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1. CCC Histogram Features

In the main paper, we used a histogram bin size of 64
(i.e., n = 64) with a histogram bin width ϵ = (bmax −
bmin)/n, where bmax and bmin are the histogram boundary
values. In our experiments, we set bmin and bmax to -2.85
and 2.85, respectively. Our input is a concatenation of two
histograms: (i) a histogram of pixel intensities and (ii) a
histogram of gradient intensities. We augmented our his-
tograms with extra uv coordinate channels to allow our net-
work to consider the “spatial” (or more accurately, chro-
matic) information associated with each bin in the his-
togram.

2. Ablations Studies

In the following ablation experiments, we used the
Cube+ dataset [8] as our test set and trained our network
with seven encoders using the same training set mentioned
in the main paper (the NUS dataset [15], the Gehler-Shi
dataset [19], and the augmented images after excluding any
scene/sensors of the test set). Table 1 shows the results ob-
tained by models trained using different histogram sizes, us-
ing different values of the smoothness factors λB and λF ,
with and without increasing the batch-size during training,
and with and without the histogram gradient intensity and
the extra uv augmentation channels. Each experiment was
repeated ten times and the arithmetic mean and standard de-
viation of each error metric are reported.

Figure 1 shows the effect of the smoothness regulariza-
tion and increasing the batch-size during training on a small
training set. We use the first fold of the Gehler-Shi dataset
[19] as our validation set and the remaining two folds are
used for training. In the figure, we plot the angular error
on the training and validation sets. Each model was trained
for 60 epochs as a camera-specific color constancy model
(i.e., without using additional images or camera models).
As can be seen in Figure 1, the smoothness regularization
improves the generalization on the test set and increasing
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the batch size helps the network to reach a lower optimum.
Table 2 shows the results with and without using our data

augmentation approach. The experiments labeled “w/aug”
in Table 2 refer to using our data augmentation approach, as
described in the main paper. Additional details on the data
augmentation process are given in Sec. 4.

3. Additional Results
In the main paper, we reported our results using eight

additional images. In Table 3, we report multiple versions
of our model in which we vary m, the number of input im-
ages (and encoders) used (m = 1 means that only the query
image is used as an input with no additional images). Note
that the single-image results (m = 1) are not intended to
be the central contribution of this work—they are provided
only as a point of comparison.

We did not include the “gain” multiplier, originally pro-
posed in FFCC [9], in the main paper, as it did not result in a
consistent improved performance over all error metrics and
datasets. Here, we report results with and without using the
gain multiplier map. This gain multiplier map can be gen-
erated by our network by adding an additional decoder net-
work with skip connections from the query encoder. Based
on this modification, our convolutional structure can now be
described as:

P = softmax

(
B +G ◦

∑
i

(
Ni ∗ Fi

))
, (1)

where {Fi}, B, and G are filters, a bias map B(i, j), and the
gain multiplier map G(i, j), respectively. We also change
the smoothness regularizer to include the generated gain
multiplier as follows:

S ({Fi}, B,G) = λB(∥B ∗ ∇u∥2 + ∥B ∗ ∇v∥2)
+λG(∥G ∗ ∇u∥2 + ∥G ∗ ∇v∥2)

+λF

∑
i

(∥Fi ∗ ∇u∥2 + ∥Fi ∗ ∇v∥2) , (2)

where ∇u and ∇v are 3×3 horizontal and vertical Sobel
filters, respectively, and λF , λB , λG are scalar multipliers to
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Figure 1: The impact of smoothness regularization and of increasing the batch size during training on training/validation
accuracy. We show the training/validation angular error of training our network on the Gehler-Shi dataset [19] for camera-
specific color constancy. We set λF = 0.15, λB = 0.02 for the experiment labeled with ‘w/ smoothness’, while we used
λF = 1.85, λB = 0.25 for the experiment labeled with ‘over smoothness’ and λF = 0, λB = 0 for the ‘w/o smoothness’
experiments.

Table 1: Results of ablation studies. The shown results were obtained by training our network on the NUS [15] and the
Gehler-Shi datasets [19] with augmentation, and testing on the Cube+ dataset [8]. In this set of experiments, we used seven
encoders (i.e., six additional histograms). Note that none of the training data includes any scene/sensor from the Cube+
dataset [8]. For each set of experiments, we highlight the lowest errors in yellow.

Mean Med. B. 25% W. 25% Tri.
Histogram bin size, n

n = 16 2.28±0.01 1.81±0.03 0.65±0.01 4.72±0.02 1.91±0.02
n = 32 2.02±0.01 1.44±0.01 0.44±0.01 4.66±0.01 1.86±0.03
n = 64 1.87±0.00 1.27±0.01 0.41±0.01 4.36±0.01 1.40±0.01
n = 128 2.03±0.00 1.42±0.01 0.40±0.00 4.70±0.01 1.54±0.01

Smoothness factors, λB and λF (n = 64)
λB = 0, λF = 0 2.07±0.01 1.42±0.01 0.47±0.01 4.67±0.01 1.57±0.01
λB = 0.005, λF = 0.035 1.95±0.00 1.31±0.01 0.40±0.00 4.57±0.01 1.47±0.01
λB = 0.02, λF = 0.15 1.87±0.00 1.27±0.01 0.41±0.01 4.36±0.01 1.40±0.01
λB = 0.10, λF = 0.75 2.11±0.00 1.55±0.01 0.48±0.00 4.70±0.01 1.66±0.01
λB = 0.25, λF = 1.85 2.23±0.00 1.61±0.01 0.53±0.00 5.04±0.01 1.77± 0.01

Increasing batch size (n = 64)
w/o increasing 1.93±0.00 1.29±0.01 0.42±0.00 4.52±0.02 1.43±0.01
w/ increasing 1.87±0.00 1.27±0.01 0.41±0.01 4.36±0.01 1.40±0.01

Gradient histogram and uv channels (n = 64)
w/o gradient histogram 2.30±0.01 1.53±0.01 0.45±0.01 5.51±0.02 1.71±0.02
w/o uv 2.03±0.01 1.45±0.01 0.44±0.01 4.63±0.02 1.56±0.01
w/ uv and gradient histogram 1.87±0.00 1.27±0.01 0.41±0.01 4.36±0.01 1.40±0.01

Table 2: Angular errors on the Cube+ dataset [8] and the
INTEL-TAU dataset [29]. In this experiment, we used six
additional images (i.e., m = 7) for our C5. Lowest errors
are highlighted in yellow.

Cube+ Dataset Mean Med. B. 25% W. 25% Tri.
Cross-dataset CC [26] 2.47 1.94 - - -
Quasi-Unsupervised CC [10] 2.69 1.76 0.49 6.45 2.00
SIIE [3] 2.14 1.44 0.44 5.06 -
FFCC [9] 2.69 1.89 0.46 6.31 2.08
C5 2.10 1.38 0.49 4.97 1.56
C5 (w/aug.) 1.87 1.27 0.41 4.36 1.40

INTEL-TAU Mean Med. B. 25% W. 25% Tri.
Quasi-Unsupervised CC [10] 3.12 2.19 0.60 7.28 2.40
SIIE [3] 3.42 2.42 0.73 7.80 2.64
FFCC [9] 3.42 2.38 0.70 7.96 2.61
C5 2.62 1.85 0.54 6.05 2.00
C5 (w/aug.) 2.49 1.66 0.51 5.93 1.83

control the strength of the smoothness of each of the filters,
the bias, and the gain, respectively. The results of using the
additional gain multiplier map are reported in Table 4.

We further trained and tested our C5 model using the
INTEL-TAU dataset evaluation protocols [29]. Specifically,
the INTEL-TAU dataset introduced two different evaluation
protocols: (i) the cross-validation protocol, where the model
is trained using a 10-fold cross-validation scheme of im-
ages taken from three different camera models, and (ii) the
camera invariance evaluation protocol, where the model is
trained on a single camera model and then tested on another
camera model. This camera invariance protocol is equiv-
alent to the CS evaluation method [3], as the models are
trained and tested on the same scene set, but with different
camera models in the training and testing phases. See Table
5 for comparison with other methods using the INTEL-TAU
evaluation protocols. In Table 5, we also show the results of



Table 3: Results using different number of the additional
images (i.e., different values of m). Note that m = 7, for
example, means that we use six additional images along
with the input image. For each experiment, we used the
same training data explained in the main paper with aug-
mentation. Lowest errors are highlighted in yellow. .

Cube+ Dataset Mean Med. B. 25% W. 25%
C5 (m = 1) 2.60 1.86 0.55 5.89
C5 (m = 3) 2.28 1.50 0.59 5.19
C5 (m = 5) 2.23 1.52 0.56 5.11
C5 (m = 7) 1.87 1.27 0.41 4.36
C5 (m = 9) 1.92 1.32 0.44 4.44
C5 (m = 11) 1.93 1.41 0.42 4.35
C5 (m = 13) 1.95 1.35 0.40 4.52

Cube+ Challenge Mean Med. B. 25% W. 25%
C5 (m = 1) 2.70 2.00 0.61 6.15
C5 (m = 7) 2.55 1.63 0.54 6.21
C5 (m = 9) 2.24 1.48 0.47 5.39
C5 (m = 11) 2.41 1.72 0.54 5.58
C5 (m = 13) 2.39 1.61 0.53 5.64

INTEL-TAU Mean Med. B. 25% W. 25%
C5 (m = 1) 2.99 2.18 0.66 6.71
C5 (m = 7) 2.49 1.66 0.51 5.93
C5 (m = 9) 2.52 1.70 0.52 5.96
C5 (m = 11) 2.60 1.79 0.54 6.07
C5 (m = 13) 2.57 1.74 0.52 6.08

Gehler-Shi Dataset Mean Med. B. 25% W. 25%
C5 (m = 1) 2.98 2.05 0.54 7.13
C5 (m = 7) 2.36 1.61 0.44 5.60
CS (m = 9) 2.50 1.99 0.53 5.46
C5 (m = 11) 2.55 1.88 0.50 5.77
C5 (m = 13) 2.46 1.74 0.50 5.73

NUS Dataset Mean Med. B. 25% W. 25%
C5 (m = 1) 2.84 2.20 0.69 6.14
C5 (m = 7) 2.68 2.00 0.66 5.90
CS (m = 9) 2.54 1.90 0.61 5.61
C5 (m = 11) 2.64 1.99 0.65 5.75
C5 (m = 13) 2.49 1.88 0.61 5.43

our C5 model trained on the NUS and Gehler-Shi datasets
with augmentation (i.e., our camera-independent model) as
reported in the main paper for completeness.

Our C5 model achieves reasonable accuracy when used
as a camera-specific model. In this scenario, we trained our
model on training images captured by the same test camera
model with a single encoder (i.e., m = 1). We found that
n = 128, using the gain multiplier map G(i, j), achieves
the best camera-specific results. We report the results of
our camera-specific models in Table 6.

Lastly, we show additional qualitative results from the
INTEL-TAU dataset [29] in Figure 2. In this figure, we
show qualitative examples from our “worst 25%” and “best
25%” results alongside the corresponding results of prior
sensor-independent techniques [3, 10].

4. Data Augmentation
In this section, we describe in detail the data augmenta-

tion procedure described in the main paper. We begin with
the steps used to map a color temperature to the correspond-
ing CIE XYZ value. Then, we elaborate the process of map-
ping from camera sensor raw to the CIE XYZ color space.
Afterwards, we describe the details of the scene retrieval
process mentioned in the main paper. Finally, we discuss
experiments performed to evaluate our data augmentation
and compare it with other color constancy augmentation
techniques used in the literature.

4.1. From Color Temperature to CIE XYZ

According to Planck’s radiation law [37], the spectral
power distribution (SPD) of a blackbody radiator at a given
wavelength range [λ, ∂λ] can be computed using the color
temperature q as follows:

Sλdλ =
f1λ

−5

exp (f2/λq)− 1
∂λ, (3)

where, f1 = 3.74183210−16 Wm2 is the first radiation
constant, f2 = 1.438810−2mK is the second radiation
constant, and q is the blackbody temperature, in Kelvin.
[30,36]. Once the SPD is computed, the corresponding CIE
tristimulus values can be approximated in the following dis-
cretized form:

X = ∆λ

λ=780∑
λ=380

xλSλ, (4)

where the value of xλ is the standard CIE color match
value [16]. The values of Y and Z are computed simi-
larly. The corresponding chromaticity coordinates of the
computed XYZ tristimulus are finally computed as follows:

x = X/(X + Y + Z),

y = Y/(X + Y + Z),

z = Z/(X + Y + Z).

(5)

4.2. From Raw to CIE XYZ

Most DSLR cameras provide two pre-calibrated matri-
ces, C1 and C2, to map from the camera sensor space to
the CIE 1931 XYZ 2-degree standard observer color space.
These pre-calibrated color space transformation (CST) ma-
trices are usually provided as a low color temperature (e.g.,
Standard-A) and a higher correlated color temperature (e.g.,
D65) [1].

Given an illuminant vector ℓ, estimated by an illuminant
estimation algorithm, the CIE XYZ mapping matrix associ-
ated with ℓ is computed as follows [14]:

CTℓ
= C2 + (1− α)C1, (6)



Table 4: Results of using the gain multiplier, G. For each experiment, we used m = 7 and n = 64, and trained our network
using the same training data explained in the main paper with augmentation. Lowest errors are highlighted in yellow.

Cube+ [8] Cube+ Challenge [6] INTEL-TAU [29] Gehler-Shi [19] NUS [15]
Mean Med. B. 25% W. 25% Mean Med. B. 25% W. 25% Mean Med. B. 25% W. 25% Mean Med. B. 25% W. 25% Mean Med. B. 25% W. 25%

w/o G 1.87 1.27 0.41 4.36 2.40 1.58 0.52 5.76 2.49 1.66 0.51 5.93 2.36 1.61 0.44 5.60 2.68 2.00 0.66 5.90
w/ G 1.83 1.24 0.42 4.25 2.34 1.45 0.46 5.86 2.63 1.81 0.55 6.18 2.36 1.72 0.48 5.40 2.44 1.89 0.64 5.21

Input raw image Quasi-Unsupervised CC SIIE C5 (ours) Ground-truth
Mobile Sony IMX135

Canon EOS 5DSR

Nikon D810

Canon EOS 5DSR

Nikon D810

Mobile Sony IMX135
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Figure 2: Random examples from our “worst 25%” and “best 25%” results alongside quasi-unsupervised CC [10] and SIIE [3]. Input
images are from the INTEL-TAU dataset [29].

α = (1/qℓ − 1/q1)/(1/q2 − 1/q1), (7)

where q1 and q2 are the correlated color temperature associ-
ated to the pre-calibrated matrices C1 and C2, and qℓ is the
color temperature of the illuminant vector ℓ. Here, qℓ is un-
known, and unlike the standard mapping from color temper-
ature to the CIE XYZ space (Sec. 4.1), there is no standard
conversion from a camera sensor raw space to the corre-
sponding color temperature. Thus, the conversion from the

sensor raw space to the CIE XYZ space is a chicken-and-
egg problem—computing the correlated color temperature
qℓ is necessarily to get the CST matrix Cqℓ , while know-
ing the mapping from a camera sensor raw to the CIE XYZ
space inherently requires knowledge of the correlated color
temperature of a given raw illuminant.

This problem can be solved by a trial-and-error strategy
as follows. We iterate over the color temperature range of
2500K to 7500K. For each color temperature qi , we first
compute the corresponding CST matrix Cqi using Eqs. 6



Table 5: Results using the INTEL-TAU dataset evalua-
tion protocols [29]. We also show the results of camera-
independent methods, including our camera-independent
C5 model. Lower errors for each evaluation protocol are
highlighted in yellow. The best results are bold-faced.

INTEL-TAU [29] Mean Med. B. 25% W. 25% Tri.
Camera-specific (10-fold cross-validation protocol [29])

Bianco et al.’s CNN [11] 3.5 2.6 0.9 7.4 2.8
C3AE [28] 3.4 2.7 0.9 7.0 2.8
BoCF [27] 2.4 1.9 0.7 5.1 2.0
FFCC [9] 2.4 1.6 0.4 5.6 1.8
VGG-FC4 [22] 2.2 1.7 0.6 4.7 1.8
C5 (m = 7, n = 128), w/ augmentation 2.33 1.55 0.45 5.57 1.71

Camera-specific (camera invariant protocol [29])
Bianco et al.’s CNN [11] 3.4 2.5 0.8 7.2 2.7
C3AE [28] 3.4 2.7 0.9 7.0 2.8
BoCF [27] 2.9 2.4 0.9 6.1 2.5
VGG-FC4 [22] 2.6 2.0 0.7 5.5 2.2
C5 (m = 9), w/aug. 2.45 1.82 0.53 5.46 1.95

Camera-independent
Gray-world [13] 4.7 3.7 0.9 10.0 4.0
White-Patch [12] 7.0 5.4 1.1 14.6 6.2
1st-order Gray-Edge [12] 5.3 4.1 1.0 11.7 4.5
2nd-order Gray-Edge [12] 5.1 3.8 1.0 11.3 4.2
Shades-of-Gray [17] 4.0 2.9 0.7 9.0 3.2
PCA-based B/W Colors [15] 4.6 3.4 0.7 10.3 3.7
Weighted Gray-Edge [20] 6.0 4.2 0.9 14.2 4.8
Quasi-Unsupervised CC [10] 3.12 2.19 0.60 7.28 2.40
SIIE [3] 3.42 2.42 0.73 7.80 2.64
C5 (m = 7), w/aug. 2.49 1.66 0.51 5.93 1.83

Table 6: Results of our C5 trained as a camera-specific
model with a single encoder (i.e., m = 1). In this ex-
periment, we performed a three-fold cross-validation on the
Cube+ dataset [8]. For the Cube+ challenge [6], we report
our results after training our model on the Cube+ dataset [8]
without including any training example from the Cube+
challenge test set [6]. We also show the results of other
camera-specific color constancy methods reported in past
papers. Lowest angular errors are highlighted in yellow.

Cube+ Dataset [8] Mean Med. B. 25% W. 25% Tri.
Color Dog [7] 3.32 1.19 0.22 10.22 -
APAP [5] 2.01 1.36 0.38 4.71 -
Meta-AWB w/ 20 tuning images [32] 1.59 1.02 0.30 3.85 1.15 -
Color Beaver [25] 1.49 0.77 0.21 3.94 -
SqueezeNet-FC4 [22] 1.35 0.93 0.30 3.24 1.01
FFCC [9] 1.38 0.74 0.19 3.67 0.89
WB-sRGB (modified for raw-RGB) [4] 1.32 0.74 0.18 3.43 -
MDLCC [38] 1.24 0.83 0.26 2.91 0.92
C5 (n = 128), w/ G 1.39 0.79 0.24 3.55 0.93

Cube+ Challenge [6] Mean Med. B. 25% W. 25% Tri.
V Vuk et al., [6] 6.00 1.96 0.99 18.81 2.25
A Savchik et al., [35] 2.05 1.20 0.40 5.24 1.30
Y Qian et al., (1) [34] 2.48 1.56 0.44 6.11 -
Y Qian et al., (2) [34] 2.27 1.26 0.39 6.02 1.35
FFCC [9] 2.1 1.23 0.47 5.38 -
MHCC [21] 1.95 1.16 0.39 4.99 1.25
K Chen et al., [6] 1.84 1.27 0.39 4.41 1.32
WB-sRGB (modified for raw-RGB) [4] 1.83 1.15 0.35 4.60 -
C5 (n = 128), w/ G 1.72 1.07 0.36 4.27 1.15

and 7. Then, we convert qi to the corresponding xyz chro-
maticity triplet using Eqs. 3–5.

Afterwards, we map the xyz chromaticity triplet to the

sensor raw space using the following equation:

ℓraw(qi) = C−1
qi λxyz(qi). (8)

We repeated this process for all color temperatures and
selected the color temperature/CST matrix that achieves the
minimum angular error between ℓ and the reconstructed il-
luminant color in the sensor raw space.

The accuracy of our conversion depends on the pre-
calibrated matrices provided by the manufacturer of the
DSLR cameras. Other factors that may affect the accuracy
of the mapping includes the precision of the standard map-
ping from color temperature to XYZ space defined by [16],
and the discretization process in Eq. 4.

4.3. Raw-to-raw mapping

Here, we describe the details of the mapping men-
tioned in the main paper. Let A={a1,a2, ...} represent the
“source” set of demosaiced raw images taken by different
camera models with the associated capture metadata. Let
T = {t1, t2, ...} represent our “target” set of metadata of
captured scenes by the target camera model. Here, the cap-
ture metadata includes exposure time, aperture size, ISO
gain value, and the global scene illuminant color in the cam-
era sensor space. We also assume that we have access to the
pre-calibration color space transformation (CST) matrices
for each camera model in the sets A and T (available in
most DNG files of DSLR images [1]).

Our goal here is to map all raw images in A, taken by dif-
ferent camera models, to the target camera sensor space in
T . To that end, we map each image in A to the device-
independent CIE XYZ color space [16]. This mapping
is performed as follows. We first compute the correlated
color temperature, q(i), of the scene illuminant color vec-
tor, ℓ(i)raw(A), of each raw image, I(i)raw(A), in the set A (see
Sec. 4.2). Then, we linearly interpolate between the pre-
calibrated CST matrices provided with each raw image to
compute the final CST mapping matrix, Cq(i) , [14]. After-

wards, we map each image, I(i)raw(A), in the set A to the CIE
XYZ space. Note that here we represent each image I as
matrices of the color triplets (i.e., I = {c(k)}), where k is
the total number of pixels in the image I . We map each raw
image to the CIE XYZ space as follows:

I
(i)
xyz(A) = Cq(i)Dℓ(i)I

(i)
raw(A), (9)

where Dℓ(i) is the white-balance diagonal correction matrix
constructed based on the illuminant vector ℓ(i)raw(A).

Similarly, we compute the inverse mapping from the CIE
XYZ space back to the target camera sensor space based on
the illuminant vectors and pre-calibration matrices provided
in the target set T . The mapping from the source sensor
space to the target one in T can be performed as follows:

I
(i)
raw(T ) = D−1

ȷ(i)
M−1

q(i)
I
(i)
xyz(A), (10)



where ȷ
(i)
raw(T ) is the corresponding illuminant color to the

correlated color temperature, q(i), in the target sensor space
(i.e., the ground-truth illuminant for image I(i)raw(T ) in the il-
luminant estimation task), and M−1

q(i)
is the CST matrix that

maps from the target sensor space to the CIE XYZ space.
The described steps so far assume that the spectral sen-

sitivities of all sensors in A and T satisfy the Luther condi-
tion [33]. Prior studies, however, showed that this assump-
tion is not always satisfied, and this can affect the accuracy
of the pre-calibration matrices [23, 24]. According to this,
we rely on Eqs. 9 and 10 only to map the original colors of
captured objects in the scene (i.e., white-balanced colors) to
the target camera model. For the values of the global color
cast, ȷ(i)raw(T ), we do not rely on M−1

q(i)
to map ℓ

(i)
raw(A) to the

target sensor space of T . Instead, we follow a K-nearest
neighbor strategy to get samples from the target sensor’s il-
luminant color space.

4.4. Scene Sampling

As described in the paper, we retrieve metadata of simi-
lar scenes in the target set T for illuminant color sampling.
This sampling process should consider the source scene
capture conditions to sample suitable illuminant colors from
the target camera model space—i.e., having indoor illumi-
nant colors as ground-truth for outdoor scenes may affect
the training process. To this end, we introduce a retrieval
feature v

(i)
A to represent the capture settings of the image

I
(i)
raw(A). This feature includes the correlated color tempera-

ture and auxiliary capture settings. These additional capture
settings are used to retrieve scenes captured with similar set-
tings of I(i)raw(A).

Our feature vector is defined as follows:

v
(i)
A = [q(i)norm , h

(i)
norm, p

(i)
norm , e

(i)
norm], (11)

where q
(i)
norm, h(i)

norm, p(i)norm, and e
(i)
norm are the normalized

color temperature, gain value, aperture size, and scaled ex-
posure time, respectively. The gain value and the scaled
exposure time are computed as follows:

h(i) = BLN(i)ISO(i) , (12)

e(i) =
√
2BLE(i) l(i) , (13)

where BLE, BLN, ISO, and l are the baseline exposure,
baseline noise, digital gain value, and exposure time (in sec-
onds), respectively.

Illuminant Color Sampling A naive sampling from the
associated illuminant colors in T does not introduce new
illuminant colors over the Planckian locus of the target sen-
sor. For this reason, we first fit a cubic polynomial to the
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Figure 3: Synthetic illuminant samples of Canon EOS 5D
camera model in the Gehler-Shi dataset [19]. The shown
generated illuminant colors are then applied to sensor-
mapped raw images, originally were taken by different cam-
era models, for augmentation purpose (Sec. 4).

rg chromaticity of illuminant colors in the target sensor
T . Then, we compute a new r chromaticity value for each
query vector as follows:

rv =
∑
j∈K

wjrj + x , (14)

where wj = exp(1 − dj)/
∑K

k exp(1− dk) is a weight-
ing factor, x = λrN (0, σr) is a small random shift, λr is a
scalar factor to control the amount of divergence from the
ideal Planckian curve, σr is the standard deviation of the r
chromaticity values in the retrieved K metadata of the tar-
get camera model, TK , and dj is the normalized L2 distance
between vS(i) and the corresponding jth feature vector in
TK . The CST matrix M (Eq. 10) is constructed by linearly
interpolating between the corresponding CST matrices as-
sociated with each sample in TK using wj . After computing
rv , the corresponding g chromaticity value is computed as:

gv = [rv, r
2
v, r

3
v][ξ1, ξ2, ξ3]

⊤ + y , (15)

where [ξ1, ξ2, ξ3] are the cubic polynomial coefficients, y
is a random shift, and σg is the standard deviation of the
g chromaticity values in TK . In our experiments, we set
λr = 0.7 and λg = 1. The final illuminant color ȷ(i)raw(T )
can be represented as follows:

ȷ
(i)
raw(T ) = [rv, gv, 1− rv − gv]

⊤ . (16)

To avoid any bias towards the dominant color tempera-
ture in the source set, A, we first divide the color tempera-
ture range of the source set A into different groups with a
step of 250K. Then, we uniformly sample examples from
each group to avoid any bias towards specific type of illu-
minants. Figure 3 shows examples of the sampling process.
As shown, the sampled illuminant chromaticity values fol-
low the original distribution over the Planckian curve, while
introducing new illuminant colors of the target sensors that
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Figure 4: Example of camera augmentation used to train our
network. The shown left raw image is captured by Nikon
D5200 camera [15]. The next three images are the results
of our mapping to different camera models.

were not included in the original set. Finally, we apply ran-
dom cropping to introduce more diversity in the generated
images. Figure 4 shows examples of synthetic raw-like im-
ages of different target camera models.

4.5. Evaluation

In prior work, several approaches for training data aug-
mentation for illuminant estimation have been attempted
[2, 18, 31]. These approaches first white-balance the train-
ing raw images using the associated ground-truth illumi-
nant colors associated with each image. Afterwards, illu-
minant colors are sampled from the “ground-truth” illumi-
nant colors over the entire training set to be applied to the
white-balanced raw images. These sampled illuminant col-
ors can be taken randomly from the ground-truth illuminant
colors [18] or after clustering the ground-truth illuminant
colors [31]. These methods, however, are limited to using
the same set of scenes as is present in the training dataset.
Another approach for data augmentation has been proposed
in [2] by mapping sRGB white-balanced images to a learned
normalization space that is is learned based on the CIE XYZ
space. Afterwards, a pre-computed global transformation
matrix is used to map the images from this normalization
space to the target white-balanced raw space. In contrast,
the augmentation method described in our paper uses an ac-
curate mapping from the camera sensor raw space to the
CIE XYZ using the pre-calibration matrices provided by
camera manufacturers.

In the following set of experiments, we use the base-
line model FFCC [9] to study the potential improvement of
our chosen data augmentation strategy and alternative aug-
mentation techniques proposed in [2, 18, 31]. We use the
Canon EOS 5D images from in the Gehler-Shi dataset [19]
for comparisons. For our test set, we randomly select 30%
of the total number of images in the Canon EOS 5D set.
The remaining 70% of images are used for training. We re-
fer to this set as “real training set”, which includes 336 raw
images.

Note that, except for the augmentation used in a [2],

none of these methods apply a sensor-to-sensor mapping,
as they use the raw images of the “real training set” as the
source and target set for augmentation. For this reason and
for a fair comparison, we provide the results of two differ-
ent set of experiments. In the first experiment, we use the
CIE XYZ images taken by the Canon EOS 5D sensor as our
source set A, while in the second experiment, we use a dif-
ferent set of four sensors rather than the Canon EOS 5D sen-
sor. The former is comparable to the augmentation methods
used in [18,31] (see Table 7), while the latter is comparable
to the augmentation approach used in [2], which performs
“raw mapping” in order to introduce new scene content in
the training data (see Table 8). The shown results obtained
by generating 500 synthetic images by each augmentation
method, including our augmentation approach. As shown
in Tables 7 and 8, our augmentation approach achieves the
best improvement of the FFCC results.

In order to study the effect of the CIE XYZ mapping
used by our augmentation approach, we trained FFCC [9]
on a set of 500 synthetic raw images of the target cam-
era model—namely, the Canon EOS 5D camera model in
the Gehler-Shi dataset [19]. These synthetic raw images
were originally captured by the Canon EOS 1Ds Mark III
camera sensor (in the NUS dataset [15]), then these images
are mapped to the target sensor using our augmentation ap-
proach. Table 9 shows the results of FFCC trained on syn-
thetic raw images with and without the intermediate CIE
XYZ mapping step (Eqs. 9 and 10). As shown, using the
CIE XYZ mapping achieves better results, which are further
improved by increasing the scene diversity of the source
set by including additional scenes from other datasets, as
shown in Table 8.

For a further evaluation, we use our approach to map im-
ages from the Canon EOS 5D camera’s set (the same set
that was used to train the FFCC model) to different target
camera models. Then, we trained and tested a FFCC model
on these mapped images. This experiment was performed
to gauge the ability of our data augmentation approach to
have similar negative effects on camera-specific methods
that were trained on a different camera model. To that end,
we randomly selected 150 images from the Canon EOS 5D
sensor set, which was used to train the FFCC model, as
our source image set A. Then, we mapped these images
to different target camera models using our approach. That
means that the training and our synthetic testing set share
the same scene content. We report the results in Table 10.
We also report the testing results on real image sets captured
by the same target camera models. As shown in Table 10,
both real and synthetic sets negatively affect the accuracy of
the FFCC model (see Table 7 for results of the FFCC on a
testing set taken by the same training sensor).



Table 7: A comparison of different augmentation methods
for illuminant estimation. All results were obtained by us-
ing training images captured by the Canon EOS 5D camera
model [19] as the source and target sets for augmentation.
Lowest errors are highlighted in yellow.

Training set Mean Med. B. 25% W. 25%
Original set 1.81 1.12 0.35 4.43
Augmented (clustering & sampling) [31] 1.68 0.97 0.25 4.31
Augmented (sampling) [18] 1.79 1.09 0.33 4.34
Augmented (ours) 1.55 0.98 0.28 3.68

Table 8: A comparison of techniques for generating new
sensor-mapped raw-like images that were originally cap-
tured by different sensors than the training camera model.
The term ‘synthetic’ refers to training FFCC [9] without
including any of the original training examples, while the
term ‘augmented’ refers to training on synthetic and real
images. The best results are bold-faced. Lowest errors of
synthesized and augmented sets are highlighted in red and
yellow, respectively.

Training set Mean Med. B. 25% W. 25%
Synthetic [2] 4.17 3.06 0.78 9.39
Augmentation [2] 2.64 1.95 0.45 5.97
Synthetic (ours) 2.44 1.89 0.42 5.40
Augmented (ours) 1.75 1.28 0.35 4.15

Table 9: Results of FFCC [9] trained on synthetic raw-like
images after they are mapped to the target camera model.
In this experiment, the raw images are mapped from the
Canon EOS-1Ds Mark III camera sensor (taken from the
NUS dataset [15]) to the target Canon EOS 5D camera in
the Gehler-Shi dataset [19]. The shown results were ob-
tained with and without the intermediate CIE XYZ mapping
step to generate the synthetic training set. Lowest errors are
highlighted in yellow.

Synthetic training set Mean Med. B. 25% W. 25%
w/o CIE XYZ 3.30 2.55 0.60 7.21
w/ CIE XYZ 3.04 2.36 0.56 6.58
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mation challenge. https://www.isispa.org/
illumination-estimation-challenge. Ac-
cessed: 2021-03-07.

[7] Nikola Banic and Sven Loncaric. Color dog-guiding the
global illumination estimation to better accuracy. VISAPP,
2015.
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