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In this supplementary material, we detail our implemen-
tation and used architectures, show further results, discuss
further ablations, and give more details on our experiments
and comparisons. We also demonstrate how imGHUM can
be used for differentiable rendering.

1. Implementation Details
In the following, we detail the implementation of

imGHUM. We specify the used hyper-parameters and the
architectures used in the ablation experiments. Finally,
we give running times for imGHUM mesh extraction via
Marching Cubes [5].

Hyper-parameters. We train imGHUM with a batch-size
of 32, each of which contains 32 instances of α paired with
512 on surface, 256 near surface, and 256 uniform samples
for each instance. Our loss is composed as

L = λo1Lo1 + λo2Lo2 + λeLe + λlLl + λsLs, (1)

where Lo1 refers to the first part of Lo (distance) and Lo2

to the second part (gradient direction), respectively, and Ls

refers to the semantics loss. We choose λo1 = 1, λo2 =
1, λe = 0.1, λl = 0.1, and λs = 0.5. Empirically we
found that linearly increasing λo1 to 50 over 100K iterations
leads to perceptually better results. We train imGHUM until
convergence using the Adam optimizer [4] with a learning
rate of 0.2×10−3 exponentially decaying by a factor of 0.9
over 100K iterations.

Architectures. The following architectures have been
used for the baseline experiments: The single-part net-
work has been used as described in the main paper total-
ing in 2.01M parameters. The deeper single-part network
uses 10 instead of 8 layers, resulting in 2.53M parameters.
The autoencoder is composed from a PointNet++ [6] en-
coder and our single-part decoder with a total number of
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parameters of 3.91M. The encoder consists of three Point-
Net++ set abstraction modules and two 512-dimensional
fully-connected layers with ReLU activation.

Running Times. We extract meshes from imGHUM us-
ing using Octree sampling. Reconstructing a mesh in
its bounding box and with a maximum grid resolution of
2563 takes on average 1.08s using a NVIDIA Tesla V100.
Hereby, the network query time sums up to 0.44s and
Marching Cubes [5] (on CPU) takes 0.34s. The rest of
the time is used by identifying the bounding box through
probing (0.17s), Octree logic (0.05s), and transforming the
samples to the part reference frames (0.07s). We query
imGHUM in batches with a maximum batch-size of 643

samples, where one full batch takes on average 0.13s to
compute. The resulting meshes feature approximately 100K
vertices and 200K facets. Note that imGHUM allows cre-
ating meshes in arbitrary resolutions and can be queried
and also rendered (c.f . §4.3) without generating an explicit
mesh. For reference, we show imGHUM mesh reconstruc-
tions in different resolutions in fig. 1.

2. Results
In this supplemental material we show additional results

for our application experiments (fig. 3, 4, 6, 7). Addition-
ally, fig. 2 displays a large number of imGHUM instances
with great variety in poses, shapes, hand poses, and fa-
cial expressions sampled from imGHUM’s generative latent
space. This demonstrates once more that imGHUM’s level
of detail, expressiveness and generative power is on par with
state-of-the-art mesh-based models. Moreover, imGHUM
can additionally be queried at arbitrary resolutions and spa-
tial locations and models not only the surface, but also the
space around the person.

3. Ablations
In this section, we report further results of our dataset ab-

lation experiment and results of an additional ablation study
on joint rotation parameterization.
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Figure 1. imGHUM mesh reconstructions in different resolutions. Left to right: ground-truth shape, 5123, 2563, 1283, 643.

Model IoU ↑ Chamfer ×10−3 ↓ NC ↑
Only scan registrations 0.901 0.091 0.975
imGHUM 0.932 0.040 0.984

Table 1. Numerical comparison of imGHUM trained with different
data distributions evaluated on the registration test-set.

Model IoU ↑ Chamfer ×10−3 ↓ NC ↑
Only scan registrations 0.834 2.561 0.942
imGHUM 0.969 0.036 0.989

Table 2. Numerical comparison of imGHUM trained with different
data distributions evaluated on the GHUM samples test-set.

Model IoU ↑ Chamfer ×10−3 ↓ NC ↑
6D 0.969 0.044 0.989
sin, cos 0.967 0.046 0.988
Euler 0.969 0.036 0.989

Table 3. Numerical comparison of imGHUM models using differ-
ent representations for joint angles evaluated on the GHUM sam-
ples test-set.

Dataset. In the main paper we have shown that imGHUM
benefits from being trained on both samples of GHUM and
additionally on As-Conformal-As-Possible (ACAP) regis-
trations of a corpus of human scans. While training only
on scan data can represent the distribution of the scans well
(tab. 1), it does not generalize sufficiently to poses that are
not covered in this limited training set, as we show in tab. 2.

In fig. 5, we qualitatively show the effect of fine-tuning
with scan data. Please note the increased level of detail in
the faces and the enhanced soft-tissue deformation.

Rotation Representations. In tab. 3, we report metrics
for imGHUM using different rotation representations for
joint rotations θ. We have experimented with Euler an-
gles, basic sin, cos Fourier mapping [7], and the recently
proposed 6D representation [8]. Perhaps surprisingly, we
found only minor differences in imGHUM’s representa-
tional power using different rotation representations, both
qualitatively and quantitatively. We, therefore, use Euler
angles in this work as it is the most compact representation.

4. Applications
In the following, we explain the losses used in our trian-

gle set surface reconstruction experiment, detail the residual
model of the dressed and inclusive modeling experiment,
and finally introduce another application namely pose esti-
mation from silhouettes using differentiable rendering.

4.1. Triangle Set Surface Reconstruction

We describe our triangle set surface reconstruction ex-
periment in the main paper (§3.3) and show more examples
here in fig. 3. Our imGHUM reconstructions are performed
under a weighted combination of losses as

min
α
Lo(�) + L+

l (�) + L−l (�) (2)

Lo(�) =
1

n

∑
i

|S(v̂i;�)|+ ‖∇v̂iS(v̂i;�)− n̂i‖ (3)

L+
l (�) =

1

n

∑
i

(
�(kS(v̂i + in̂i;�))− 1

)2 (4)

L−l (�) =
1

n

∑
i

(
�(kS(v̂i − in̂i;�))

)2
; (5)

where Lo is a surface sample loss (similar to eq. 2 in the
main paper), and L+

l , L
−
l are sign classification losses de-

fined for points sampled along and opposite to the normals
respectively (γi ∈ [0, 0.05] is a Gaussian sampled distance).

Enabled by the implicit semantics of imGHUM, we can
additionally exploit landmark losses as,
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where Mj = {mj}, Ms = {ms} are a collection of 3D
landmarks defined over the joints and the surface, respec-
tively. m̄s are the corresponding surface landmarks defined
on the canonical mesh X(α0). Lj aligns the transformed
joint centers with the joint landmarks. The surface land-
marks loss Ls queries the semantics for the ground-truth
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