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Figure 1: Illustration of 3D semantic segmentation using image-level class labels as supervision. This figure shows: (1) input
3D cryo-ET image; (2) ground truth segmentation; (3) semantic segmentation generated by Grad-CAM baseline. It only
covers the most discriminative area; (4) Grad-CAM results augmented by our cross-image co-occurrence learning module. It
is able to cover more integral areas; (5) segmentation generated by our CIVA-Net, which utilizes inter-voxel affinity relations
to predict segmentation with accurate class boundaries. We do not visualize noise for better visualization purposes1.

Abstract

We propose a novel weakly supervised approach for 3D
semantic segmentation on volumetric images. Unlike most
existing methods that require voxel-wise densely labeled
training data, our weakly-supervised CIVA-Net is the first
model that only needs image-level class labels as guid-
ance to learn accurate volumetric segmentation. Our model
learns from cross-image co-occurrence for integral region
generation, and explores inter-voxel affinity relations to
predict segmentation with accurate boundaries. We em-
pirically validate our model on both simulated and real
cryo-ET datasets. Our experiments show that CIVA-Net
achieves comparable performance to the state-of-the-art
models trained with stronger supervision.

1Note that we use UCSF Chimera for 3D cryo-ET image visualiza-
tion. For raw 3D images, the software will choose a threshold based on
expert knowledge and denote the foreground voxels by light color, and
noise/background voxels by black color. For binary segmentation masks,
it will denote the foreground voxels by light color, and background voxels
by black color.

* Corresponding Author

1. Introduction

Recently, there has been an increasing interest in seman-
tic segmentation for 3D images [66, 11, 50, 42]. 3D se-
mantic segmentation methods that rely on point-wise an-
notations have been successfully developed and achieved
promising performance [11, 50, 42]. However, the full
segmentation methods are generally data-hungry. To al-
leviate the time and labor-intensive data annotation pro-
cess, weakly-supervised methods have been widely devel-
oped for two popular 3D data representations: point clouds
[56, 53, 41, 40] and meshes [47, 7]. As the dominant 3D
representation for biomedical images, voxel grids have not
figured prominently in these developments, especially in the
area that uses image-level class labels as supervision for full
semantic segmentation. Existing weakly-supervised volu-
metric segmentation approaches still highly rely on the su-
pervision of 2D slices [9, 13], bounding boxes [57, 62] or
sparse point annotations [43].

In this paper, we introduce a weakly supervised learn-
ing approach using image-level labels for 3D volumetric
segmentation, with the focus on cryo-electron tomography
(cryo-ET). In recent years, cryo-ET emerges as a revolu-
tionary in situ 3D structural biology imaging technique for
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studying macromolecular complexes and virus structures in
single cells [10]. Cryo-ET captures the 3D native struc-
ture and spatial distribution of all macromolecular com-
plexes and other subcellular components without disrupt-
ing the cell [30]. During the COVID-19 pandemic, cryo-
ET serves as a powerful imaging technique to study the
structures of individual viruses and their interaction with
host cells [24, 36]. Nevertheless, cryo-ET data is heav-
ily affected by a low signal-to-noise ratio (SNR) due to
the complex cytoplasm environment and missing wedge ef-
fects. Moreover, the cryo-ET based COVID-19 analysis is
greatly impeded by the lack of ground truth data for model
training. The ground truth masks of cryo-ET tomograms
are generally obtained by template matching or human an-
notation. Template matching takes about 81 days to obtain
the ground truth masks of one structure on one tomogram
using one CPU core. If we use human annotation, annotat-
ing all structures on one tomogram takes about a month by a
structural biology expert. To help the timely understanding
of the virus infection, accurate semantic segmentation for
3D structures needs to be performed with fewer annotation
efforts required.

Therefore, we propose a weakly-supervised 3D volumet-
ric segmentation method based on image-level class labels.
In our setting, image-level labels only indicate the classes
that appeared in our input samples. Consider the example
in Figure 1, there are three main challenges regarding se-
mantic segmentation on cryo-ET images with image-level
supervision. First, the cryo-ET images suffer from severe
imaging limits such as noise and missing wedge effects
(See Figure 3). Such limits greatly impede robust and ac-
curate 3D semantic segmentation. Second, most of the ad-
vanced weakly supervised semantic segmentation (WSSS)
methods on 2D images are based on class activation maps
(CAM). However, the CAMs can only cover the most dis-
criminative area of the object and sometimes can incorrectly
activate background regions, which can be summarized as
under-activation and over-activation problems. The model
thus cannot predict segmentation with accurate class bound-
aries. Third, the volumetric segmentation problem would be
more challenging in 3D images due to the complex spatial
structures, where semantic segmentation requires accurate
boundary prediction.

To overcome the aforementioned challenges, we present
a novel framework that utilizes both cross-image consen-
sus and inter-voxel affinity relations. To address the under-
activation and over-activation issues brought by CAM, we
utilize the cross-image consensus among the same image
group (i.e. images with the same class labels) to generate
more consistent and integral object regions. This design
provides high-quality supervision for the segmentation net-
work. To detect accurate segmentation boundaries of com-
plex 3D structures with only image-level labels available,

we utilize the fine-grained inter-voxel affinity relations for
the training of the segmentation network. Our framework
can yield robust segmentation as it utilizes both cross-image
and inter-voxel relations. To the best of our knowledge, we
are the first to propose a 3D volumetric semantic segmen-
tation model based on image-level supervision. To summa-
rize, the contributions of this paper are three-fold:

• We propose a cross-image co-occurrence learning
module to tackle the challenges brought by CAM and
imaging limits.

• We propose an inter-voxel affinity learning module to
predict segmentation with accurate boundaries of com-
plex 3D structures with only image-level class labels
available.

• Our experiments show that our method, namely CIVA-
Net, achieves comparable performance to state-of-the-
art models trained with stronger supervision.

2. Related Work
Weakly Supervised Semantic Segmentation on 2D Im-
ages. Recent studies [25, 48, 34, 8] presented promis-
ing results in 2D semantic segmentation with weak labels.
Different kinds of supervision have been studied to reduce
the labor cost for dense annotations, such as bounding box
[25, 48], scribble [34], and point annotation [8]. Among
those types of supervision, the image label is more popular
as it requires the cheapest labor cost. The general frame-
work for image-level tasks was firstly generating pixel-level
seeds by using CAM-based methods [63] and then using
these seeds as pseudo-supervision to train a full segmen-
tation network. However, as CAM often failed to find the
integral object region, several works [28, 6, 5] were pro-
posed to improve the accuracy of pseudo-labels. Compared
to 2D weakly-supervised methods, 3D volumetric segmen-
tation is more challenging as it involves imaging limits and
more complex 3D spatial structures.

Object Co-Segmentation on 2D Images. Object co-
segmentation aims to predict the segmentation of common
objects for an image group [17, 21, 16, 65]. Many 2D co-
segmentation approaches were trained with strong pixel-
level masks [12, 31]. Some weakly supervised methods
used co-segmentation for initial seeds generation or in-
corporated the co-segmentation module to an end-to-end
framework [46, 16]. However, 3D object co-segmentation
has not been fully explored. We propose a novel cross-
image co-occurrence learning module to generate consistent
and integral object areas.
Semantic Segmentation on 3D Images. Current 3D se-
mantic segmentation approaches can be put into three cat-
egories: supervised, semi-supervised, and unsupervised

2835



1x1 conv, 32

1x1 conv, 32

1x1 conv, 32

1x1 conv, 32

1x1 conv, 32

Group Consensus 
Embedding

Co-occurrence Learning

3
2

 C
o

n
v

M
a

x
 

P
o

o
lin

g

6
4

 C
o

n
v

M
a

x
 

P
o

o
lin

g

F
C

S
o

ftm
a

x

x2 x2

G
ro

u
p

 E
m

b
e

d
d

in
g

Segmentation with 
Accurate Class 

Boundaries

Cross-Image Co-Occurrence Learning

Initial Seed Generation

Co-Occurrence Map

Grad-CAM Map

Localization Map

Inter-Voxel Affinity Learning

G
ro

u
p

 E
m

b
.

1x1 conv, 1

S
o

ftm
a

x

x2

S
in

g
le

  
E

m
b

.

VoxResNet

G
ro

u
p

 In
p

u
t

Sin
gle

 In
p

u
t

Sin
gle  In

p
u

t

Figure 2: Network architecture of CIVA-Net. The left part includes the initial seeds generation module, which is combined
with a cross-image co-occurrence learning module to generate more integral seed areas. For the initial seed generation, Grad-
CAM is used to take single images as input to train a classification network. For the cross-image co-occurrence learning
module, it takes group image as input to generate the co-occurrence map by utilizing group consensus embedding. Those two
branches are combined at the end to produce the final localization map. The right part contains the inter-voxel affinity learning
module. It utilizes the voxel affinity pairs sampled from the localization map to train a full segmentation network. During
inference time, the inter-voxel affinity learning module will take raw 3D images as input to predict semantic segmentation
results.

learning. Supervised learning approaches have gained pop-
ularity in recent years [13, 11]. Cicek et al. proposed 3D U-
Net [13] which extended previous U-Net architecture by re-
placing all 2D operations with their 3D counterparts. Chen
et.al proposed VoxResNet [11] which was inspired by deep
residual learning in 2D image recognition tasks. To re-
duce the need for large-size densely-labeled training data,
some researchers proposed semi-supervised approaches for
biomedical image segmentation [13, 43, 18]. For example,
2D slices were proposed as supervision to predict full ob-
ject segmentation [13]. Point annotations were also adapted
to reduce human annotation costs [43]. Other research pro-
posed a network that was optimized by the weighted combi-
nation of a common supervised loss for labeled inputs and
used a regularization loss for both labeled and unlabeled
data [32]. Several unsupervised learning methods were
based on learning anatomical prior [14] or training adver-
sarial networks [23]. However, there is still a lack of volu-
metric segmentation methods based on image-level class la-
bels, which can greatly reduce the annotation time and cost.
Therefore, we propose a novel framework in order to pre-
dict accurate semantic segmentation with only image-level
supervision.

3. Our Weakly Supervised Setting

In this section, we introduce image-level supervision for
our weakly-supervised setting.

Among weak labels for 3D volumetric images, image-
level annotation is the cheapest way. Image-level class la-

bels refer to the classes that appeared in our input sam-
ples. Although researchers developed many successful
approaches on 2D weakly supervised segmentation using
image-level labels [6, 5, 51], there are three major chal-
lenges for using image-level class labels in 3D weakly su-
pervised segmentation compared to 2D images: (1) 3D data
are reconstructed from multiple 2D image sequences, which
usually contain much more information than a single image.
Thus, a single label for a 3D volumetric image is consider-
ably coarse. (2) 3D biomedical data, especially for cryo-ET,
have heavy noise due to imaging limits, which is not com-
mon for 2D images in the wild [35, 64]. (3) Some objects
represented in 3D spaces usually have visible holes, while
most 2D objects are solid. Therefore, state-of-the-art 2D
models in weakly-supervised segmentation are not suitable
for 3D volumetric images.

4. Method
4.1. Overview

In this section, we describe our model for 3D seman-
tic segmentation using image-level class labels as supervi-
sion, which we call CIVA-Net. The input of our model in-
cludes a single image and its class label c; and an image
group that shares the same class label c. Our model con-
tains two novel designs: (1) a cross-image co-occurrence
learning module for integral region generation; (2) an inter-
voxel affinity learning module that explores voxel affinity
relations for precise semantic segmentation. In summary, it
has the following four key components:
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Initial Seed Generation takes a single image as input to
train a classification network and generates pseudo voxel-
level label.
Cross-Image Co-Occurrence Learning (CO) first obtains
group consensus embedding from the image group. Then,
it turns back to segment the common areas for the single
image through co-occurrence learning. The co-occurrence
map is combined with the initial seeds to produce the final
localization map.
Inter-Voxel Affinity Learning (IVA) is proposed to ex-
plore the fine-grained inter-voxel relations from the local-
ization map for voxel affinity pairs generation.
Semantic Segmentation under Affinity Supervision is to
predict the full image segmentation under the supervision
of voxel affinity pairs.

See Figure 2 for a high-level summary of the model, and
the sections below for more details.

4.2. Initial Seed Generation

Following previous weakly-supervised methods [54, 16,
22], we choose the CAM-based method to generate initial
localization clues on 3D volumetric data. We use the Grad-
CAM [44] with a 3D convolutional neural network as the
model backbone. Grad-CAM plays three important roles in
our model. First, the localization map produced by Grad-
CAM is used to define seed areas of objects. Second, the
3D CNN backbone of Grad-CAM is used as a feature en-
coder to produce group consensus, as described in Section
4.3. Third, Grad-CAM is used to produce image-level class
labels during model inference.

We first train a classification network using the image-
level labels and then obtain the pseudo segmentation label
for certain classes via Grad-CAM. Specifically, given an im-
age, in order to obtain the localization map Gc ∈ RT×U×V

of depth T , width U , and height V for class c, we com-
pute the gradient of the score for class c, yc (layer before
the softmax), with respect to feature map activations Am.
These gradients are average-pooled over the width, height
and depth dimensions, which is denoted as:

αc
m =

1

Z

∑
i

∑
j

∑
k

∂yc

∂Am
ijk

. (1)

Then a weighted combination of activation maps along
with a ReLU layer are used to obtain the initial localization
map:

Gc
s = ReLU

(∑
m

αc
mA

m

)
. (2)

Then we perform spline interpolation [20] to resize the
T × U × V localization map to the original image size
D×H ×W , where D, H , and W denote the image depth,
height, and width, respectively.

4.3. Cross-Image Co-Occurrence Learning

Unlike most of the existing weakly-supervised methods
which learned from independent images [6, 5, 53], we pro-
pose a model to utilize cross-image relations to generate a
more integral and consistent object area. The model aims to
tackle the over-activation and under-activation challenges
brought by Grad-CAM. The model first receives a group
of images as input for the generation of a consensus repre-
sentation [60] in a high-dimensional space with a learned
feature encoder. This feature space represents the common
patterns of the image group that shares the same class label.
Then the model turns back to segment the common areas
for each sample by computing a co-occurrence map.

Specifically, given a group of images I = {In}Nn=1 with
the same class label c, we first obtain its group consensus
embedding. We employ the 3D convolutional network of
Grad-CAM by removing the last fully connected layers as
the 3D feature encoder F . Our proposed method first ex-
tracts latent features en = F(In) of each single image In.
The group consensus representation ê of image group I can
be calculated by:

ê = Softmax

(
N∑

n=1

en

)
. (3)

ê describes the common attributes of this image group. We
aim to obtain the co-occurrence matrix between individual
image feature en ∈ RC×D×H×W and the consensus em-
bedding ê ∈ RC×D×H×W , where C, D, H , W represent
channel size, image depth, height and width. We first re-
shape en and ê to RC×N , and then perform a matrix mul-
tiplication between en transpose and ê. The result is an
N ×N matrix. Then we apply the max pooling operation
to the second dimension of the matrix and get anN × 1 ma-
trix. Finally, we shape the N × 1 matrix back to the input
image shape, which isD ×H ×W . This matrix represents
the co-occurrence relations between the individual image
and group consensus embedding in voxel-level. The final
co-occurrence map for class c is denoted as P c.

To generate a consistent and integral segmentation for
each individual image, we combine the co-occurrence map
P c and class-discriminative localization map Gc obtained
in Section 4.2 by:

M c
ijk = w1G

c
ijk + w2P

c
ijk, (4)

where M c
ijk is the voxel-level element in the merged local-

ization map M c. Note that we apply rank normalization
[49] to Gc and P c before the combination.

4.4. Inter-Voxel Affinity Learning

Most of the existing weakly-supervised learning work
directly trained a full segmentation network using the aug-
mented voxel-wise pseudo labels [54, 55]. However, as
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Figure 3: Semantic segmentation under the supervision of
voxel affinity pairs. The figure shows: (1) the input biomed-
ical image with heavy noise; (2) pseudo labels generated by
localization map M c; (3) voxel affinity pairs (S-) sampled
from M c; (4) semantic segmentation generated by CIVA-
Net. We only show one of the 2D slices for better visualiza-
tion purposes.

the pseudo labels are not accurate, especially at the object
boundaries, the model may not be able to learn from those
inaccurate labels in an ordinary full segmentation manner.
Inspired by [5], we aim to utilize inter-voxel relations to
force the model to predict object segmentation with pre-
cise class boundaries. We will first sample the voxel affinity
pairs from the coarse localization map obtained in Section
4.3. Then, the model will train a segmentation network us-
ing the affinity pairs as supervision.

Inter-Voxel Affinity Mining. Because semantic segmen-
tation requires precise object boundary prediction, inspired
by [5], we propose a method to explore fine-grained inter-
voxel relations of the localization map. Therefore, we care-
fully examine the merged localization map M c to sample
voxel affinity pairs. We first convert each voxel to a fore-
ground or background class based on a threshold of Ŝ. For
foreground voxels, we further construct a class-map from
M c by choosing the class with the best score for each voxel.
We obtain the pseudo class-map M̂ where each voxel de-
notes the most probable class including a background class.
Finally, we sample voxel pairs from the pseudo class-map
M̂ , and categorize them into two sets S− and S+

bg:

S =
{
(p, q) | ‖xp − xq‖ < γ, ∀p 6= q

}
, (5)

S− =
{
(p, q) | M̂(xp) 6= M̂(xq), (p, q) ∈ S

}
, (6)

S+bg =
{
(p, q) | M̂(xp) = M̂(xq) = 0, (p, q) ∈ S

}
, (7)

where (p, q) is the index of voxel affinity pair, and both xp
and xq are of the form (i, j, k). γ is a radius limiting the
maximum distance of a pair. 0 in Eqn 7 represents the back-
ground class. S represents the voxel pairs in which the dis-
tance of each pair is less than the radius γ. S− represents
a set of voxel pairs in which p and q have different class
labels. S+

bg represents a set of voxel pairs in which p and q
have the same background class labels.

Semantic Segmentation with Voxel Affinity Supervision.
We propose an inter-voxel affinity network (IVA) which
predicts semantic segmentation with precise class bound-
aries. The input of the network is the 3D volumetric image
and its voxel affinity pairs which are used as supervision
for the network training. The network structure is shown in
Figure 2. It uses VoxResNet [11] as the backbone network.
Similar to the network structure used in [5], we first apply
1×1 convolution to each input feature map, and then the
results are resized, concatenated, and fed into the last 1×1
convolution layer. Different from [5] which first predicted
class boundaries and then used a separate propagation step
to obtain the segmentation, our model directly predicts the
object segmentation O ∈ [0, 1]D×H×W and can be opti-
mized in an end-to-end manner. Because no ground-truth
segmentation is available for training, we utilize the voxel
affinity pairs to generate precise segmentation boundaries.
The key assumption is that a class boundary exists some-
where between a pair of voxels with different class labels.
Specifically, any path between negative pairs in Eqn. 6 must
contain at least one foreground voxel (denotes as 1); any
path between positive pairs in Eqn. 7 should only contain
background voxels (denote as 0). The pair distance is lim-
ited by radius γ. As the 3D object could have visible holes,
we do not sample foreground voxel pairs to supervise the
model training. We propose the following 3D affinity ma-
trix. For each pair of voxels xp and xq , we define their
semantic affinity apq as:

apq = 1− max
k∈Πpq

O(xk), (8)

where Πpq is a set of voxels on the path between xp and xq .
The learning of apq is supervised by the sampled voxel

affinity pairs, which is equivalent to minimize the cross-
entropy between the one-hot vector of the binary affinity
and the predicted affinity:

LO = −
∑

(p,q)∈S−

log(1− apq)

2|S−|
−

∑
(p,q)∈S+

bg

log apq

2|S+
bg|

.

4.5. Training

During the training of Grad-CAM backbone, we use
cross-entropy loss for class label prediction:

LB =

N∑
i=1

CE(clsi, cls∗i), (9)

where clsi is the predicted label and cls∗i is the ground truth
label. After obtaining the class-discriminative map gener-
ated by Grad-CAM, the 3D convolutional neural network is
used as a feature encoder for image groups in co-occurrence
learning. We get the merged localization map M c by com-
bining the Grad-CAM map and co-occurrence map. We
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then sample voxel affinity pairs by exploring affinity rela-
tions in M c. These pairs are used as supervision for the
training of the inter-voxel affinity network using loss LO
described in Section 4.4. The final loss of our proposed ap-
proach is calculated using:

L = LB + LO. (10)

4.6. Inference

To predict the semantic segmentation for each image, we
first use Grad-CAM to predict its class label c. Then we
obtain the Grad-CAM map of class c and convert it to bi-
nary map Ḡc. The 3D biomedical image is used as input
for the inter-voxel affinity network to predict object seg-
mentation. Because a single image could contain multiple
target objects, we first retrieve the segmentation boundary
proposals O1

b ,O2
b , ...,On

b and choose the proposal that has
the highest mIoU with Ḡc as the final segmentation. To fur-
ther leverage the low-level contextual information, we im-
plement 3D-CRF which replaces the original CRF [29] with
3D counterparts to refine the segmentation results.

5. Experiment
In this section, we compare our CIVA-Net with the state-

of-the-art baselines on both simulated and real datasets of
cryo-ET at different signal-to-noise ratios (SNR). We ran-
domly split each dataset into training, test, and validation
set, with ratios 70%, 15%, and 15%, respectively. We train
our model on the training set, choose hyper-parameters of
CIVA-Net based on the validation set, and report our results
on the test set.

5.1. Dataset

We follow common practice in cryo-ET analysis to eval-
uate our method on subtomograms [58, 59]. A subtomo-
gram from a tomogram is a small cubic volume generally
containing one macromolecule structure. To test the robust-
ness and generalization of CIVA-Net, we process both sim-
ulated and real datasets to obtain submotograms containing
one major structure and its neighbor structures.

Simulated Datasets. The subtomogram dataset simula-
tion utilizes a standard procedure in work [15], which takes
into account the tomographic reconstruction process with
missing wedges and contrast transfer function [37, 38]. Be-
sides the COVID-19 structural class, we also choose three
representative macromolecule complexes in our simulated
datasets (1bxn, 1f1b, and 1yg6). We simulate two datasets
close to experimental conditions for all four classes, with
SNR 0.03 and 0.05. Each dataset consists of 1,000 samples
for each structure. Following prior work [59, 33], we resize
each subtomogram to 323 due to GPU memory constraints.
The simulated dataset contains 8,000 samples in total.

Real Dataset. To validate our model in experimental con-
ditions, we use the publicly available Poly-GA dataset as
our real dataset [19]. This dataset contains 756 subtomo-
grams with unbalanced classes. It consists of 617 Ribo-
some subtomograms, 58 26S subtomograms, and 81 TRiC
subtomograms. Such unbalanced class distribution is com-
mon in biomedical image processing. Each subtomogram
is rescaled to size 323.

5.2. Evaluation Metrics

Following prior work [52, 4], we use the standard metrics
of the mean intersection of union (mIoU) in these experi-
ments. We also compute the class-specific mIoU to measure
the model performance for each class.

5.3. Baseline Methods

Image-level Baselines. Following existing work [53],
CAM-based methods are chosen as image-level baselines
when there is no existing literature on 3D segmentation us-
ing image-level supervision. We choose Grad-CAM [44]
and Respond-CAM [61] with the 3D CNN backbone as our
baselines. We use the open-source implementation from
[1].
State-of-the-art Baselines with Stronger Supervision.
We also compare CIVA-Net with two of the state-of-the-art
3D segmentation models, 3D U-Net and VoxResNet using
the open-source code from [2] and [3]. For 3D segmen-
tation trained with 2D slice supervision, 3D U-Net is one
of the state-of-the-art models. We train 3D U-Net with the
ground truth segmentation of one 2D slice, which covers
6.8% ground truth voxels. VoxResNet is trained with 3D
full segmentation. Specifically, 2D slice supervision means
the network learns from one 2D slice annotation and pre-
dicts a dense 3D segmentation. Full segmentation supervi-
sion is used when the full 3D masks are available, and the
network densely segments new volumetric images.

5.4. Implementation Details

Grad-CAM and Respond-CAM use the same network
structure in [61] and share the same hyper-parameter set-
tings and training configurations. The models are trained
with a learning rate of 0.001. Adam [27] is used as the
optimizer with batch size 32. The networks converge at
about 20 epochs. 3D U-Net is trained with a learning rate
of 0.0002. Adam [26] is used as the optimizer with batch
size 1. We use the same hyper-parameter settings and train-
ing configurations for the experiments with 2D slices and
full segmentation supervision. The network converges af-
ter about 50 epochs. For the training of VoxResNet, the
learning rate is initially set to 0.001 and decreases at every
iteration with exponential decay [45]. Adam [26] is used as
the optimizer with batch size 16. The model converges after
about 200 epochs.
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SNR003 SNR005
Method mIoU 1bxn 1f1b 1yg6 covid mIoU 1bxn 1f1b 1yg6 covid
Respond-CAM 15.2 27.0 12.4 2.31 19.1 9.9 6.6 11.9 1.9 19.0
Grad-CAM 14.8 20.3 15.3 1.44 22.3 9.7 11.1 0.2 24.6 24.0
CIVA-Net 20.6 29.2 12.4 6.89 34.1 24.4 16.9 11.7 38.6 30.5
CIVA-Net (3D-CRF) 39.9 48.2 28.7 52.6 30.0 38.8 46.4 24.3 55.8 28.7

Table 1: Comparison of CIVA-Net and the image-level baselines on two realistically simulated datasets.

Figure 4: Visualization of the semantic segmentation results. We use Grad-CAM as the visualization baseline.

Method mIoU ribo 26S TRiC

Respond-CAM 12.8 14.5 6.1 2.7
Grad-CAM 19.0 22.8 0.4 0.0
CIVA-Net 36.1 37.1 25.4 36.3
CIVA-Net (3D-CRF) 67.8 74.2 32.3 39.9

Table 2: Comparison of CIVA-Net and the image-level base-
lines on the real dataset.

For our CIVA-Net, it directly uses the Grad-CAM base-
line as a part of its backbone network. The inter-voxel affin-
ity network is trained from scratch and uses Stochastic Gra-
dient Descent for network optimization with batch size 1.
The learning rate is initially set to 0.0001 and decreases
at every iteration with polynomial decay [39]. The model
converges after about 3 epochs. The radius γ used in affin-
ity pairs sampling is set to 2, and other hyper-parameters
are determined by the validation set for each dataset. The
model trained on 4,000 subtomograms takes 8 hours to con-
verge with a single GTX 1080 Ti machine.

Method mIoU003
snr mIoU005

snr mIoUreal

Supervision: Voxel-level
3D U-Nets 30.3 34.2 52.7
VoxResNetf 77.0 78.5 89.8
Supervision: Image-level
Ours 39.9 38.8 62.7

Table 3: Comparison of CIVA-Net and the state-of-the-art
semantic segmentation models on both simulated and real
datasets. 3D U-Nets is 3D U-Net trained with 2D slices.
VoxResNetf is VoxResNet model trained with full segmen-
tation supervision.

5.5. Quantitative Results

Comparison to Image-Level Baselines. Table 1 lists the
evaluation results on two simulated datasets. As we can
see, our model outperforms two image-level baselines in
all classes and performs significantly better in the average
mIoU metric. We report the mIoU evaluation results on
the real dataset in Table 2. Our model also achieves su-
perior performance on both average mIoU and class mIoU.
For some classes with significantly fewer samples (26S and
TRiC), our model can also generalize to these unbalanced
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Grad-CAM CO IVA 3D-CRF mIoU003
snr mIoU005

snr mIoUreal

X 14.8 9.7 19.0
X X 17.9 18.3 20.5
X X X 20.6 24.4 36.1
X X X X 39.9 38.8 62.7

Table 4: Performance of ablated versions of our model.

classes and predict precise segmentation. With the post-
processing of our 3D-CRF module, the model can achieve
better performance by leveraging low-level contextual in-
formation.
Comparison to State-of-the-Art Segmentation. In Ta-
ble 3, we compare our final result with the existing state-
of-the-art segmentation models that rely on stronger super-
vision. Similar to other state-of-the-art weakly supervised
methods using image-level labels [53], there is still a per-
formance gap between our proposed model and the state-
of-the-art fully segmentation methods, but our weakly-
supervised approach achieves better performance to 3D U-
Net models trained with stronger supervision.

5.6. Qualitative Analysis

We qualitatively demonstrate the advantages of our
model in Figure 4. The first row is the input image. We can
see it contains a major macromolecule and neighbor struc-
tures. The second row is the ground truth segmentation. The
third and fourth rows are the semantic segmentation pre-
dicted by the baseline method (Grad-CAM) and our CIVA-
Net. Compared with the baseline method, our CIVA-Net can
alleviate the following errors: (a) wrong segmentation; (b)
incomplete segmentation brought by heavy noise; (c) false-
positive segmentation in complex scenarios with neighbor
structures; (d) segmentation with wrong class boundaries.
Due to the cross-image co-occurrence and inter-voxel affin-
ity learning designs, our model can generate accurate and
robust segmentation in different scenarios.

5.7. Ablation Study

Ablation Study of CIVA-Net. We test various ablations
of our model on both simulated and real datasets to sub-
stantiate our design decisions. The mIoU evaluation results
are shown in Table 4. We observe that each component of
our model gains consistent improvements on all datasets.

Ablation Study of Inter-Voxel Affinity Learning Mod-
ule. To demonstrate the effectiveness of our inter-voxel
affinity learning module, we compare our module with or-
dinary VoxResNet that directly takes the pseudo segmenta-
tion label as ground truth to train a full segmentation net-
work using cross-entropy loss [11]. The results are reported
in Table 5. The first row shows the mIoU of the pseudo seg-
mentation labels. The second row shows the performance of
VoxResNet trained with cross-entropy loss. The third row

Setting mIoU003
snr mIoU005

snr mIoUreal

Pseudo Label 17.9 18.3 20.5
Seg. w/o IVA 18.1 20.3 22.7
Seg. w/ IVA (Ours) 20.6 24.4 36.1

Table 5: Ablation Study of Inter-Voxel Affinity Learning.

shows the model trained with voxel affinity pairs. We can
see that the model can achieve better performance with our
inter-voxel affinity learning module.

6. Conclusion
In this paper, we propose a novel weakly supervised

approach for 3D semantic segmentation on cryo-ET im-
ages. Unlike most existing methods that require voxel-wise
densely labeled training data, our weakly-supervised CIVA-
Net is the first 3D model that only needs image-level class
labels as guidance to learn accurate volumetric segmenta-
tion. Our model utilizes cross-image co-occurrence for in-
tegral and consistent region generation, and explores inter-
voxel affinity relations to predict segmentation with accu-
rate boundaries. Our experiments show that CIVA-Net can
achieve comparable performance to the models trained with
stronger supervision. Currently, our model is validated on
low-resolution cryo-ET images. In the future, more work
can be done to extend CIVA-Net to large-size input and
different data modalities. Our work fundamentally relates
to COVID-19 research. We experiment on two simulated
datasets containing the COVID-19 class and achieve su-
perior performance. As a result, our model will assist the
analysis of the 3D native structure of COVID-19 under the
cryo-electron microscope, to benefit the design of effective
therapeutics against COVID-19.
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