
ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement
Supplementary Materials

Yuval Alaluf Or Patashnik Daniel Cohen-Or

Blavatnik School of Computer Science, Tel Aviv University

In this supplemental document we provide additional de-
tails and analysis to complement those provided in the main
manuscript. Along with the additional details, we also per-
form an ablation study to validate our design choices and
provide a large gallery of comparisons and results at full
resolution using the proposed ReStyle scheme. Finally, we
invite the readers to view the accompanying full-resolution
animations.

1. Additional Details
1.1. The ReStyle Encoder Architecture

We begin by providing additional details regarding the
ReStyle encoder architecture presented in Section 4.1. Re-
call that our simplified architecture is derived from the ar-
chitecture used in Richardson et al. [10]. There, the authors
employ an FPN-based architecture for encoding real images
into the StyleGAN latent space. Specifically, the encoder
extracts the style input vectors using three intermediate fea-
ture maps of spatial resolutions 64 × 64 (for inputs 0 − 2),
32× 32 (for inputs 3− 6), and 16× 16 (for inputs 7− 17).
Each style vector is extracted from their corresponding fea-
ture map using a map2style block, which is a small convolu-
tional network containing a series of 2-strided convolutions
with LeakyReLU activations. This FPN-based architecture
is illustrated in Figure 1.

With ReStyle, we take a simpler approach. Instead of
extracting the style vectors from three intermediate feature
maps along the encoder, each style input is extracted from
the final 16 × 16 feature map and a map2style block, as il-
lustrated in Figure 3 in the main paper. An ablation study
comparing these two architectures is provided below in Sec-
tion 3.

1.2. Datasets

Here, we provide additional details regarding the
datasets used in each of the evaluated domains.

Human Faces. For the human facial domain, we use all
70, 000 images from the FFHQ [5] dataset for training the
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Figure 1. Visualization of the original FPN architecture used in
Richardson et al. [10] and Tov et al. [13]. A visualization of our
simplified encoder architecture is provided in the main paper.

ReStyle encoders. For evaluations, we use all 2, 824 test
images from the CelebA-HQ [8, 4] dataset using the official
train-test split.

Cars. For the cars domain, we use the Stanford Cars [7]
dataset with training performed using the 8, 144 training im-
ages. For our evaluations, due to the large test set (8, 041
images), we randomly select 1, 000 images from the test set
with all metrics computed using the selected subset.

AFHQ Wild. Here, training and evaluations are performed
on 4, 738 and 500 images, respectively, taken from the offi-
cial AFHQ [1] Wild dataset.

Horses. From the LSUN [14] Horse dataset, we randomly
select 10, 000 to be used for training and 2, 215 images used
for evaluations.

Churches. For the churches domain we use all 126, 227
training images and 300 testing images from the official
LSUN [14] Church dataset.



1.3. Baselines

In our evaluations in Sections 5.2 and 5.4, we compare
ReStyle with various encoder-based inversion methods. Be-
low, we provide additional details on the baselines evaluated
in the main paper.

IDInvert. We compared our ReStyle approach to the IDIn-
vert encoder from Zhu et al. [15] on the human facial and
cars domains. For the human facial domain, we use the
official pre-trained model, which employs a StyleGAN1 [5]
generator. For the cars domain, we re-trained IDInvert using
an input resolution of 512×384 and the official StyleGAN2
generator. Note, due to the long training time required by
IDInvert (over three weeks on two NVIDIA P40 GPUs), we
chose to train IDInvert only on the cars domain.

pSp. For the human facial domain, we use the official pre-
trained model from Richardson et al. [10]. For all other do-
mains, we trained pSp using StyleGAN2 generators and de-
fault pSp hyper-parameters. During training, we also incor-
porated the MOCO-based similarity loss from [13] which
was shown to improve reconstruction quality.

e4e. For our comparison with Tov et al. [13], we trained e4e
on the AFHQ [1] Wild dataset using the official implemen-
tation and default e4e hyper-parameters. All other domains
were evaluated using official pre-trained models.

2. ReStyle Analysis
In this section, we provide additional analyses to com-

plement those performed in the main paper (Section 5.3).

Where’s the focus? (Part II) In Section 5.3 (Figures 6 and
7), we showed which image regions change the most at each
inference step and showed how the magnitude of change
decreases over time. There, the resulting Figures were ob-
tained by averaging over all 2, 000+ test images. To com-
plement these Figures, we can examine this behavior while
observing each image independently rather than averaging
over all images. Consider Figure 2. There, we illustrate the
intermediate outputs of ReStylepSp alongside the normal-
ized heat-maps where red denotes a large pixel change and
blue denotes a small pixel change. As shown, in the early it-
erations, ReStyle focuses on adjusting global features such
as the head pose or the car shape while in subsequent itera-
tions finer details are adjusted.

How many steps are needed? The ReStyle analysis per-
formed in the main paper and above explore ReStyle’s be-
havior in the image space. Here, we explore the behavior
of ReStyle in the latent space. Specifically, we analyze (i)
which latent entries change the most across the inference
steps and (ii) how many steps are needed for convergence.
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Input Iterative Outputs −→

Figure 2. Visualizing the iterative refinement. For each image we
visualize the iterative outputs produced by ReStyle. Below each
output, we show a heatmap illustrating which image regions were
altered the most at the corresponding step. Note, all heatmaps
are normalized globally with respect to each other. Red regions
indicate a large change with blue representing small changes in
the pixel-space.

Figure 3. Which latents change the most? We plot the average
magnitude of change in each group of latent inputs per step during
inference. As shown, ReStyle focuses on adjusting the coarse and
medium-level inputs and converges after a few steps.

To do so, we focus on the cars domain and perform the fol-
lowing process. Consider some iteration t and some latent
entry wl where l ∈ [1, k] and k is the number of style in-
puts of the generator. To compute how much the values
of wl change between iterations t − 1 and t we compute
the squared difference between the latent entries averaged
across all test samples.
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Figure 4. Ablation study. As shown, using a pre-trained pSp or e4e encoder and simply feeding the output image multiple times leads
to deteriorating reconstruction results. Conversely, our dedicated ReStyle scheme incrementally improves its reconstruction outputs with
each additional step.

That is,

dl,t =
1

N

N∑
i=1

(
w(i)

l,t − w(i)
l,t−1

)2
, (1)

vl,t = ||dl,t||2 (2)

where w(i)
l,t is the l-th latent entry of the i-th sample obtained

in iteration t and vl,t is the L2 norm of the average differ-
ence dl,t. Having computed the average change of each of
the k latent entries across all test samples, we group the en-
tries into the coarse, medium, and fine inputs as defined by
StyleGAN and compute the average change of each group.

In Figure 3, we plot the change along each step for each
of the three groups. As can be seen, the coarse input group
attains the most change in the early iterations as the encoder
focuses on refining the background and pose of the inver-
sions. Conversely, the fine styles undergo the least change
and converge after only a few steps, indicating that refining
these aspects (e.g., the color) of the output image may be
easier for the encoder. Overall, it can be seen that a few
number of steps are needed for the encoder to converge to
its final inversion prediction. Another interpretation of the
above phenomenon is that the learned residuals decrease at
every inference step, as is desired.

3. Ablation Study
In this section, we validate our design choices for our

ReStyle training scheme and encoder architecture.

The Iterative Training Scheme. We begin by showing that
a dedicated iterative training scheme is truly needed. A nat-
ural first attempt for creating an iterative inversion scheme

is simply using a pre-trained conventional encoder and pass-
ing the output image back as input multiple times. Notice
that there are key differences from the above formulation
and the ReStyle formulation. First, in the ReStyle scheme,
we pass both the input and current output to the encoder.
Second, a ReStyle encoder is trained explicitly to output a
residual with respect to the previous latent at each step.

In Figure 4 we provide a comparison on the human fa-
cial and cars domains using both a pSp encoder and e4e en-
coder using the ReStyle formulation and naive formulation
presented above. As can be seen, at each additional step,
the naive formulation moves away from the reconstruction
of the input image. This shows that our dedicated itera-
tive, residual-based training scheme is indeed needed over
readily-available encoders.

The ReStyle Encoder Architecture. Here, we show that
our simplified encoder architectural design choice leads to a
negligible difference in reconstruction quality while reduc-
ing the inference time compared to the FPN-based architec-
ture from Richardson et al. [10]. Table 1 summarizes the
reconstruction results across 5 domains. For each domain
and encoder, we perform 5 steps during inference and dis-
play quantitative results computed on the final output. As
shown, the two variants attain nearly identical reconstruc-
tion quality in terms of both L2 and LPIPS similarity. How-
ever, our simplified architecture is more than 10% faster.

4. Analyzing the Toonify Latent Space
In Section 5.5, we explored a new encoder bootstrapping

technique for performing image toonification [9]. Rather
than initializing ReStyle using the average latent code and
corresponding toon image, the iterative process is initialized



Domain Method ↓ LPIPS ↓MSE ↓ Runtime

Faces
(1024)

ReStylefpn 0.03 0.14 0.538
ReStylesimple 0.03 0.13 0.451

Cars
(512)

ReStylefpn 0.08 0.26 0.411
ReStylesimple 0.07 0.25 0.361

Wild
(512)

ReStylefpn 0.06 0.23 0.413
ReStylesimple 0.06 0.21 0.363

Churches
(256)

ReStylefpn 0.09 0.28 0.355
ReStylesimple 0.09 0.26 0.298

Horses
(256)

ReStylefpn 0.09 0.32 0.355
ReStylesimple 0.09 0.31 0.298

Table 1. Ablation study on applying ReStyle to pSp using our sim-
pler encoder architecture variants compared to the original FPN-
based architecture. All results shown are computed on the final re-
construction outputs after 5 inference steps. As shown, our simpli-
fied architecture is comparable to the FPN-variant with a reduced
inference time.

by first inverting the real image into the FFHQ StyleGAN
latent space. The resulting inverted code and reconstructed
image are then used to initialize the ReStyle toonify en-
coder. Thanks to the improved initialization from the in-
verted latent code, the toonify encoder is able to learn a
more faithful translation of the real image into its corre-
sponding toon image. However, as mentioned in the main
text, it is not trivial to assume that the real inverted code
in the FFHQ latent space corresponds to the same identity
characteristics in the toonify latent space.

To show that the above is in fact true we randomly sam-
ple w vectors from the FFHQ latent space. We then pass
the same w vector to both the FFHQ StyleGAN generator
and toonify StyleGAN generator to see if the synthesized
images are semantically similar. We provide several exam-
ples in Figure 5. As shown, the same latent code produces
semantically similar images in both latent spaces, indicat-
ing that the two latent spaces are indeed well-aligned. As a
result of the above, we gain valuable insights as to the effec-
tiveness of the encoder bootstrapping technique in the task
of image toonification.

5. Quantitative Results

In Section 5.2, we quantitatively compared various in-
version methods by constructing quality-time graphs which
allowed us to visualize how reconstruction quality changes
with respect to inference time. In Figures 6 and 7 we pro-
vide the quality-time graphs for both the L2 and LPIPS
loss metrics across all five domains. For the human fa-
cial domain we additionally measure the identity similarity
of the reconstructed images by using the Curricularface [3]
method for facial recognition.
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Figure 5. Synthesized images generated by passing the same ran-
domly sampled latent code throug the FFHQ StyleGAN generator
and Toonify StyleGAN generator. As shown, the two latent spaces
are well-aligned.

6. Additional Results
The remainder of this document contains additional

comparisons and results, as follows:

1. Figures 8 and 9 contain additional comparisons on the
human facial domain. Additionally, Figure 10 pro-
vides a comparison on more challenging input poses
and expressions.

2. Figures 11 and 12 contain additional comparisons on
the cars domain.

3. Figures 13 and 14 contain additional comparisons on
the churches domain.

4. Figure 15 contains additional comparisons on the wild
animals domain.

5. Figure 16 contains additional comparisons on the
horses domain.

6. Figure 17 contains comparisons to the IDInvert en-
coder from Zhu et al. [15] on the human facial and
cars domains.

7. Figure 18 shows iterative outputs generated by ReStyle
applied over pSp [10] on the human facial domain.

8. Figure 19 shows iterative outputs generated by ReStyle
applied over e4e [13] on the cars domain.

9. Figure 20 shows iterative outputs generated by ReStyle
applied over pSp [13] on the churches domain.

10. Figure 21 shows iterative outputs generated by ReStyle
applied over e4e [13] on the horses domain.

11. Figures 22 contains editing comparisons with the opti-
mization technique from Karras et al. [6] on the human
facial domain obtained using InterFaceGAN [11].



12. Figures 23 contains editing comparisons with the op-
timization technique from Karras et al. [6] on the cars
domain obtained using GANSpace [2].

13. Figures 24 contains editing comparisons with the opti-
mization technique from Karras et al. [6] on the horses
domain obtained using SeFa [12].

14. Figures 25 and 26 contain additional results on the im-
age toonification task using the encoder bootstrapping
method presented in Section 5.5.

Note, all results are shown at full-resolution: 1024 × 1024
for human faces, 512× 512 for cars and wild animal faces,
and 256× 256 for churches and horses.
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Figure 6. Quantitative comparison. We compare ReStyle with current state-of-the-art optimization-based and encoder-based methods by
analyzing reconstruction via multiple evaluation metrics while measuring each method’s run-time during inference. Each encoder-based
method is represented using a ? symbol. The corresponding hybrid method is marked using a dashed line of the same color with the
ReStyle applied over the base method shown using a solid line of the same color. Optimization results are shown using a dashed green line.
Methods based on pSp are shown in red with methods based on e4e shown in blue. Finally, results obtained using IDInvert [15] are shown
in orange. Note that both axes are shown in log-scale.



Figure 7. Quantitative comparison. Same setting as Figure 6 for the LSUN [14] Church and LSUN Horse domains.



Input Optimization Hybrid pSp ReStylepSp

Input Optimization Hybrid pSp ReStylepSp

Figure 8. Additional qualitative comparisons on the CelebA-HQ [8, 4] test set. Here, we apply ReStyle over the pSp encoder [10].
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Figure 9. Additional qualitative comparisons on the CelebA-HQ [8, 4] test set. Here, we apply ReStyle over the e4e encoder [13].
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Figure 10. Additional qualitative comparisons on the CelebA-HQ [8, 4] test set on more challenging input poses and expressions. Here,
we apply ReStyle over the pSp encoder [10].
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Figure 11. Additional qualitative comparisons on the Stanford Cars [7] test set. Here, we apply ReStyle over the pSp encoder [10].
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Figure 12. Additional qualitative comparisons on the Stanford Cars [7] test set. Here, we apply ReStyle over the e4e encoder [13].
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Figure 13. Additional qualitative comparisons on the LSUN [14] Church test set. Here, we apply ReStyle over the pSp encoder [10].
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Figure 14. Additional qualitative comparisons on the LSUN [14] Church test set. Here, we apply ReStyle over the e4e encoder [13].
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Figure 15. Additional qualitative comparisons on the AFHQ [1] Wild test set. Here, we apply ReStyle over the pSp encoder [10].
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Figure 16. Additional qualitative comparisons on the LSUN [14] Horse test set. Here, we apply ReStyle over the e4e encoder [13].
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Figure 17. Qualitative comparisons with the IDInvert encoder from Zhu et al. [15] on the CelebA-HQ [8, 4] and Stanford Cars [7] test sets.
Here, we show results with ReStyle applied over both the pSp and e4e encoders.
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Figure 18. Iterative outputs generated by ReStyle applied over pSp on the human facial domain.
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Figure 19. Iterative outputs generated by ReStyle applied over e4e on the cars domain.
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Figure 20. Iterative outputs generated by ReStyle applied over pSp on the churches domain.
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Figure 21. Iterative outputs generated by ReStyle applied over e4e on the horses domain.
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Figure 22. Editing comparisons with the optimization technique from Karras et al. [6] on the human facial domain obtained using Inter-
FaceGAN [11]. Here ReStyle is applied over the e4e encoder. We perform two edits: an age edit and smile edit.
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Figure 23. Editing comparisons with the optimization technique from Karras et al. [6] on the cars domain obtained using GANSpace [2].
Here ReStyle is applied over the e4e encoder. We perform three edits: a cube-shape edit, viewpoint edit, and color edit.
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Figure 24. Editing comparisons with the optimization technique from Karras et al. [6] on the horses domain obtained using SeFa [11].
Here ReStyle is applied over the e4e encoder. We perform two edits: a pose edit and an edit to add/remove a horse rider.
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Figure 25. Additional results on the image toonification task using ReStyle with our encoder bootstrapping technique. For each input, we
show the inverted image obtained after a single step of our ReStylepSp FFHQ encoder followed by the iterative outputs of our ReStylepSp

toonify encoder.
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Figure 26. Additional image toonification results obtained using the same setting as Figure 25.


