
Contextually Plausible and Diverse 3D Human Motion Prediction
(Supplementary Material)

Sadegh Aliakbarian*

Microsoft
Fatemeh Saleh
ACRV, ANU

Lars Petersson
Data61, CSIRO

Stephen Gould
ACRV, ANU

Mathieu Salzmann
CVLab, EPFL

1. LCP-VAE Architecture

Our motion prediction model follows the architecture de-
picted in Fig. 3 of the main paper. Below, we describe the
architecture of each component in our model. Note that
human poses, consisting of 32 joints in case of the Hu-
man3.6M dataset, are represented in 4D quaternion space.
Thus, each pose at each time-step is represented with a vec-
tor of size 1 × 128. All the tensor sizes described below
ignore the mini-batch dimension for simplicity.

The observed motion encoder, or CS-VAE motion en-
coder, is a single layer GRU [1] network with 1024 hidden
units. If the observation sequence has length Tobs, the ob-
served motion encoder maps Tobs×128 into a single hidden
representation of size 1× 1024, i.e., the hidden state of the
last time-step. This hidden state, ht, acts as the condition to
the LCP-VAE encoder and the direct input to the CS-VAE
encoder.

CS-VAE, similarly to any variational autoencoder, has
an encoder and a decoder. The CS-VAE encoder is a fully-
connected network with ReLU non-linearities, mapping the
hidden state of the motion encoder, i.e., ht, to an embedding
of size 1×512. Then, to generate the mean and standard de-
viation vectors, we use two fully connected branches. They
map the embedding of size 1× 512 to a mean vector of size
1 × 128 and a standard deviation vector of size 1 × 128,
where 128 is the length of the latent variable. Note that we
apply a ReLU non-linearity to the vector of standard devia-
tions to ensure that it is non-negative. We then use the repa-
rameterization trick [7] to sample a latent variable of size
1 × 128. The CS-VAE decoder consists of multiple fully-
connected layers, mapping the latent variable to a variable
of size 1 × 1024, acting as the initial hidden state of the
observed motion decoder. Note that we apply a Tanh non-
linearity to the generated hidden state to mimic the proper-
ties of a GRU hidden state.

The observed motion decoder, or CS-VAE motion de-
coder, is similar to its motion encoder, except for the fact
that it reconstructs the motion autoregressively. Addition-
ally, it is initialized with the reconstructed hidden state, i.e.,

*Work done while at the Australian National University.

the output of the CS-VAE decoder. The output of each GRU
cell at each time-step is then fed to a fully-connected layer,
mapping the GRU output to a vector of size 1× 128, which
represents a human pose with 32 joints in 4D quaternion
space. To decode the motions, we use a teacher forcing
technique [10] during training. At each time-step, the net-
work chooses with probability Ptf whether to use its own
output at the previous time-step or the ground-truth pose
as input. We initialize Ptf = 1, and decrease it linearly
at each training epoch such that, after a certain number of
epochs, the model becomes completely autoregressive, i.e.,
uses only its own output as input to the next time-step. Note
that, at test time, the motions are generated completely au-
toregressively, i.e., with Ptf = 0.

Note that the future motion encoder and decoder have
exactly the same architectures as the observed motion ones.
The only difference is their input, where the future motion
is represented by poses from Tobs to Tend in a sequence. In
the following, we describe the architecture of LCP-VAE for
motion prediction.
LCP-VAE is a conditional variational encoder. Its en-

coder’s input is a representation of future motion, i.e., the
last hidden state of the future motion encoder, hT , condi-
tioned on ht. The conditioning is done by concatenation,
thus the input to the encoder is a representation of size
1×2048. The LCP-VAE encoder, similarly to the CS-VAE
encoder, maps its input representation to an embedding of
size 1 × 512. Then, to generate the mean and standard de-
viation vectors, we use two fully connected branches, map-
ping the embedding of size 1× 512 to a mean vector of size
1 × 128 and a standard deviation vector of size 1 × 128,
where 128 is the length of the latent variable. Note that we
apply a ReLU non-linearity to the vector of standard devia-
tions to ensure that it is non-negative. To sample the latent
variable, we use our extended reparameterization trick, ex-
plained in the main paper. This unifies the conditioning and
sampling of the latent variable. Then, similarly to CS-VAE,
the latent variable is fed to the LCP-VAE decoder, which is
a fully connected network that maps the latent representa-
tion of size 1 × 128 to a reconstructed hidden state of size
1 × 1024 for future motion prediction. Note that we apply

a Tanh non-linearity to the generated hidden state to mimic
the properties of a GRU hidden state.

To train our model, we use Adam optimizer with learning
rate of 0.005 and mini-batch size of 128. We train our model
for 100 epochs on a single NVIDIA GTX 2080Ti.

2. Pseudo-code for LCP-VAE
Here, we provide the forward pass pseudo-code for both

CS-VAE and LCP-VAE.

Algorithm 1 A forward pass of CS-VAE
1: procedure CS-VAE(condition) . Human motion up to time
t or source text

2: ht = EncodeCondition(xt) . Observed
motion/source text encoder

3: µc, σc = CS-VAE.Encode(ht)
4: Sample ε ∼ N (0, I) . Sample from standard Gaussian
5: zc = µc + σc � ε . Reparameterization
6: ĥt = CS-VAE.Decode(zc)
7: x̂t = DecodeCondition(ĥt, seed)
8: return x̂t, µc, σc, ht, zc

Algorithm 2 A forward pass of LCP-VAE
1: procedure LCP-VAE(xT , zc, ht) . Human motion from t to
T or target text

2: if isTraining then
3: hT = EncodeData(xT) . Future motion/target

sentence encoder
4: hTt = Concatenate(hT , ht)
5: µ, σ = LCP-VAE.Encode(hTt)
6: z = µ+ σ � zc . Our extended reparameterization
7: else
8: z = zc
9: ĥT = LCP-VAE.Decode(z)

10: x̂T = DecodeData(ĥT , seed)
11: return x̂T , µ, σ

3. Derivation of LCP-VAE’s KL Divergence
Loss

In our approach, the model encourages the posterior of
LCP-VAE to be close to the one of CS-VAE. In general,
the KL divergence between two distributions P1 and P2 is
defined as

DKL(P1||P2) = EP1

[
log

P1

P2

]
. (1)

Let us now consider the case where the distributions
are multivariate Gaussians N (µ,Σ) in Rd, where Σ =
diag(σ2), with σ and µ are d-dimensional vectors predicted
by the encoder network of the VAE. The density function of

such a distribution is

p(x) =
1

(2π)
d
2 det(Σ)

1
2

exp

(
− 1

2
(x− µ)T Σ−1(x− µ)

)
.

(2)

Thus, the KL divergence between two multivariate Gaus-
sians is computed as

DKL(P1||P2)

=
1

2
EP1

[
− log det Σ1 − (x− µ1)T Σ−1

1 (x− µ1)+

log det Σ2 + (x− µ2)T Σ−1
2 (x− µ2)

]
=

1

2
log

det Σ2

det Σ1
+

1

2
EP1

[
− (x− µ1)T Σ−1

1 (x− µ1)+

(x− µ2)T Σ−1
2 (x− µ2)

]
=

1

2
log

det Σ2

det Σ1
+

1

2
EP1

[
− tr{Σ−1

1 (x− µ1)(x− µ1)T }+

tr{Σ−1
2 (x− µ2)(x− µ2)T }

]
=

1

2
log

det Σ2

det Σ1
+

1

2
EP1

[
− tr{Σ−1

1 Σ1}+

tr{Σ−1
2 (xxT − 2xµT

2 + µ2µ
T
2)}
]

=
1

2
log

det Σ2

det Σ1
− 1

2
d+

1

2
tr{Σ−1

2 (Σ1 + µ1µ
T
1 −

2µ2µ
T
1 + µ2µ

T
2)}

=
1

2

[
log

det Σ2

det Σ1
− d+ tr{Σ−1

2 Σ1}+ tr{µT
1 Σ−1

2 µ1−

2µT
1 Σ−1

2 µ2 + µT
2 Σ−1

2 µ2}

]

=
1

2

[
log
|Σ2|
|Σ1|

− d+ tr{Σ−1
2 Σ1}+

(µ2 − µ1)T Σ−1
2 (µ2 − µ1)

]
. (3)

where tr{·} denotes the trace operator. In Eq. 3, the co-
variance matrix Σ1 and mean µ1 correspond to distribution
P1 and the covariance matrix Σ2 and mean µ2 correspond
to distribution P2.

Given this result, we can then compute the KL diver-
gence of the LCP-VAE and the posterior distribution with
mean µ+σ�µc and covariance matrix diag((σ�σc)2). Let
Σ = diag(σ2), Σc = diag(σ2

c), and d be the dimensionality
of the latent space. The loss in Eq. 7 of the main paper can
then be written as

LLCP-VAEprior = −1

2

[
log

|Σc|
|Σc||Σ|

− d+ tr{Σ−1
c ΣcΣ}+

(µc − (µ+ Σµc))
T Σ−1

c (µc − (µ+ Σµc))
]
. (4)

Since Σ−1
c Σc = I , |Σc| will be cancelled out in the log

term, which yields

LLCP-VAEprior =− 1

2

[
log

1

|Σ|
− d+ tr{Σ}+

(µc − (µ+ Σµc))
T Σ−1

c (µc − (µ+ Σµc))
]
.

(5)

4. Results on the Penn Action Dataset

As a complementary experiment, we evaluate our ap-
proach on the Penn Action dataset, which contains 2326
sequences of 15 different actions, where for each person,
13 joints are annotated in 2D space. Most sequences have
less than 50 frames and the task is to generate the next 35
frames given the first 15. Results are provided in Table 1,
where we compare our approach with the deterministic au-
toregressive (AR) counterpart. Note that the upper bound
for the Context metric is 0.74, i.e., the classification perfor-
mance given the Penn Action ground-truth motions.

Table 1. Quantitative evaluation on the Penn Action dataset. Note
that a diversity of 1.21 is reasonably high for normalized 2D joint
positions, i.e., values between 0 and 1, normalized with the width
and the height of the image.

Test MSE (KL) Diversity Quality Context
Method (Reconstructed) (Sampled) (Sampled) (Sampled)

LCP-VAE 0.034 (6.07) 1.21 0.46 0.70
AR Counterpart 0.048 (N/A) 0.00 0.46 0.51

5. Evaluating Sampling Quality

In Table 2, we compare our approach with the state-of-
the-art deterministic motion prediction models [9, 6, 5, 2, 4]
using the MAE metric in Euler space. To have a fair com-
parison, we generate one motion per observation by setting
the latent variable to the distribution mode, i.e., z = µc.
This allows us to generate a plausible motion without hav-
ing access to the ground truth. To compare against the de-
terministic baselines, we follow the standard setting, and
thus use 50 frames (i.e., 2sec) as observation to generate
the next 25 frames (i.e., 1sec). Surprisingly, despite hav-
ing a very simple motion decoder architecture (one-layer
GRU network) with a very simple reconstruction loss func-
tion (MSE), this motion-from-mode strategy yields results
that are competitive with those of the baselines that use so-
phisticated architectures and advanced loss functions. We
argue that learning a good, context-preserving latent repre-
sentation of human motion is the contributing factor to the
success of our approach. This, however, could be used in
conjunction with sophisticated motion decoders and recon-
struction losses, which we leave for future research.

Table 2. Comparison with the state-of-the-art deterministic models
for 4 actions of Human3.6M. Note that in our approach, we use
z = µc to generate a single motion.

Walking Eating

Method 80 160 320 400 560 1000 80 160 320 400 560 1000

Zero Velocity 0.39 0.86 0.99 1.15 1.35 1.32 0.27 0.48 0.73 0.86 1.04 1.38
LSTM-3LR [2] 1.18 1.50 1.67 1.76 1.81 2.20 1.36 1.79 2.29 2.42 2.49 2.82
SRNN [6] 1.08 1.34 1.60 1.80 1.90 2.13 1.35 1.71 2.12 2.21 2.28 2.58
DAE-LSTM [3] 1.00 1.11 1.39 1.48 1.55 1.39 1.31 1.49 1.86 1.89 1.76 2.01
GRU [9] 0.28 0.49 0.72 0.81 0.93 1.03 0.23 0.39 0.62 0.76 0.95 1.08
AGED [4] 0.22 0.36 0.55 0.67 0.78 0.91 0.17 0.28 0.51 0.64 0.86 0.93
DCT-GCN [8] 0.18 0.31 0.49 0.56 0.65 0.67 0.16 0.29 0.50 0.62 0.76 1.12
LCP-VAE 0.20 0.34 0.48 0.53 0.57 0.71 0.20 0.26 0.44 0.52 0.61 0.92

Smoking Discussion

Method 80 160 320 400 560 1000 80 160 320 400 560 1000

Zero Velocity 0.26 0.48 0.97 0.95 1.02 1.69 0.31 0.67 0.94 1.04 1.41 1.96
LSTM-3LR [2] 2.05 2.34 3.10 3.18 3.24 3.42 2.25 2.33 2.45 2.46 2.48 2.93
SRNN [6] 1.90 2.30 2.90 3.10 3.21 3.23 1.67 2.03 2.20 2.31 2.39 2.43
DAE-LSTM [3] 0.92 1.03 1.15 1.25 1.38 1.77 1.11 1.20 1.38 1.42 1.53 1.73
GRU [9] 0.33 0.61 1.05 1.15 1.25 1.50 0.31 0.68 1.01 1.09 1.43 1.69
AGED [4] 0.27 0.43 0.82 0.84 1.06 1.21 0.27 0.56 0.76 0.83 1.25 1.30
DCT-GCN [8] 0.22 0.41 0.86 0.80 0.87 1.57 0.20 0.51 0.77 0.85 1.33 1.70
LCP-VAE 0.21 0.43 0.79 0.79 0.77 1.15 0.22 0.55 0.79 0.81 1.05 1.28

6. Additional Qualitative Results
Here, we provide qualitative results on diverse human

motion prediction on the Human3.6M dataset. As can be
seen in Figures 1 to 6, the motions generated by our ap-
proach are diverse and natural, and mostly within the con-
text of the observed motion. We also provide qualitative
results as a video in a separate file.

Figure 1. Qualitative evaluation of the diversity in human motion.
The first row illustrates the ground-truth motion. The first six
poses of each row depict the observation (the condition) and the
rest are sampled from our model. Each row is a randomly sampled
motion (not cherry picked). As can be seen, all sampled motions
are natural, with a smooth transition from the observed to the gen-
erated ones. The diversity increases as we increase the sequence
length.

References
[1] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and

Yoshua Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. 1

Figure 2. Additional qualitative evaluation of the diversity in hu-
man motion.

Figure 3. Additional qualitative evaluation of the diversity in hu-
man motion.

Figure 4. Additional qualitative evaluation of the diversity in hu-
man motion.

[2] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji-
tendra Malik. Recurrent network models for human dynam-
ics. In Proceedings of the IEEE International Conference on
Computer Vision, pages 4346–4354, 2015. 3

[3] Partha Ghosh, Jie Song, Emre Aksan, and Otmar Hilliges.
Learning human motion models for long-term predictions.
In 2017 International Conference on 3D Vision (3DV), pages
458–466. IEEE, 2017. 3

[4] Liang-Yan Gui, Yu-Xiong Wang, Xiaodan Liang, and
José MF Moura. Adversarial geometry-aware human mo-
tion prediction. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 786–803, 2018. 3

Figure 5. Additional qualitative evaluation of the diversity in hu-
man motion.

Figure 6. Additional qualitative evaluation of the diversity in hu-
man motion.

[5] Liang-Yan Gui, Yu-Xiong Wang, Deva Ramanan, and
José MF Moura. Few-shot human motion prediction via
meta-learning. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 432–450, 2018. 3

[6] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh
Saxena. Structural-rnn: Deep learning on spatio-temporal
graphs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5308–5317, 2016. 3

[7] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 1

[8] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong
Li. Learning trajectory dependencies for human motion pre-
diction. In ICCV, 2019. 3

[9] Julieta Martinez, Michael J Black, and Javier Romero. On
human motion prediction using recurrent neural networks.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4674–4683. IEEE, 2017. 3

[10] Ronald J Williams and David Zipser. A learning algorithm
for continually running fully recurrent neural networks. Neu-
ral computation, 1(2):270–280, 1989. 1

