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In this supplementary material, we detail our implemen-
tation and used architectures, show further results, discuss
further ablations, and give more details on our experiments
and comparisons. We also demonstrate how imGHUM can
be used for differentiable rendering.

1. Implementation Details
In the following, we detail the implementation of

imGHUM. We specify the used hyper-parameters and the
architectures used in the ablation experiments. Finally,
we give running times for imGHUM mesh extraction via
Marching Cubes [5].

Hyper-parameters. We train imGHUM with a batch-size
of 32, each of which contains 32 instances of α paired with
512 on surface, 256 near surface, and 256 uniform samples
for each instance. Our loss is composed as

L = λo1Lo1 + λo2Lo2 + λeLe + λlLl + λsLs, (1)

where Lo1 refers to the first part of Lo (distance) and Lo2

to the second part (gradient direction), respectively, and Ls

refers to the semantics loss. We choose λo1 = 1, λo2 =
1, λe = 0.1, λl = 0.1, and λs = 0.5. Empirically we
found that linearly increasing λo1 to 50 over 100K iterations
leads to perceptually better results. We train imGHUM until
convergence using the Adam optimizer [4] with a learning
rate of 0.2×10−3 exponentially decaying by a factor of 0.9
over 100K iterations.

Architectures. The following architectures have been
used for the baseline experiments: The single-part net-
work has been used as described in the main paper total-
ing in 2.01M parameters. The deeper single-part network
uses 10 instead of 8 layers, resulting in 2.53M parameters.
The autoencoder is composed from a PointNet++ [6] en-
coder and our single-part decoder with a total number of
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parameters of 3.91M. The encoder consists of three Point-
Net++ set abstraction modules and two 512-dimensional
fully-connected layers with ReLU activation.

Running Times. We extract meshes from imGHUM us-
ing using Octree sampling. Reconstructing a mesh in
its bounding box and with a maximum grid resolution of
2563 takes on average 1.08s using a NVIDIA Tesla V100.
Hereby, the network query time sums up to 0.44s and
Marching Cubes [5] (on CPU) takes 0.34s. The rest of
the time is used by identifying the bounding box through
probing (0.17s), Octree logic (0.05s), and transforming the
samples to the part reference frames (0.07s). We query
imGHUM in batches with a maximum batch-size of 643

samples, where one full batch takes on average 0.13s to
compute. The resulting meshes feature approximately 100K
vertices and 200K facets. Note that imGHUM allows cre-
ating meshes in arbitrary resolutions and can be queried
and also rendered (c.f . §4.3) without generating an explicit
mesh. For reference, we show imGHUM mesh reconstruc-
tions in different resolutions in fig. 1.

2. Results
In this supplemental material we show additional results

for our application experiments (fig. 3, 4, 6, 7). Addition-
ally, fig. 2 displays a large number of imGHUM instances
with great variety in poses, shapes, hand poses, and fa-
cial expressions sampled from imGHUM’s generative latent
space. This demonstrates once more that imGHUM’s level
of detail, expressiveness and generative power is on par with
state-of-the-art mesh-based models. Moreover, imGHUM
can additionally be queried at arbitrary resolutions and spa-
tial locations and models not only the surface, but also the
space around the person.

3. Ablations
In this section, we report further results of our dataset ab-

lation experiment and results of an additional ablation study
on joint rotation parameterization.
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Figure 1. imGHUM mesh reconstructions in different resolutions. Left to right: ground-truth shape, 5123, 2563, 1283, 643.

Model IoU ↑ Chamfer ×10−3 ↓ NC ↑
Only scan registrations 0.901 0.091 0.975
imGHUM 0.932 0.040 0.984

Table 1. Numerical comparison of imGHUM trained with different
data distributions evaluated on the registration test-set.

Model IoU ↑ Chamfer ×10−3 ↓ NC ↑
Only scan registrations 0.834 2.561 0.942
imGHUM 0.969 0.036 0.989

Table 2. Numerical comparison of imGHUM trained with different
data distributions evaluated on the GHUM samples test-set.

Model IoU ↑ Chamfer ×10−3 ↓ NC ↑
6D 0.969 0.044 0.989
sin, cos 0.967 0.046 0.988
Euler 0.969 0.036 0.989

Table 3. Numerical comparison of imGHUM models using differ-
ent representations for joint angles evaluated on the GHUM sam-
ples test-set.

Dataset. In the main paper we have shown that imGHUM
benefits from being trained on both samples of GHUM and
additionally on As-Conformal-As-Possible (ACAP) regis-
trations of a corpus of human scans. While training only
on scan data can represent the distribution of the scans well
(tab. 1), it does not generalize sufficiently to poses that are
not covered in this limited training set, as we show in tab. 2.

In fig. 5, we qualitatively show the effect of fine-tuning
with scan data. Please note the increased level of detail in
the faces and the enhanced soft-tissue deformation.

Rotation Representations. In tab. 3, we report metrics
for imGHUM using different rotation representations for
joint rotations θ. We have experimented with Euler an-
gles, basic sin, cos Fourier mapping [7], and the recently
proposed 6D representation [8]. Perhaps surprisingly, we
found only minor differences in imGHUM’s representa-
tional power using different rotation representations, both
qualitatively and quantitatively. We, therefore, use Euler
angles in this work as it is the most compact representation.

4. Applications
In the following, we explain the losses used in our trian-

gle set surface reconstruction experiment, detail the residual
model of the dressed and inclusive modeling experiment,
and finally introduce another application namely pose esti-
mation from silhouettes using differentiable rendering.

4.1. Triangle Set Surface Reconstruction

We describe our triangle set surface reconstruction ex-
periment in the main paper (§3.3) and show more examples
here in fig. 3. Our imGHUM reconstructions are performed
under a weighted combination of losses as

min
α
Lo(α) + L+

l (α) + L−l (α) (2)

Lo(α) =
1

n

∑
i

|S(v̂i,α)|+ ‖∇v̂iS(v̂i,α)− n̂i‖ (3)

L+
l (α) =

1

n

∑
i

(
φ(kS(v̂i + γin̂i,α))− 1

)2 (4)

L−l (α) =
1

n

∑
i

(
φ(kS(v̂i − γin̂i,α))

)2
, (5)

where Lo is a surface sample loss (similar to eq. 2 in the
main paper), and L+

l , L
−
l are sign classification losses de-

fined for points sampled along and opposite to the normals
respectively (γi ∈ [0, 0.05] is a Gaussian sampled distance).

Enabled by the implicit semantics of imGHUM, we can
additionally exploit landmark losses as,

Lj(α) =
1

|Mj |
∑
i∈Mj

∥∥Ti(α)ji(α)−mj,i

∥∥2 (6)

Ls(α) =
1

|Ms|
∑
i∈Ms

∥∥C(ms,i,α)− m̄s,i

∥∥2, (7)

where Mj = {mj}, Ms = {ms} are a collection of 3D
landmarks defined over the joints and the surface, respec-
tively. m̄s are the corresponding surface landmarks defined
on the canonical mesh X(α0). Lj aligns the transformed
joint centers with the joint landmarks. The surface land-
marks loss Ls queries the semantics for the ground-truth
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Figure 2. Random imGHUM full-body and part instances sampled from imGHUM’s generative latent codes. On the right, we show textured
examples. Texturing and binary coloring is enabled by imGHUM’s semantics.

Figure 3. More examples for the triangle set surface reconstruction experiment. Each pair shows the ground truth scan (left) and our
reconstruction (right). Notice the reconstructed facial expressions and hand poses.

Figure 4. Remaining partial point cloud completion results. Left to right: input point cloud, imGHUM fit, and ground truth scan.
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surface landmarks ms conditioned on α. The semantics de-
scribe the position of the landmarks ms w.r.t. the canonical
mesh, and thus should match their correspondences m̄s.

Given a triangle set mesh, one could also fit GHUM
with landmarks and ICP losses. However, we note that
imGHUM is not only able to perform equivalently on the
landmark losses to mesh-based representations, but also ex-
ploits more information of the triangle set with its differen-
tial losses (eq. (2)) compared to ICP. The process of finding
the nearest point for ICP at each optimization iteration is
non-differentiable and the accuracy of the nearest point cor-
respondences are highly sensitive to the initialization. In
contrast, our imGHUM losses are fully differential every-
where and also exploit additional information encoded in
the surface normals and the sign labels. Numerical compar-
isons are reported in §3.3 of the main paper.

4.2. Dressed and Inclusive Human Modeling

In the following, we detail our dressed and inclusive
modeling experiment from the main paper. We also show
more results in fig. 6. In order to learn a personalized shape
of a given scan, we augment imGHUM with an MLP Ŝ
consisting of four 256-dimensional layers. Each layer is
followed by Swish nonlinear activation, and a skip connec-
tion is added to the middle layer. Ŝ modulates the signed
distance field of the body to match the scan. These dis-
tance residuals could come from clothing, hair, other ap-
parel items, or any divergence from the standard human
template. We condition the output signed distance of the
scan with both the distance and semantics fields of the body
defined by imGHUM:

ŝ = Ŝ(S(p,α)) = Ŝ(s, c). (8)

We first fit imGHUM to the scan, similar to the trinagle set
surface reconstruction experiment. Next, we train Ŝ on top
of it. The training process is similar to imGHUM with the
difference that we sample points from a single scan contain-
ing the desired personalizations. We only train the residual
while keeping imGHUM fixed. We, therefore, have both the
underlying human body and the personalized shape mod-
eled separately as layers. We train a separate instance of
Ŝ for each scan observation. Learning a combined model
using an auto-decoder style learning scheme is possible but
beyond the scope of this work.

We show two categories of personalizations: dressed
humans and humans with limb differences. We
compare imGHUM+residual with mesh-based GHUM
ACAP registrations. In contrast to our template-free
imGHUM+residual model, GHUM ACAP registrations
have difficulties in explaining complex and layered struc-
ture and unsurprisingly fail entirely for large structural
changes. We fit to scans of ten subjects with limb
differences and 30 dressed human scans. Numerically,

imGHUM+residual performs better than GHUM ACAP
registrations with Chamfer distance 0.014 × 10−3 (ours,
limb differences) / 0.018 × 10−3 (ours, dressed) versus
1.393 × 10−3 (GHUM ACAP, limb differences) / 0.021 ×
10−3 (GHUM ACAP, dressed) and Normal Consistency
0.993 (ours, limb differences) / 0.990 (ours, dressed) versus
0.984 (GHUM ACAP, limb differences) / 0.976 (GHUM
ACAP, dressed). imGHUM+residual is especially superior
in explaining the scans of people with limb differences, due
to large structural differences compared to the GHUM tem-
plate mesh. Also qualitatively imGHUM+residual explains
much more of the detail present in the input scans, see fig. 6
and fig. 7.

4.3. Differentiable Rendering

A benefit of imGHUM’s SDF representation is the po-
tential for rendering using sphere tracing [3]. During ray
tracing the surface is located by stepping from the camera
along a ray until a surface is passed. In sphere tracing the
save step length is given by the current minimal distance to
any point on the surface, i.e. the SDF value at the current
location. For inexact SDFs, one can take a damped step
to reduce the likelihood of over-shooting. Using this tech-
nique we can render among other things: imGHUM depth
maps, normal maps, and semantics. Hereby, each pixel con-
tains the last queried value of its corresponding camera ray.
In the following, we compute differentiable binary silhou-
ettes via sphere tracing and fit imGHUM to images using a
silhouette alignment loss.

We implement differentiable approximate sphere tracing
by taking a fixed number of steps. Concretely, we step T =
15 save steps into the SDF in the direction of each camera
ray. At each final point pT of each camera ray, we query the
signed distance value and generate the binarized pixel as:

b =
1

ηS(pT ,α)2 + 1
, (9)

with η = 5000 in our experiment. b is differentiable w.r.t.
α and thus can be used in optimization losses. We formu-
late a standard silhouette overlap loss and a sparse 2D joint
landmark loss and use both to fit imGHUM to image evi-
dence. Fig. 8 shows results of fitting imGHUM to image
silhouettes.

5. Details on Compared Methods
As reported in the main paper, we change NASA [2] in

contrast to their original version. Firstly, we train NASA
based on the GHUM skeleton containing 63 parts. Orig-
inally, NASA was trained on SMPL containing only 24
parts. Another difference is the topology of GHUM. In
contrast to SMPL, GHUM features an oral cavity that is
also represented in our training data. Summarizing, we
deploy NASA for a higher-dimensional model and thus a
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Figure 5. Added detail after fine-tuning on the registration dataset. We show imGHUM reconstructions before fine-tuning (left) and after
fine-tuning (right) qualitatively and using error heat-maps (red means ≥ 2cm). Please pay attention to the faces, body shapes, and soft-
tissue deformations (digital zoom in recommended).

Figure 6. Dressed human modeling. From left to right: Scan, GHUM ACAP mesh registration, imGHUM+residual fit, reposed or reshaped
imGHUM+residual. imGHUM+residual accurately explains all detail present in the input scan. GHUM ACAP mesh registrations have
difficulties with complicated and layered structures. By changing the parameterization of the underlying imGHUM, we can repose and
reshape the personalized models. The color-scale represents imGHUM semantics and thus correspondences between different instances.

Figure 7. Inclusive human modeling. Left: imGHUM+residual can explain body shapes that do not match the standard template. Right:
GHUM ACAP mesh registrations fail to explain these body shapes. For reference, we show ground truth scans in small. Missing limbs are
deformed but still present.

Figure 8. Visual 3D reconstruction of imGHUM using differentiable silhouette and landmark losses. Left to right: image, observed
silhouette, estimated silhouette, imGHUM reconstruction. By using a silhouette loss, we are able to accurately reconstruct body shapes.
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harder task. For a fair comparison, we therefore use a
larger and deeper architecture with eight 64-dimensional
fully-connected layers for each part instead of the origi-
nal four 40-dimensional layers. The new architecture fea-
tures 1.92M parameters (original version has 0.38M) and
has shown significantly better representation power. In con-
trast, we use a much smaller imGHUM architecture in this
experiment. imGHUM has been originally designed to also
explain shape variation and facial expressions. Since this
experiment only features variation in pose, we can use a
much smaller version. We use 2× fewer layers in each part,
each with half-dimensionality, resulting in only 0.64M pa-
rameters. This smaller-size imGHUM still performs signif-
icantly better than NASA in our experiments.

We have trained IF-Net [1] based on their original source
code. Specifically, we use IF-Net for point clouds with
1283 resolution featuring 2.6M parameters. We also fol-
low their sampling and resizing strategy, such that the input
point cloud always has a maximum side length of one unit.
Finally, we train IF-Net task-specific (for full and partial
point clouds), while we use the same imGHUM in all our
comparisons.
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