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Abstract

From an early age, humans perceive the visual world
as composed of coherent objects with distinctive properties
such as shape, size, and color. There is great interest in build-
ing models that are able to learn similar structure, ideally in
an unsupervised manner. Learning such structure from com-
plex 3D scenes that include clutter, occlusions, interactions,
and camera motion is still an open challenge. We present
a model that is able to segment visual scenes from complex
3D environments into distinct objects, learn disentangled
representations of individual objects, and form consistent
and coherent predictions of future frames, in a fully un-
supervised manner. Our model (named PARTS) builds on
recent approaches that utilize iterative amortized inference
and transition dynamics for deep generative models. We
achieve dramatic improvements in performance by introduc-
ing several novel contributions. We introduce a recurrent
slot-attention like encoder which allows for top-down influ-
ence during inference. We argue that when inferring scene
structure from image sequences it is better to use a fixed
prior which is shared across the sequence rather than an
auto-regressive prior as often used in prior work. We demon-
strate our model’s success on three different video datasets
(the popular benchmark CLEVRER; a simulated 3D Play-
room environment; and a real-world Robotics Arm dataset).
Finally, we analyze the contributions of the various model
components and the representations learned by the model.

1. Introduction

Object-level perception plays a key role in human vision
[13]. People interpret scenes as consisting of discrete, inde-
pendent and coherent objects and a broad set of experiments
has shown this ability is developed very early in life [16].
While most present computer vision models lack any explicit
object-level structure [7], there is an ongoing effort to create
models that would, at least in some sense, represent scenes

Figure 1. Unsupervised segmentation outputs from PARTS (above).
The model is able to extract meaningful segments of complex,
cluttered and partially observable scenes. It is also able to predict
future frames along with their corresponding segmentation (below).

in terms of their constituent objects [1, 5, 2, 10].
There are good reasons why this is worth pursuing.

Object-level representations are inherently combinatorial,
allowing complex scenes to be explained by different com-
binations of simpler elements. Such representations may
also allow better generalization by learning general rules
related to what objects are, how they move and how they
interact. Finally, objects may help in building models that
allow planning, take into account actions and their effect
on the environment and produce future predictions that are
useful and actionable for agents.

Most current models that push in this direction introduce
a structural inductive bias in the form of slots. These are
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a set of latent variables (deterministic or stochastic) which
are inferred from an observation and, if things work well,
should each capture a different object or entity in the scene.
One way to encourage this to happen is through architectural
biases such as making the slots “compete” in explaining
different parts of the scene (using a softmax, for example),
processing each slot independently when decoding or the
use of attention which may help in choosing which parts of
the scene go to each slot. Probabilistic tools like different
auxiliary losses [22] and choice of priors [3] are another way
to encourage the emergence of objects in the representations.

When working with image sequences the problem, in
some sense, becomes easier. When objects move in the world
they usually do it in a coherent, consistent and predictable
manner. This makes the problem of inferring which parts of
the visual input belong to an object and which objects are
in a scene easier. This can also help in avoiding useful, but
wrong, heuristics like extracting objects purely by color. Ego-
motion, especially if accompanied by action information
can also reveal a lot about the structure of a 3D scene –
for instance, motion parallax ensures that objects which lie
farther from an observer will move differently than nearby
objects when the motion is parallel to the camera plane.

While progress has been made in recent years along this
front, extracting meaningful objects from complex 3D envi-
ronments is still a challenge. We introduce Predict, Attend,
Refine with Transformers and Slots (PARTS) – a model
which is able to, unsupervised, extract object-level segmen-
tations and representations of complex 3D environments and
make predictions about future observations. We achieve
this by extending and improving recently proposed models
[5, 18]. We introduce a recurrent slot-attention mechanism
which is able to incorporate top-down information and assist
in the inference process. We show that the use of transform-
ers and other architectural changes can help performance.
Finally, we show how treating frames as independent in the
generative process (but not in the inference process) can
help resulting representations, especially when coupled with
expressive pair-wise prediction models such as transformers.
We analyse the contribution of each part of the model and
study the resulting learned representations.

2. Related work
We first describe two families of models which are di-

rectly comparable to our work, and from which we draw our
empirical baselines. Then we draw attention to the wider
field of neural architectures which deploy slotted mecha-
nisms or model temporal data via objects.

Iterative amortized inference through time. IODINE
was the first sophisticated model to use a refinement network
to decompose scenes into objects. Its sequential extension
(hereafter, S-IODINE) keeps objects naturally aligned over
time (provided they remain in view) as it refines their poste-

rior estimates. By virtue of its symmetry-breaking sampling
of initial object states, it also has the advantage of yield-
ing multi-modal, multi-stable segmentations. Models that
build on IODINE, like OP3 [18], Zablotskaia et al. [22], and
PARTS, inherit the same advantages.

While IODINE can be applied to image sequences, it
lacks an explicit dynamics model – a component that was in-
troduced later in OP3. OP3 used a feed-forward graph neural
network to explicitly model pairwise interactions between
objects, whereas we take an implicit, recurrent approach. A
more crucial difference between OP3 and PARTS is that OP3
updates its prior at every time-step to be the latest posterior.
As we show later, while this makes sense if the model’s
goal is to generate and reconstruct pixels well, it hurts rep-
resentation learning and segmentation performance. This
is especially true when coupled with a rich and expressive
dynamics model.

Recursive segmentation with added temporal depen-
dence. Models like ViMON [20] and OAT [2] belong to a
family of object-centric models based on MONet [1]. They
employ an attention network to infer objects autoregressively
from any given frame. However, they lack temporal coher-
ence across time-steps. Instead, ViMON achieves object-slot
consistency (i.e. alignment of slots over time) using slotwise
recurrence in its inference procedure, and by mildly condi-
tioning its attention network with the previous segmentation.
ViMON lacks a dynamics model, which prohibits dealing
with occlusions and interactions.

OAT is the state of the art among models based on MONet.
It segments each observation independently over time. The
inferred objects then need to be aligned across time-steps. To
do so, OAT relies on a ”memory” of previously seen objects,
which is also useful in dealing with partial observability such
as the disappearance and reappearance of objects over time.

We take inspiration from the architecture of the dynamics
model and training regime used by OAT, which is capable
of rolling out accurately over long sequences despite a weak
temporal inductive bias. But while OAT predicts latents and
uses an auxiliary latent loss, we predict posterior parameters
and achieve better performance from a standard ELBO loss.

Other work. Among other unsupervised generative mod-
els for videos, SQAIR [11] is a highly expressive, structured-
representation model which can cope with object dynamics,
interaction, and the appearance of new objects. But due to
the limitations of its additive image compositing, it mostly
works on 2D binarized videos of sprites on a black back-
ground. To compare subparts of our model, we find that
Recurrent Independent Mechanisms [4] was devised with
similar desiderata as our own transition model–namely a
combination of independent object dynamics (implemented
by slot-wise recurrence) followed by sparse interaction be-
tween objects (implemented using key-value attention).
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Figure 2. Inference and generative model. Our model attempts
to infer a slotted latent variable for each time-step in a sequence of
frames (and actions). We first try to predict and infer the current
posterior parameters based on past observations. This posterior
is used to sample the latent at the current time step, which then
gets decoded to calculate the ELBO loss. With iterative amortized
inference, we improve our estimate of the posterior using the loss
and other decoder outputs. The prior we use is a spherical Gaussian,
assuming frame, slot and feature independence. See text for details.

3. Model

The purpose of the model is to infer a useful, object-level
representation of a 3D scene given a sequence of frames
{xt}Tt=1. For this, we use a latent-variable model where the
frames are independent from each other. That is, its likeli-
hood is of the form pθ(x1, ..,xT ) =

∏T
t=1 pθ(xt). Counter-

intuitively, all the dependency between frames is captured
by the inference mechanism, not the generative model itself
as illustrated in Figure 2. This is in contrast to recently pro-
posed models [18, 22]. We will elaborate on this choice of
model architecture in Section 5. Each frame x is modeled
independently with a slotted latent variable z ∈ RK×Dslot

and a Gaussian mixture pixel likelihood model [1, 5]. The
inference works by a combination of prediction, top-down
attention, bottom-up encoding and iterative amortized infer-
ence [14].

3.1. Generative process

The generative process starts with K independent Dslot
dimensional latent variables zk ∈ RDslot (we refer to these
simply as slots). Each of these slot variables would ideally
correspond to a single entity or object in the scene when
the model is trained. These slots are independently decoded
using a decoder Dθ (with trainable parameters θ) into a
component mean image Ck ∈ RH×W×3 and a mask logits
image m̂k ∈ RH×W×1. We then take the softmax of the
mask logits (across slots) to produce the finalK mask images
mk. The softmax step can be thought of as a soft occlusion
process and has been used in several recent works. Using
these masks and mean images we can arrive at the model’s

Figure 3. The generative process. Each slot zk in a K-slotted
latent variable z is decoded independently into a mean image Ck

and a mask logits image m̂k using a spatial broadcast decoder.
The mask logits images are softmax across the slots, akin to a soft
occlusion process, to produce mask image mk for each slot. These
are then used as mixing weights for a per-pixel Gaussian mixture
image likelihood model.

mixture likelihood model of a frame x given the latents:

Ck, m̂k =Dθ(zk) mk = Softmax(m̂)k (1)

pθ(x|z) =
∏
i

K∑
k=1

mkN (xi|Ck, σx) (2)

where σx is a fixed hyperparameter and the pixels xi are
assumed to be independent given the latents. See Figure 3
for a summary.

Following [12] we use a soft version of the spatial broad-
cast decoder [19]. A coordinate grid the size of the output
image is generated and then linearly projected to the same
dimensionality as the slot latents to form a spatial basis. For
each slot we then take the corresponding latent, tile it across
space and add to it the spatial basis. The result is then de-
coded with a size-preserving convolutional neural network
to a 4-channel image – the first three channels are used as the
component mean image and the last one as the mask logits
image. The prior for the latent in each frame is Gaussian,
with zero mean and unit variance – assuming both slots and
features are independent. The prior is also independent of
the time-step and past latents: p(z) =

∏K
k=1N (zk|0, I)

3.2. Inference

At every frame xt we would like to infer the correspond-
ing slotted latent zt using the posterior distribution p(zt|xt) .
As is often the case, obtaining this distribution is intractable
[15, 9] and we use an approximate posterior qλt(zt|xt). We
assume a diagonal Gaussian posterior parameterized by pa-
rameters λt := µt, logσt.

Our inference works by employing an encoder Eφ which
combines bottom-up encoding and top-down attention to-
gether with a prediction model P which provides initial
posterior parameters for the (yet to be observed) frame. Fig-
ure 4 depicts an overview of the encoder, prediction and
inference mechanism.
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Figure 4. Our inference mechanism and encoder architecture.
At each time step, the refined posterior parameters from the last
time-step are passed into the prediction model, along with the last
taken action. This produces the approximate posterior parameters
for the current time-step. The latent zt is sampled and decoded and
the output is used to calculate the ELBO with the current observed
xt. The frame xt is passed through a conv-net to produce a spatial
output Øt. This is attended to by a slot-attention mechanism which
generates its queries from the current predicted posterior, and the
gradient of the loss w.r.t to the posterior parameters. The output of
the slot-attention is used to update the current posterior parameters
which will be fed into the prediction model at the next time-step,
repeating the process.

Much like [6, 5] we employ iterative amortized inference
[14] to estimate the approximate posterior parameters. Iter-
ative amortized inference works by progressively refining
the posterior estimate. Specifically, our system first predicts
an initial guess for the posterior parameters λ0

t given the
last obtained posterior λt−1 and, if available, the last taken
action at−1 (see below for details of the prediction model).
The predicted posterior parameters λ0

t are used to sample the
latent zt ∼ qλ0

t
which is decoded to calculate a loss L with

the decoder output, likelihood model and current observation
xt. Using this loss and observation, the posterior parameters
at each refinement iteration n ∈ {1..N} λnt are updated
with the output of the encoder network Eφ (with trainable
parameters φ) to produce the posterior for time step t:

λnt = λn−1
t + Eφ(λn−1

t ,xt, at−1,∇λn−1
t
L, log p(xt|zt))

(3)
where the last term is calculated by taking the gradient of
the loss L with respect to the current posterior parameters
∇λt
L. Note that unless otherwise stated, as we use a single

refinement step per frame (N = 1). The latter point has two
subtle implications – the combination of the encoder and
prediction model is in essence the refinement network as it
appears in [5], and the posterior is always estimated using
only past observations.

3.2.1 Prediction

The first step our inference model takes is predicting pos-
terior parameters λ0

t ∈ RK×2Dslot for the current time step
given the previous refined posterior estimates λNt−1 and the
last taken action at−1 (if available). This is done using a
prediction network Pphi. We concatenate the action to all

slots in the input and use a transformer [17] followed by
a slot-wise LSTM [2]. This expressive architecture allows
modeling of complicated behaviour such as self and pair-
wise dynamics of objects, the effect of actions on slots and
also allows the slots to share information regarding global
information such as viewpoint (see Section 5).

3.2.2 Bottom-up encoding

Our bottom-up encoder is a simple convolutional neural
network which receives as input the current frame xt and,
one of the decoder outputs, the per pixel log likelihood image
log p(xt|zt). The log likelihood image and the input image
are concatenated along the channel axis and then passed
through a size preserving CNN (with strides 1) to produce
the bottom-up encoding O ∈ RH×W××C where C is the
number of channels in the last output layer of the network.

3.2.3 Recurrent, top-down slot attention

We take inspiration from the recently proposed “slot-
attention” mechanism [12]. The original formulation is a
core attention step where several heads ”compete” to explain
each data point (pixel) in the input. This core is unrolled in
a closed loop for several iterations, forming an essentially
bottom-up process.

We dissociate the core attention step from the iterations
and incorporate it into the iterative amortized inference
framework. This allows the inputs to our refinement net-
work to be much simpler (compared to IODINE and OP3),
and improves results substantially. It also allows for top-
down influence on the attention, allowing queries based on
current context. See Section 5 for an analysis on the value
of this influence.

To elaborate on the querying mechanism, the current
posterior parameters λt are concatenated with other top-
down information – the last action at−1 and the gradient
of the loss with respect to the predicted posterior ∇λt

L –
along the channel axis (tiling across slots if necessary). This
slotted input s ∈ RK × Cq is used to create a set of K
queriesQ by linearly mapping each slot such that:

qk = Wqsk (4)

The bottom-up input O is linearly mapped (per pixel ij)
into two tensorsK and V corresponding to keys and values:
kij = WKOij and vij = WVOij . Note that while the keys
and values tensors are purely a function of the bottom-up
input, the queries are shaped by top-down influence which
depends on the current state of the model and loss to be
optimized. At every pixel location we calculate the inner
product between the key at that location and each query,
producing K logits which are then softmax-ed across the
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slot dimension, resulting in K attention weights per location:

attnijk = Softmax(
1√
Dq

kTijQ)k (5)

Taking the softmax across the slot dimension means that the
attention weights sum to one at every pixel location. These
attention weights are then used to produce a slotted output
by multiplying the resulting attention weights for each slot
with the value tensor V and summing spatially to produce
the output:

soutput
k =

∑
ij attnijkvij∑
ij attnijk

(6)

As a final step we pass these slot outputs (concatenating
other flat inputs such as the loss gradient and action) through
an MLP (applied independently to each slot) obtaining the
refinement ∆λt which is added to the current posterior pa-
rameter estimate λ(

tn− 1) resulting in the current posterior
λnt . With a single refinement step these posterior parameters
are passed directly as input to the prediction model and do
not get decoded.

3.3. Loss

We use the standard Evidence Lower Bound (ELBO) as
the loss at each step:

Lt(xt, at−1) =

Ez∼q [log pθ (xt | z)]− βDKL(qλt
(z|xt, at−1) | p(z))

(7)
where β is set to 0.5 in all experiments. We also take the
gradient of this loss with respect to posterior parameters λt
as part of the inference inputs as noted above. For the opti-
mizer loss we sum the individual time-step losses across time
with uniform weights 1

T such that the total loss optimized is:
Ltotal = 1

T

∑T
t=0 Lt

4. Experiments and Results
In the following subsections, we first showcase the model

in its default regime to illustrate its best-case inference and
segmentation performance (Section 4.1). Next, we train and
evaluate the model to optimize its predictive performance
when rolled out without observations (Section 4.2). Finally,
we ablate the model to show the importance of each compo-
nent, also deriving the OP3 and S-IODINE baseline models
as special cases (Section 4.3).

Our experiments are based on three varied video datasets:
The PLAYROOM [8] (aka 3D Room in [2]) is a 3D envi-
ronment built in Unity where an agent can move and in-
teract with toys, furniture, and everyday objects. Second,
CLEVRER [21] is a dataset designed to test causal under-
standing based on moving, colliding, and newly introduced
objects. Finally, ROBOTICS ARM [2] is a dataset of real-
world trajectories of a ROBOTICS ARM manipulating colored

S-IODINE OP3 OAT PARTS

Segmentation
(ARI-F ↑)

0.4461 0.4104 0.6053 0.7349

Reconstruction
(MSE ↓)

0.0044 0.0041 0.0025 0.0023

Table 1. Summary of main results on the PLAYROOM dataset. All
metrics are computed on the last time-step of a minibatch of 64
sequences.

cubes in an attempt to stack them. Each of these datasets
has been used in prior work, thereby facilitating comparison.
Further details on the datasets are in Appendix.

We train our models with an RMSProp optimizer. All
models are trained with K = 7 slots, but since the number
of parameters is independent of number of slots, we can
always re-instantiate the model with a different number (we
do so for latent traversals below). The initial state for the
posterior parameters and all recurrent cores is all zeros. We
employ gradient clipping to a global norm of 5.0. When
we unroll for relatively long sequences, we stop all state
gradients every 4 steps, effectively training with Truncated
Backpropagation Through Time. This is to prevent over-
fitting to a specific length so that the model can be unrolled
for various lengths for inference or prediction. Full training
details with hyper-parameters can be found in the Appendix.

4.1. Segmentation

We trained PARTS (unrolling the full predict→ decode→
refine loop) on length-25 sequences for CLEVRER and length-
8 sequences for ROBOTICS ARM. On CLEVRER, we did not
condition the dynamics model on any actions. For ROBOTICS
ARM, we used the 7-dimensional movement of the robotic
arm as input actions to the dynamics model. Figure 5 shows a
qualitative sample of our segmentation results. More detailed
segmentation figures, including ground-truth object masks
and results on the PLAYROOM, are available in the Appendix.

We can also measure our segmentation performance on
datasets where we have ground-truth segmentation masks.
This precludes the ROBOTICS ARM dataset which contains
unlabelled real-world frames. On the remaining datasets,
we compute the Adjusted Rand Index on all foreground
components (ARI-F) on the last frame of each sequence in a
minibatch. On CLEVRER, PARTS achieves an ARI-F score
of 0.921, which is on par with [22] with a similar number of
time-steps. On the PLAYROOM, PARTS scores 0.7349, which
is significantly better than [2]. Note that the ablation study
in Table 2 reports a lower ARI-F score for PARTS on the
PLAYROOM; this is because the ablation models were trained
for fewer iterations and with lower batch sizes to compare
their relative performance without the computation cost of
training them to their maximum performance.
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Figure 5. Segmentations learnt on the CLEVRER (above) and
ROBOTICS ARM (below) datasets. We show the last time-step
of a length-25 sequence for CLEVRER and length-8 sequence for
ROBOTICS ARM. On CLEVRER, PARTS learns to associate each
object’s shadow with its segment despite intricate lighting. On
ROBOTICS ARM, the model cleanly segments the robotic arm, sep-
arating it from the base of the arm whose position remains constant.

4.2. Prediction/Unroll

In Figure 6 we show the difference between transition
dynamics learnt by PARTS versus comparable models on
PLAYROOM. For these results, each model was trained to
observe an initial number of burn-in frames, and then predict
(the slot-wise posterior parameters at) future time-steps using
a learned action-conditional dynamics model. This regime
was introduced in [2]; we found it beneficial in boosting the
performance of the dynamics model. The initial observations
help estimate the global properties and contents of the scene.
The subsequent time-steps, where only actions are available
as inputs, force the dynamics model to output meaningful
predictions; it cannot rely on any refinement to correct pre-
diction errors, nor can it serve pass-through predictions if it
is to minimize the loss.

During evaluation, we rolled the models out for longer
than they were trained to do (15 roll-out steps at evaluation
versus 12 in training). Note that OAT alone was trained to
unroll for 6 steps rather than 12 and without TBPTT. All
models were trained with 4 burn-in steps, observing the same
amount of initial information about the scene. From the eval-
uation results, it is clear that PARTS is capable of significantly
more accurate predictions over the same horizon.

4.3. Ablations

We ablate our model, spanning the spectrum from S-
IODINE through OP3 to PARTS. This helps show the effect
of using top-down slot-attention, a fixed prior, and the trans-

Figure 6. Comparison of roll-outs from PARTS and baseline mod-
els on a PLAYROOM sequence (above, qualitative) and a consistent
batch of sequences (below, quantitative). Each model observes the
first four time-steps, and then predicts subsequent time-steps using
only the agent’s actions in the room.

former plus slotwise LSTM transition model. Adding in all
three results in the full PARTS model. We control for network
architecture, number of layers and number of units in each
layer as much as possible, so the baseline models presented
here are larger, deeper and wider than the original models in
[5, 18]. All models here share the same decoder and convo-
lutional encoder architecture (up to strides for slot-attention
models where it is set to 1 in all layers).

All models were trained on 16-step sequences on PLAY-
ROOM data, including action information for PARTS and OP3.
We summarize the ablation results in Table 2. The standard
deviations are computed across 4 independent seeds for each
row in the table. Given the large number of models, we
trained them slightly less than usual (up to 400,000 steps) to
save on compute. As a result, the ARI-F scores in Table 2
are lower than mentioned elsewhere (especially Table 1).

5. Analysis

5.1. The effect of a fixed prior

We argue that when interested in representation learning
rather the pixel reconstruction, it is more sensible to use a
fixed independent prior for all frames in a sequence. The
reasoning behind this is twofold – if the prior indeed rep-
resents something about the statistical properties we want
our latents to have, then it shouldn’t matter at what position
in the sequence a frame is or what was the posterior of the
previous frame. In other words, this assumes a fixed scene
throughout the sequence where most of the variance in the

10444



Name SA Fix.
prior

Ac-
tions TRx

ARI-F (↑) ± std

S-IODINE 7 3 7 7 0.417 ± .014
OP3 7 7 3 7 0.425 ± .004

3 3 7 7 0.476 ± .009
3 7 3 7 0.651 ± .010
3 7 3 3 0.554 ± .013
3 3 3 7 0.672 ± .014

PARTS 3 3 3 3 0.712 ± .009
Table 2. Ablation analysis on 16-step sequences from the PLAY-
ROOM. We report the ARI-F score measured on the last time-step.
We compare PARTS against extensions of IODINE and OP3, aug-
menting each with the following components to illustrate their
contribution: slot attention (SA), a fixed independent prior (Fix.
Prior) for each frame in the sequence, an action-conditional tran-
sition model (Actions), and our transformer plus slot-wise LSTM
transition model (TRx). Adding in all these components yields our
model, PARTS, which outperforms all the other variants here. Note
that these numbers do not represent the models at their maximum
performance (as we trained them for fewer steps for this ablation
study), but are meant for relative comparison.

images is due to viewpoint changes. If objects do move in
the scene the inference may be able to correct the current
scene estimate but the generative model does not handle this
case directly.

In the context of iterative inference, the posterior from the
last time-step can indeed be a good guess for the posterior at
the current time-step, but this, we argue, shouldn’t matter to
the prior or optimization objective. The issues that may arise
from using an auto-regressive prior become more severe in
the context of object-centric learning if one lets latents in
different slots communicate and share information (as is
the case in PARTS, and also OP3). While desirable in many
respects (i.e. allowing modeling pair-wise object dynamics),
such interactions may cause the latent variable to effectively
lose its slotted structure and slot independence as time passes
in the sequence and the original independent prior becomes
negligible in its effect. This is true also if one is interested
in disentangled representations, as the features themselves
can mix and cease to be independent.

To show this actually happens, we take a PARTS model
trained with a fixed prior, as well as a model trained with
predictive prior (similar to OP3) and show their resulting
segmentation, reconstruction and time-step KL and MSE
metrics in Figure 7. The models are both unrolled on a fixed
image with action input of 0 (meaning no movement), and
unrolled for 32 time steps. As can be seen, the fixed prior
model achieves stable segmentation and much higher KL
values well into the sequence. The predictive prior model
indeed gets better reconstruction error, has much lower KL
values (because the KL is much easier to minimize in this
case) but the resulting segmentation are far worse.
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Figure 7. Fixed vs. Predictive Prior. We train two models: one is
the full PARTS model which uses a fixed, independent prior. The
second is identical in every way other than using the output of the
predictor as the prior at every step (as in OP3). The two models
were tested on a static scene, unrolled with 0 actions for 32 steps.
We see the resulting segmentation in the fixed prior model (third
row) is much better than the predictive prior version (fifth row).
As is to be expected, the predictive prior model achieves lower
reconstruction eventually and a much lower KL.

5.2. The effect of top-down information on attention

We test the hypothesis that top-down information is used
to shape the attention queries. To do this we train two mod-
els, identical in every aspect other than the information used
to generate the queries in Equation 4. In one model (NO-
TOP-DOWN) we set sk to be the corresponding slot in λt.
No other information is passed in (as would be the case in
the original slot-attention model [12]). In the other model
(which is the full PARTS model) we concatenate the previous
action at−1 and the gradient of the loss w.r.t the posterior
parameters as described above. We postulate that this in-
formation allows the queries to be shaped more accurately
according to the system’s objective. Note that the action
and gradient information are available to both models in the
bottom-up direction, post-attention. We measure the ARI
scores of both models on PLAYROOM and find a significant
difference – 0.72 for NO-TOP-DOWN vs 0.78 for the full
PARTS model. The attention patterns are also quite different,
as can be seen in Figure 8. We visualize the attention weights
by normalizing to visible range and super-imposing them on
the observation image xt. Without top-down information
the the attention is much less specific, being more spread out
across the image. With top-down influence the attention is
able to focus much more and results in better segmentation.
See supplementary material for videos of this visualization.
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5.3. Latent traversals

To better understand the learned representations of our
model we perform traversals in latent space. We run trained
models on 12-step and 8-step sequences from PLAYROOM
and ROBOTICS ARM respectively. We use the inferred latents
of the last frame as the origin of the traversals. We then
apply fixed perturbations within the range −2.0 to 2.0 to
each feature dimension in each slot (separately, so we can
observe the effect on each slot independently). On PLAY-
ROOM, we additionally apply the same perturbation to all
slots simultaneously (but still to a single feature dimension)
to visualize the joint effect.

A subset of results are in Figure 9. On PLAYROOM, we
observe some feature dimensions capture basic individual
properties of the objects such as color. Other latents seem to
be shared across the different slots and tie them in non-trivial
ways – the ones portrayed here seem to correspond to camera
viewpoint. Such cross-slot factors are in contrast to the
independence assumption imposed by the prior. We postulate
the model is able to learn them through the interactions in
the transformer. Learning such a global latent explicitly
is an interesting future direction which may result in more
interpretable models. On ROBOTICS ARM, the model learns
latents representing object position across the ground plane
(third row in Figure 9). We also find latents that change
the arm’s position and grasp (bottom row). More traversals,
including videos, are in the supplementary material.

6. Conclusion
We have introduced PARTS–a model that produces state-

of-the-art segmentations and representations of objects in
complex 3D scenes without supervision. It employs a recur-
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Figure 8. Top-down information and attention. We study the
effect of top-down influence on resulting attention patterns and
performance. We train two PARTS models which differ only in
the inputs that are used to generate queries in the slot-attention
mechanism. TOP-DOWN receives the posterior parameters along
with the last taken action and gradient of the loss w.r.t the poste-
rior. NO-TOP-DOWN receives only the posterior parameters. We
superimpose the attention for each slot on the input image (top
row in each panel). As can be seen, top-down information focuses
the attention on content which directly relates to objects in slots
(masked reconstructions for each slot are shown in the bottom row
of each panel). See text for more details.
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Figure 9. Latent traversals. We investigate our learned represen-
tations by performing latent traversals. We infer last-step latents
on PLAYROOM and ROBOTICS ARM sequences. Then, we perturb
a single latent in a single slot (top, third and last traversals) or
a single latent in all slots simultaneously (second traversal). On
PLAYROOM the model learns latents that change, for example, the
color of an object (top). It also learns latents that relate to shared,
global information such as viewpoint or camera motion (second)
when traversed across all slots at the same time. On ROBOTICS

ARM, the model is able to learn a disentangled representation for
object position (third) and for arm motion and grasping (bottom).
See supplementary material for videos and more examples.

rent, transformer-based dynamics model to predict latents
from prior information (including agent actions), followed
by a slot attention-based refinement step, which is informed
by the reconstruction of the frame from the current posterior
estimate, among other inputs. We have shown how the model
can be trained to optimize for segmentation or prediction.

For future work, it would be worthwhile exploring
whether our independent-frames assumption in the gener-
ative process can be relaxed to generate coherent, novel
videos without sacrificing representation quality or segmen-
tation performance. The datasets used in this work, while
non-trivial, are not of real-world scale — it would be inter-
esting to scale the model up to work on natural data. Finally,
we look forward to evaluate downstream applications of the
structured representations which PARTS can offer.
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