stage
of the PreResNet) in Table 3. We can see that the results
of the NL block are lower than the backbones when added
into the early stage. However, our proposed SNL block has
an averagely 1.08% improvement over the backbone when
being added into the early stage, which is more than two
times over other types of blocks (0.42% for the best case).
The number of the nonlocal-based blocks. We test the ro-
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Table 4: Experiments for Adding Different Types of Nonocal-based Blocks into PreResnet56 and ResNet50 on CIFAR-10/100

CIFAR-10 CIFAR-100
Models Top-1 (%) Top-5 (%) Models Top-1 (%) Top-5 (%) Models Top-1 (%) Top-5 (%)
ResNet50 94.94↑0.00 99.87↑0.00 PreResnet56 75.33↑0.00 93.97↑0.00 ResNet50 76.50↑0.00 93.14↑0.00

+ NL 94.01↓0.93 99.82↓0.05 + NL 75.31↓0.02 92.84↓1.33 + NL 76.77↑0.27 93.55↑0.41

+ NS 95.15↑0.21 99.88↑0.01 + NS 75.83↑0.50 93.87↓0.10 + NS 77.90↑1.40 94.34↑1.20

+ A2 94.41↓0.53 99.83↓0.05 + A2 75.58↑0.25 94.27↑0.30 + A2 77.30↑0.80 93.40↑0.26

+ CGNL 94.49↓0.45 99.92↑0.05 + CGNL 75.75↑0.42 93.74↓0.23 + CGNL 74.88↓1.62 92.56↓0.58

+ Ours 95.32↑0.38 99.94↑0.07 + Ours 76.41↑1.08 94.38↑0.39 + Ours 78.17↑1.67 94.17↑1.03

bustness for adding different numbers of the nonlocal-based
blocks into the backbone. The results are shown in Table 5.
“×3” means three blocks are added into stage 1, 2, and 3,
respectively, and the accuracy in the brackets represents their
results. We can see that adding three proposed SNL opera-
tors into different stages of the backbone generates a larger
improvement (1.37%) than the NS operator and NL operator.
This is because these two models cannot well aggregate the
low-level features and interfere with the following blocks
when adding NS and NL into the early stage.

Table 5: Experiments for Adding Different Number of
Nonlocal-based Blocks into PreResNet56 on CIFAR-100

Models Top-1 (%) Top-5 (%)
PreResNet56 75.33↑0.00 93.97↑0.00

+ NL (×3) 75.31↓0.02 (74.34↓0.99) 92.84↓1.13 (93.11↓0.86)
+ NS (×3) 75.83↑0.50 (75.00↓0.33) 93.87↓0.10 (93.57↓0.40)
+ A2 (×3) 75.58↑0.25 (75.63↑0.33) 94.27↑0.30 (94.12↑0.15)
+ CGNL (×3) 75.75↑0.42 ( 75.96↑0.63) 93.74↓0.23 (93.10↓0.87)
+ Ours (×3) 76.41↑1.08 (76.70↑1.37) 94.38↑0.41 (93.94↓0.03)

4.2. Main Results

Image Classification. We use the ResNet50 [11] as the
backbone and insert the SNL block right before the last
residual block of res4 for a fair comparison. Other settings
for the CIFAR-10/100 are the same as the setting discussed
in Sec. 4.1. For the ImageNet, the SGD optimizer is used
with the weight decay 10−4 and momentum 0.9. The initial
learning rate is set to be 0.01, which is divided by 10 at 31,
61, and 81 epochs. All the models are trained for 110 epoch.

Table 4 shows the results on the CIFAR datasets. When
adding SNL, it improves the Top-1 accuracy by 0.38% abso-
lutely, which is nearly two times over other nonlocal-based
blocks (the best is 0.21%). For CIFAR100, using SNL brings
significant improvements about 1.67% with ResNet50.
While using a more simple backbone PreResnet56, our
model can still generate 1.08% improvement which is not
marginal compared with previous works [30, 28, 34].

The results of ImageNet are shown in Table 6. Note
that we exhibit other results from their original paper. Our

Table 6: Results on ImageNet Dataset

Models Top-1 (%) FLOPs (G) Size (M)
ResNet50 76.15↑0.00 4.14 25.56

+ CGD 76.90↑0.75 +0.01 +0.02

+ SE 77.72↑1.57 +0.10 +2.62

+ GE 78.00↑1.85 +0.10 +5.64

+ NL 76.70↑0.55 +0.41 +2.09

+ A2 77.00↑0.85 +0.41 +2.62

+ simpNL[33] 77.28↑1.13 - +1.05

+ CGNL 77.32↑1.17 +0.41 +2.09

+ Ours 78.11↑1.96 +0.51 +2.62

Figure 3: A. The visualization of the feature maps when
adding SNL into the the backbone. B. The visualization of
the attention maps for two positions (“Pink” and “Orange”
dots). The heatmaps show the strength of similarity.

SNL achieves a clear-cut improvement (1.96%) with a minor
increment in complexity (12% and 10% higher in FLOPs
and Size respectively) compared with the nonlocal-based
blocks. Moreover, our SNL is also superior to other types
of blocks such as SE [16], CGD [13] and GE [15] (0.11%
higher in Top-1 and 2.02M lower in size than the GE block).

We also visualize the output feature maps of the ResNet50
with SNL and the original ResNet50 in Fig. 3 A. Benefited
from the rich and structured information considered in SNL,
the response of the similar features among long-range spatial
positions are enhanced as shown in the two mushrooms,
balls, and those animals. Moreover, Fig. 3 B shows the
attention maps produced by our SNL and the original NL
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block where the “Pink” and “Orange” dots are the central
positions and the heatmaps represent the similarity between
the central position and other positions. Compared with
the original NL block, SNL can pay more attention to the
crucial parts than the original NL block profited by the better
approximation formation as discussed in Sec. 3.3.
Action Recognition. Experiments are conducted on the
UCF-101 dataset, which contains 7912 training videos and
1625 test videos of 101 different human actions. Our SNL
block is tested on the UCF-101 dataset for capturing the
dependence for the temporal frames. We follow the I3D
structure [9] which uses k × k × k kernels to replace the
convolution operator in the residual block to learn seamless
spatial-temporal feature extractors. The weights are initial-
ized by the pre-trained I3D model on Kinetics dataset [18].
Inserting nonlocal-based blocks into the I3D can help to
capture the relations among frame pairs with long distance
and improve the feature representation. In the training pro-
cess, each input video clip is cropped into 124 ∗ 124 ∗ 16 to
train our model. An initial learning rate of 0.01 is adopted,
which is subsequently divided by 10 each 40 epoch. The
training stops at the 100 epoch. Other hyper-parameters of
the experimental setup are the same in Sec. 4.1.

Table 7: Results on UCF-101 Datasets

Models Top-1 (%) Top-5 (%) FLOPs (G) Size (M)
I3D 81.57↑0.00 95.40↑0.00 10.10 47.02

+ NL 82.88↑1.31 95.74↑0.34 + 0.21 + 2.10
+ NS 82.50↑0.93 95.84↑0.44 + 0.26 + 2.10
+ A2 82.68↑1.11 95.85↑0.45 + 0.21 + 2.10

+ CGNL 83.38↑1.81 95.42↑0.02 + 0.21 + 2.10
+ Ours 84.39↑2.82 97.66↑2.26 + 0.26 + 2.62

Table 7 (UCF-101) shows the clip-level Top1 and Top5
metrics on the action recognition. The network with our
SNL generates significant improvements (2.82%) than the
backbone and outperforms all other nonlocal-based models.
It shows that our proposed SNL is also effective to catch the
long-range dependencies among the temporal frames. We
also conduct the experiments on UCF-101 dataset with other
state-of-the-art action recognition models in appendix 3.
Semantic Segmentation. NL-based blocks are widely used
in semantic segmentation due to the requirement of large re-
spective fields. Thus, both experiments and ablation studies
are conducted on Cityscapes dataset, which contains 2975
train images and 500 validation images of the urban scene.
For a fair comparison, the “mmsegmentation toolbox” [3]
is used with the recommendation hyper-parameter for NL-
based blocks. Specifically, the “ResNet50 with two FCN
decoders” [25] were used as the baseline model, where the
first FCN was replaced by NL-based blocks with setting
Cs = C1/4. SGD optimizer with momentum 0.9, weight

Table 8: Experiments for Nonocal-based Blocks Added into
ResNet50-FCN on Cityscapes Dataset

Models mIoU(%) mAcc(%) FLOPs(G) Size(M)
Backbone 69.19↑0.00 76.60↑0.00 395.76 47.13

NL 74.15↑4.96 81.83↑5.23 +4.31 +0.53

NS 75.44↑6.25 83.36↑6.76 +5.37 +0.53

CC 75.34↑6.15 82.75↑6.15 +5.37 +0.33

DNL 76.19↑7.00 84.61↑8.01 +4.31 +0.53

SNLa1 75.76↑6.57 83.58↑6.98 +4.31 +0.53

SNLa2 75.94↑6.75 83.85↑7.25 +5.37 +0.66

SNL 76.87↑ 7.68 84.75↑ 8.15 +5.37 +0.66

decay 5e−4, and initialization learning rate 0.01 are used to
train all the NL-based networks for 40k iterators, where poly
strategy with power 0.9 is used to adjust the learning rate.

Table 8 shows the experimental results of NL-based net-
works on Cityscapes dataset. To evaluate the effectiveness of
the two modifications of the proposed SNL, two new blocks
SNLa1 and SNLa2 are conducted to consider the symmetriza-
tion affinity or “the 1st-order” Chebyshev term respectively.
It can be seen that compared with the original NL block,
our (SNLa1) improves 1.61 in mIoU and 1.75 in mAcc with
no complexity increasing benefited from confirming the ex-
istence of the graph spectral domain. As for the effect of
Chebyshev term, using “the 1st-order ” (SNLa2) is the best,
and the “sharing weight 1st-order” (NS) is better than using
“only the 1st-order term” (NL). Besides, when combining
these two factors, the performance of our SNL is 0.68 higher
in mIoU and 0.14 higher in mAcc with only 0.13M higher
model size than the state-of-the-art DNL block [32].

5. Conclusion
This paper provides a novel perspective for the model

design of nonlocal-based blocks. In this context, we make
the connection between different variants of nonlocal meth-
ods and graph signal processing. Five well-known nonlo-
cal blocks are unified and interpreted under the perspective
of graph filters. A novel nonlocal block called SNL with
stronger theoretical basis is proposed. It works universally
well across a wide array of vision tasks and offers better
performance than other nonlocal-based counterparts. Future
work will focus on designing novel nonlocal blocks based on
our spectral view and extending our spectral view on other
self-attention based modules such as the vision transformer.
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