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1. Training Large CNNs with the Bias Loss
With the purpose to empirically evaluate the relation be-

tween the number of parameters of the model and the im-
pact that bias loss can have on the model’s performance, we
conduct experiments on various models with number of pa-
rameters in the range of [1M, 27M]. Specifically, we train
the ShuffleNetV2 0.5× [5], ResNet18 [1], EfficientNet-
B4 [7], Inception v3 [6] and DenseNet (k = 12), DenseNet
(k = 24) [2] models with the bias loss and the cross-entropy
loss. The trainings are performed on the Tiny ImageNet [4]
dataset, which consists of 100, 000 training and 10, 000 val-
idation images from 200 classes. The size of the images is
64 × 64 × 3 pixels. We use a batch size of 128, a learning
rate 0.01, which decays by 0.1 every 30 epochs, and train
the networks for 90 epochs with the SGD optimizer. Re-
garding the parameters of the bias loss, we use α = 0.3 and
β = 0.3. The results, presented in Table 1, suggest that for
the models with a small number of parameters, the bias loss
improves the classification accuracy by approximately 1%
(e.g. Resnet18 - 1.1%, ShuffleNetV2 0.5× - 0.9%); how-
ever, when the number of the model’s parameters increases,
the impact of the bias loss starts to become negative. The
degradation in the performance is related to that, for large
models, even data points with relatively low variance con-
tain enough unique descriptive features. Hence, the prob-
lem of random predictions, which hampers the performance
of compact models, does not appear in large models. In this
case, by performing down-weighting, we limit the number
of data points that can help the optimizer to converge to
good minima.

2. Analysis of the Bias Loss
In order to empirically validate the advantage of our ap-

proach to up-weight data points with high variance within a

Table 1. The accuracy of various CNN models trained on Tiny
ImageNet with the bias loss and cross-entropy.

Model Parameters Top-1 (%) Top-1 (%)
CE loss Bias loss

ShuffleNetV2 0.5× 1.4M 51.9 52.8 (+0.9)
DenseNet (k = 12) 7M 57.2 58.2 (+1.0)
ResNet 18 11M 57.5 58.6 (+1.1)
EfficientNet-B4 19M 57.7 56.9 (−0.8)
Inception v3 24M 65.4 64.3 (−1.1)
DenseNet (k = 24) 27.2M 67.5 66.6 (−0.9)

training, we conduct an experimental comparison between
the current formulation of the bias loss and its modifica-
tions.

First, we examine the impact of low variance samples on
the model’s performance. We set up experiments where we
give higher weight to data points with lower variance and
vice-versa (see Fig. 1). Specifically, we design the Inverse
Bias Loss where we modify our bias function as follows:

z(vi) =
1

exp(vi ∗ α)− β
, (1)

where vi is a scaled variance of the ith data point.
We train the models on the Cifar100 [3] dataset using

the same setup as described in Section 5.2 of the main
manuscript; namely, we use an SGD optimizer with a mo-
mentum equal to 0.9 and a weight decay of 5e − 4. The
initial learning rate is set to 1e − 1 and then decays at the
epochs 60, 120, 160 with a rate of 0.2. For data augmenta-
tion, the images are randomly flipped horizontally and ro-
tated between the angles [−15, 15]. Regarding the param-
eters of the bias loss, we use α = 0.3 and β = 0.3. The



Table 2. The accuracy of various compact CNN models trained on CIFAR-100 with cross-entropy and variations of the bias loss.
Model Parameters Top-1 (%) Top-1 (%) Top-1 (%) Top-1 (%)

CE loss Inv. Bias loss Mean Bias loss Bias loss
ShuffleNetV2 0.5× 1.4M 69.5 68.9 70.2 71
MobileNetV2 0.75× 2.6M 68 67.6 68.1 68.6
NASNet-A (N = 4) 5.3M 77.2 76.8 77.8 78
SqueezeNet 1.25M 69.4 69 69.5 70.4
DenseNet (k = 12) 7M 78.9 78.1 78.9 79.9
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Figure 1. Inverse bias function where data points with lower vari-
ance gets higher weight.

results, presented in Table 2, show that concentrating the
training on the set of data points with lower variance (i.e.,
giving them higher weight) can harm the model’s final accu-
racy. In this scenario, the optimizer will give more attention
to the random predictions (i.e., predictions made in the ab-
sence of enough unique descriptors), which will cause the
model to converge to poor minima.

Next, we examine the advantage of using the scaled vari-
ance as the metric of diversity of the extracted features in
the bias loss. We conduct an experimental comparison be-
tween the version of the bias loss function with the scaled
variance and its modification where the scaled variance is
replaced with the scaled mean; the latter is expressed using
the following formulation:

z(µi) = exp(µi ∗ α)− β, (2)

where µi is the scaled mean of the ith data point. This com-
parison is motivated by the fact that for compact CNNs, the
mean and variance of the activations in the feature maps are
correlated (see Section 5.5 of the main manuscript). The
goal is to assess whether the usage of the mean as a metric
for re-weighting the data points can help obtaining better
model accuracy. The results presented in Table 2 suggest

that the replacement of the variance with the mean value can
also boost the performance, albeit significantly less. While
a higher mean value can indicate the presence of a large
number of non-zero activations (hence, a large amount of
extracted features), it cannot describe their diversity, like
variance does. We have also attempted to combine both
the variance and the mean in the bias loss function, that is,
zi = z(µi) ∗ z(vi). Our experimentation, however, showed
that no additional gain (over that obtained only with the
variance) can be achieved when both metrics are used in
the process of data points re-weighting.
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