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(a) DukeMTMC-VideoReID [15] (b) MARS [17] (c) iLIDS-VID [14]

Figure 1: Sample tracklets from the (a) DukeMTMC-VideoReID, (b) MARS, (c) iLIDS-VID datasets. Rows correspond to different

persons. As seen from the tracklets, video-based person re-identification is a challenging problem due to occlusions, similar appearances

in different identities, and misaligned frames. Best viewed in color.

1. Simplified Demonstration of STRF

We present a simplified demonstration of our proposed framework STRF. STRF is designed to extract four types of informa-

tion from input feature maps. Intuitively, STRF learns:

I. What is static temporally or changing slowly in time (e.g., how people look, TS)

II. What is changing temporally or dynamic in time (e.g., how people move, TD)

III. What is coarsely observable spatially (e.g., global appearance/outline, SC)

IV. What is finely observable spatially (e.g., fine appearance details, SF)
Each “factor” above has its own contribution. For instance, TD can provide robust features when people can only be dis-

tinguished based on motion/dynamics (e.g., same dress code). Under frame misalignment, TS (with SF/SC) can provide

person-specific features while suppressing background/occlusions. The questions, then, are

Q1. How are they learned?

Q2. How to “weight” the input feature map using them?

Factor-specific pooling functions Gdk(·) help answer Q1 above. Given input feature map f
(i)
ℓ ∈ R

cℓ×fℓ×hℓ×wℓ (e.g., channels

cℓ = 2048, frames fℓ = 8, height hℓ = 14, width wℓ = 7), each Gdk(·) operates differently. For instance, Gtς(·) of TS uses

a 4 × 1 × 1 kernel (with stride 4) to give intermediate feature map f
(p)
ℓ ∈ R

c×2×h×w, i.e., temporally pooling 8 into 2

feature maps to capture what changes slowly over time. On the other hand, TD’s Gtτ (·), with kernel 2 × 1 × 1, gives

f
(p)
ℓ ∈ R

c×4×h×w, i.e., more temporal feature maps (i.e. 4) since one needs more data points to capture what is changing

dynamically (compared to TS above) in time. Similar argument holds for SF/SC spatially. Finally, the factor-specific attention

map Mdk helps weight feature volumes appropriately using matrix multiplication in eq. (1) (main paper) towards our

objective function (helping answer question Q2 above). This shows why 4 pooling functions are necessary. As each FFM

has unique Gdk(·), they are different and help in focusing different aspects of information available in input feature maps.

2. Datasets Details

In this section, we provide more details for each of the three datasets, MARS [17], DukeMTMC-VideoReID [15], and iLIDS-

VID [14], used in the paper. Sample video tracklets for each are shown in Figure 1.

■ MARS [17]: MARS is a large-scale multi-camera (six views) dataset, comprising 17503 tracklets corresponding to

1261 identities, with an average number of 59 frames per tracklet. Of the 1261 identities, 625 identities are used for

training and the rest for testing. Additionally, it has 3248 distractor tracklets to be used as part of the gallery. Each

bounding box is detected and subsequently tracked using the DPM detection [5] and GMCP tracking [2] algorithms,

respectively.

■ DukeMTMC-VideoReID [15]: DukeMTMC-VideoReID is part of the DukeMTMC tracking dataset [12], comprising

1812 identities of which 702 are used for training, 702 for testing, and the rest 408 as distractors. In total, there are

2196 video tracklets for training and 2636 video tracklets for testing. Each frame in the video tracklet is sampled at an

interval of 12 frames and has manually annotated bounding boxes.

■ iLIDS-VID [14]: iLIDS-VID is a two-camera-view dataset comprising 600 video tracklets with 300 identities with an

average of 73 frames per identity and manually annotated bounding boxes.
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3. Implementation Details

Hyperparameters Details. We build our feature extractors by first inflating 2D-ResNet50 [7], pre-trained on ImageNet [3],

with time dimension of all kernels set to 1 (See Figure 2(A) in main manuscript). The last stride of the model is set to 1

following [13, 16]. Then, we replace stage 2 and 3 with the proposed STRF-P3D residual blocks. We train our model with

the Adam [9] optimizer with a weight decay of 0.0005 for 250 epochs. The initial learning rate is set to 0.0003, and is reduced

by a factor of 10 times after every 50 epochs. For data augmentation, we use random erasing [18] and random horizontal flip

following [1, 8]. As part of each training batch, we randomly sample 4 frames with a stride of 8 frames to form a clip for

each tracklet. Each batch contains 8 persons with 4 video clips each. All the frames are resized to 256 × 128. The feature

dimension is set to 2048 which is obtained after temporal pooling for both training and testing. We use PyTorch [10] for all

our experiments. Training time is ∼10 hrs on 3 NVIDIA Tesla-V100 GPUs.

Testing Protocol. For fair comparisons, we follow exact testing protocols as in prior works [6, 8]. We split each video

tracklet into several four-frame clips and extract their feature representations. The final feature representation is computed by

averaging across all the clips. Finally, for retrieval, cosine distances are computed between query and gallery video features.

4. Additional Discussions on STRF

Location of STRF in Pseudo-3D [11] residual blocks. We observe in our preliminary experiments that STRF is more

effective with the 3× 1× 1 convolutional layer rather than the 1× 3× 3 convolutional layer (see Figure 1). Hence, we place

the STRF module with the 3×1×1 convolutional layer as indicated in Figure 2(B) of the main manuscript. One explanation

for this behavior of STRF can be attributed to the fact that time-degenerate convolutions are more effective in extracting rich

information of temporal dimension which has shown to be more important for recognition in [1, 4]. Moreover, the temporal

integrity is diminished with 1 × 3 × 3 as each feature map in the volume is treated individually. Hence, after the proposed

enhancement of the feature volume, the 3× 1× 1 convolutional layer performs comparatively well.

Additional analysis of STRF on different stages of feature extractor. We present additional analysis of the impact of

adding the proposed STRF module at various stages to the baseline model in Table 2. We can observe that the STRF module

is effective at every stage to enhance the performance of the baseline model.

MODEL STAGE mAP
(

%
)

R@1
(

%
)

Baseline 83.10 88.50

B
as

el
in

e
+

S
T

R
F

2 85.40 89.70

3 85.20 89.80

3, 4 84.00 89.40

2, 3, 4 85.30 90.10

Table 1: Per-stage influence of STRF. STRF is effective at var-

ious stages of STRF-P3DC on MARS [17].
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Figure 2: Location of STRF. Our STRF

module performs the best with 3 × 1 × 1

compared to 1×3×3 as demonstrated here

on MARS [17].

Additional analysis of STRF’s four factorization components. We present additional analysis of the different combina-

tions of factorization modules of STRF in Table 2.

Table 2: Contribution of each factorization module. Additional analysis of STRF’s four factorization components with the P3DC

baseline on MARS [17].

(s, τ) (s, ς) (t, τ) (t, ς) mAP(%) R@1(%)

✓ ✓ 85.40 89.50

✓ ✓ 85.30 89.60

✓ ✓ ✓ 85.60 90.10

✓ ✓ ✓ 85.70 90.20

✓ ✓ ✓ 85.40 89.80

✓ ✓ ✓ 85.60 90.00
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5. Attention Maps

In this section, we present the efficacy of the proposed STRF module in challenging real-world scenarios of occlusion, frame

misalignment, and different identities with similar appearance. From Figure 3(a) (DukeMTMC-VideoReID) and Figure 3(b)

(MARS), it can be observed that STRF is able to locate the person of interest more precisely when employed with the baseline

model. Note that these attention maps are obtained from stage 3 of the feature extractor as we add our proposed module here.

6. Qualitative Results

In this section, we present some cases where the baseline model was unable to find the right match of the query in the gallery

(see Figure 4(a) for DukeMTMC-VideoReID and Figure 4(b) for MARS) in Rank-1 retrieval. It can be observed that our

proposed module helps to enhance the ability of the baseline model to identify the person of interest in difficult examples.
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(a) DukeMTMC-VideoReID [15]
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(b) MARS [17]

Figure 3: More attention maps visualization on DukeMTMC-VideoReID [15], MARS [17]. We present attention maps corresponding

to different real-world challenges where our proposed module STRF enabled the baseline (P3DB for DukeMTMC-VideoReID [15], P3DC

for MARS [17]) to correctly locate the person of interest in the video tracklet. Best viewed in color.
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(a) DukeMTMC-VideoReID [15]

(b) MARS [17]

Figure 4: Rank-1 (R@1) retrieval results in challenging scenarios on DukeMTMC-VideoReID [15], MARS [17]. We present R@1

retrieval cases where our proposed module STRF enabled the baseline (P3DB for DukeMTMC-VideoReID [15], P3DC for MARS [17])

to correctly identify the query in the gallery. Red bounding boxes indicates incorrect retrieval. Green bounding boxes indicates correct

retrieval. Blue indicates labels. Best viewed in color.
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