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A. Discussion

Why two separated H2H and H2O graphs? In this sec-
tion, we discuss the reasons for considering the human to
human (H2H) and human to objects (H2O) as two different
graphs. First, these two sources of information are natu-
rally different and the type of information and influences
obtained from them are also disparate. Therefore, consider-
ing them as similar nodes of a single graph is not intuitively
a sensible practice. Second, densely connecting these two
different types of information as a single huge graph and
training them all together makes it difficult for the model
to converge, increases the model’s complexity and the over-
all computation. Besides, the quality of the final features
obtained are not necessarily effective. Therefore, a better
practice is to consider the H2H and H2O as two different
graphs but devising a solution to effectively fuse these two
sources of information and their effects (described as itera-
tive message passing in the paper).

B. Benchmark Data Details

Here, we provide more details about the two datasets that
we used and re-purposed to create our human pose dynam-
ics and trajectory forecasting benchmark.
3D Poses in the Wild (3DPW) [7]: The recently released
3DPW is a challenging outdoor dataset captured using IMU
sensors, with a moving camera and consists of 60 long video
clips divided into 3 train, test and validation splits. We
divided the video clips into multiple non-overlapping 30-
frame shorter sequences sampling over every two frames
resulting in 342 sequences and to investigate the importance
of predicting pose dynamics and trajectories in complex
scenarios, we only consider the multi-person sequences
containing social interactions. We use the 3 provided splits,
However, switched the train and test splits since the number
of sequences in test have become larger after the aforemen-
tioned preprocess. The body poses are in world coordinate
and the results are reported in centimeter (cm). In 3DPW,

the pose annotations are represented by 3D locations of 24
body joints. Since some of the joints, such as fingers and
toes, are not important for the current problem, we limit our
selection to a subset of 13 main body joints including the
neck, shoulders, elbows, wrists, knees, hips, and ankles. In
3DPW, we feed 1000ms of past history into the model and
the goal is to predict the next 1000ms of future data.

PoseTrack [2]: The PoseTrack is a large-scale multi-person
dataset which covers a diverse variety of interactions includ-
ing person-person and person-object in dynamic crowded
scenarios. In PoseTrack, pose annotations are provided for
30 consecutive frames centered in the middle of the se-
quence. The pose forecasting in this dataset is challeng-
ing because of the wide variety of human actions in real-
world scenarios and the large number of individuals in each
sequences with large body motions and a high number of
occlusions and disappearing individuals cases. Since this
dataset contains cases with huge portion of joints being in-
visible during the time, we perform some preprocess steps
to make it practicable for the current problem. We main-
tained only those persons that are not completely invisible
in all the observation frames (means at least some partial
past history should be available for a person to enable the
model forecasts its future). Moreover, there were some
faulty, inaccurate annotations in the dataset that we did our
best to refine them. The overall number of sequences is 516
which are from the training split of this dataset. We use 60%
of these sequences for training our model and the rest were
split equally for validation and test. We use a set of 14 joints
in 2D space defining the poses including the head, neck,
shoulders, elbows, wrists, knees, hips, and ankles. The data
being used is in image coordinate and therefore the results
are reported in pixel. In PoseTrack sequences, we trained
our model by observing the past 560ms frames and learning
to minimize the prediction error over the next 560ms.
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C. Input Data Types

As mentioned in the paper, we used both the offset and
absolute positions as the model’s input data. We practically
investigated that using both offset and absolute provides the
best results. The reason is that although the offset is zero
mean and improves the training process, a small error in
offset prediction can deviate significantly from the absolute
value in high dimensions or in a long time horizon. On the
other hand, the absolute is not zero mean value but keeps
offset error bounded to the absolute position. Considering
both information together can recompense the mutual er-
rors.

D. Baselines Setups

The Posetrack containing invisible joints entails some
initial setups for the baselines (center pose [6, 5] or trajec-
tory forecasting[1, 3, 4]) to make it possible for them to be
trained on this dataset. For training the baselines with both
datasets, pose information is first centered by subtracting
the neck position from every joint and the pose dynamics
forecasting methods [6, 5] are trained on the local poses of
the datasets. Simultaneously, the trajectory, considered as
neck positions, is also learned by the three state-of-the-art
trajectory forecasting methods [1, 3, 4]. Then, during pre-
diction, we add the trajectory predictions to the local pose
to obtain the global poses (results in paper, Table 1).

Moreover, to train the baselines on the PoseTrack, which
contains invisible joints, we perform a similar procedure we
take for training our model which means if a joint disap-
pears from ground-truth during training, no gradient for that
joint is calculated. Besides, as the neck position is required
for centering the pose for pose dynamics forecasting base-
lines, we tried our best to refine the dataset manually, to
have a good estimation of neck in occluded cases and for
other cases that the agent leaves the scene we completely
discard the pose. During back propagation we simply ig-
nore these samples (do not calculate loss for them) and in
test time, we use the centered poses obtained from refined
neck as input and the output is whatever model predicts.
Important to note that we use the refined data only for cen-
tering the pose for input and the evaluation is performed
with the original data.

For the reported SC-MPF results in Table 1, we used the
original SC-MPF code and metrics (requested from the au-
thors). However, the PoseTrack data used in the SC-MPF
paper is a very smaller subset of the dataset to ensure all
joints for all persons in the selected sequences are fully vis-
ible as they did not model joint invisibility. We removed
those assumptions from the input dataset, creating more re-
alistic benchmarks, and used the whole dataset for the eval-
uation.

E. Experimental Settings
Regarding the objects used for H2O graph, we represent

each object with four main features: 1) the extracted visual
feature obtained from the detector 2) together with its loca-
tion defined as the center location of the extracted bounding
box, 3) the height and width of the bounding box, normal-
ized over the sequence resolution and 4) the object class la-
bel as the final feature. The final object representations are
obtained by passing these features through multiple MLP
layers of sizes 5000, 1024 and 256. Similarly, The embed-
ding dimensions of the MLP used for the context are 512
and 256. The hyper-parameters are selected through exper-
iments on the validation set. We applied an initial learning
rate of 5e−5 with a decay factor of 0.95 and an Adam op-
timizer and the step size of 2 frames being injected in each
step of curriculum learning to train the model. The cut off
value (β) is set to be 200 pixels. The GATs used are all sin-
gle layer with 3 heads. Each experiment is performed three
times and their average values are reported.

F. Additional Results
Here we provide the results for an ablation study on the

number of steps performed in the iterative message passing.
Table 1 shows the results. As expected, when the number
of message passing iterations increase the performance first
improves and then starts declining. This is commonly ex-
plored by prior graph-based learning literature [8], a crucial
aspect of the graph-level representation learning is that node
representations become refined and more global with the in-
crease of the number of iterations. Therefore, it is essential
to find the sufficient number of iterations for the best per-
formance, as outlined herein.

We also investigated the effect of using a sparse or dense
graph as the input skeleton representation, which is connect-
ing the human joints in compliance with the nature of hu-
man body skeleton or representing them as fully connected
graphs and letting the model to learn their relationships.The
results for this study is illustrated in Table 2. The results
indicate that the model can perform better when it learns
the human joint relations by itself rather than sparse natu-
ral connections. This verifies the fact that the relationship
between joints of an individual is not a simple hierarchical
connection but every joint can have a segregated effect on
each of the other joints directly.
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