
Click to Move: Controlling Video Generation with Sparse Motion
(Supplementary Material)

Pierfrancesco Ardino1,2, Marco De Nadai2, Bruno Lepri2, Elisa Ricci1,2, Stéphane Lathuilière3

1University of Trento 2Fondazione Bruno Kessler
3LTCI, Télécom Paris, Institut Polytechnique de Paris

In this supplementary material, we provide additional in-
formation regarding network architectures (Section 1) and
implementation details (Section 2). Then, we provide ad-
ditional high-resolution qualitative results in Section 3 on
both Cityscapes and KITTI 360. We shared an HTML file
named video.html, which shows qualitative comparisons in
videos.

1. Network architectures
We provide the details of the trajectory encoder Es and

flow predictor D in Table 1. The flow decoder is composed
of two heads (referred to as FlowD and OccD) and shared
layers (referred to as FeatD). For more details regarding the
architecture of the other networks, please refer to the code
attached with this supplementary material.

1.1. Convergence issue

During preliminary experiments, we observed that using
eq.(1) update rule (from the manuscript) ended up with all
the nodes having the exact same features. For this reason,
we added a residual update that helped objects converging
to better features. Indeed, this residual update can be seen
as skip connections, similar to those of resnet architectures,
that allow gradient information to pass through the GCN
updates and mitigate vanishing gradient problems.

2. Implementation.
Our architecture is implemented with Pytorch 1.7.0,

while the graph neural network has been implemented using
Pytorch Geometric. We use the ADAM optimizer [2] with a
learning rate of 2e-4 for the Generation module and 1e-4 for
the Motion estimation. The modules are trained upon con-
vergence. Training takes about one day for the Cityscapes
dataset and two days for the KITTI 360 dataset. The exper-
iments are done using two Nvidia RTX 2080Ti.

3. Additional qualitative results
For the Cityscapes dataset, we train an additional model

at higher resolution (i.e. 256×128 pixels) without changing

any hyper-parameter. The results obtained with this model
on two initial frames are shown in Figure 1 and Figure 2.
These results are well in-line the the qualitative results re-
ported in the main paper. We observe that the other methods
are not able to move the object (see the red bounding boxes
that indicate the initial position of the object). Indeed, the
cars are either static, in Sheng et al. [3] and Sheng*, or
blurry, in S. Sheng*. On the contrary, our approach is able
to move the object and generates frames of good quality.

Figure 4 and Figure 5 instead show some additional vi-
sual results on KITTI 360.

Finally, Figure 6 shows a qualitative example of the ab-
lation study we performed in the main paper. The first row
of this Figure shows a version of our network that does not
model object interactions. By comparing the first and sec-
ond rows of Figure 6, we clearly see that, while the high-
lighted object correctly moves, all the other objects have
unrealistic motions. This confirms the quantitative results
about the importance of modelling the object interactions to
have temporal consistent movements of different objects in
the scene.



Part Input → Output Shape Layer Information

Es

(BS,5, 64,128, 1 ) → (BS,5, 32,64,32) 3DCONV-(N32, K{3,4,4}, S{1,2,2}, P{1,1,1}), BN, LeakyReLU
(BS,5, 32,64,32 ) → (BS,5, 16,32,64) 3DCONV-(N64, K{3,4,4}, S{1,2,2}, P{1,1,1}), BN, LeakyReLU
(BS,5, 16,32,64 ) → (BS,5, 8,16,128) 3DCONV-(N128, K{3,4,4}, S{1,2,2}, P{1,1,1}), BN, LeakyReLU

FeatD

(BS * 5, 2, 4, 272) → (BS * 5, 2, 4, 512) CONV-(N512, K3, S1, P1), BN, LeakyReLU
(BS * 5, 2, 4, 512) → (BS * 5, 4, 8, 256) UPCONV, CONV-(N256, K3, S2, P1), BN, LeakyReLU
(BS * 5, 4, 8, 512) → (BS * 5, 8, 16, 128) SKIP, UPCONV, CONV-(N128, K3, S1, P1), BN, LeakyReLU
(BS * 5, 4, 8, 512) → (BS, 5, 8, 16, 128) RESHAPE
(BS, 5, 8, 16, 256) → (BS, 5, 8, 16, 128) SKIP, 3DCONV-(N128, K{3,3,3}, S{1,1,1}, P{1,1,1}), BN, LeakyReLU
(BS, 5, 8, 16, 128) → (BS * 5, 8, 16, 128) RESHAPE
(BS * 5, 8, 16, 256) → (BS * 5, 16, 32, 64) SKIP, UPCONV, CONV-(N64, K3, S1, P1), BN, LeakyReLU
(BS * 5, 16, 32, 64) → (BS, 5, 16, 32, 64) RESHAPE
(BS, 5, 16, 32, 128) → (BS, 5, 16, 32, 64) SKIP, 3DCONV-(N64, K{3,3,3}, S{1,1,1}, P{1,1,1}), BN, LeakyReLU
(BS, 5, 16, 32, 64) → (BS * 5, 16, 32, 64) RESHAPE
(BS * 5, 16, 32, 128) → (BS * 5, 32, 64, 32) SKIP, UPCONV, CONV-(N32, K3, S1, P1), BN, LeakyReLU
(BS * 5, 32, 64, 32) → (BS, 5, 32, 64, 32) RESHAPE
(BS, 5, 32, 64, 64) → (BS, 5, 32, 64, 32) SKIP, 3DCONV-(N32, K{3,3,3}, S{1,1,1}, P{1,1,1}), BN, LeakyReLU

FlowD
(BS * 5, 32, 64, 64) → (BS * 5, 64, 128, 32) SKIP, UPCONV, CONV-(N32, K3, S1, P1), BN, LeakyReLU
(BS * 5, 64, 128, 32) → (BS * 5, 64, 128, 2) CONV-(N2, K5, S1, P2), IN, Tanh

OccD
(BS * 5, 32, 64, 64) → (BS * 5, 64, 128, 32) SKIP, UPCONV, CONV-(N32, K3, S1, P1), BN, LeakyReLU
(BS * 5, 64, 128, 32) → (BS * 5, 64, 128, 2) CONV-(N1, K5, S1, P2), Sigmoid

Table 1: Network architecture. We use the following notation: Z: the dimension of motion vector, K: kernel size, S: stride
size, P: padding size, CONV: a convolutional layer, UPCONV: upsample, 3D-CONV: 3D convolutional layer, BN: Batch
Normalization, SKIP: skip connection



t + 1 t + 3 t + 5

Sh
en

g
[3

]
Sh

en
g*

S.
Sh

en
g*

O
ur

s
G

T

Figure 1: Results of predicting the frames t + 1, t + 3 , and t + 5 on the Cityscapes dataset [1] with ground truth reference.
On first three columns, we move the pedestrian near the semaphore to left. On the last three columns we move car crossing
the street. The position of the moved object at t = 0 is highlighted in red. Zoom for details.



t + 1 t + 3 t + 5

Sh
en

g
[3

]
Sh

en
g*

S.
Sh

en
g*

O
ur

s
G

T

Figure 2: Results of predicting the frames t + 1, t + 3 , and t + 5 on the Cityscapes dataset [1] with ground truth reference.
On first three columns, we move the pedestrian near the semaphore to left. On the last three columns we move car crossing
the street. The position of the moved object at t = 0 is highlighted in red. Zoom for details.



t + 1 t + 3 t + 5

Sh
en

g
[3

]
Sh

en
g*

S.
Sh

en
g*

O
ur

s
G

T

Figure 3: Results of predicting the frames t + 1, t + 3 , and t + 5 on the Cityscapes dataset [1] with ground truth reference.
On first three columns, we move the pedestrian near the semaphore to left. On the last three columns we move car crossing
the street. The position of the moved object at t = 0 is highlighted in red. Zoom for details.



t + 1 t + 3 t + 5

Sh
en

g
[3

]
Sh

en
g*

S.
Sh

en
g*

O
ur

s
G

T

Figure 4: Results of predicting the frames t + 1, t + 3 , and t + 5 on the KITTI360 dataset [4]. The position of the moved
object at t = 0 is highlighted in red. Zoom for details.

t + 1 t + 3 t + 5

Sh
en

g
[3

]
Sh

en
g*

S.
Sh

en
g*

O
ur

s
G

T

Figure 5: Results of predicting the frames t + 1, t + 3 , and t + 5 on the KITTI360 dataset [4]. The position of the moved
object at t = 0 is highlighted in red. Zoom for details.



t + 1 t + 3 t + 5

(A
)O

ur
s

(A
)w

/o
G

C
N

.
(A

)w
/o

O
bj

.I
nt

.
(A

)w
/o

Su
p

G
T

Figure 6: Results of the ablation test on the Cityscapes dataset [1].



References
[1] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In CVPR, pages 3213–
3223, 2016. 3, 4, 5, 7

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1
[3] Lu Sheng, Junting Pan, Jiaming Guo, Jing Shao, and

Chen Change Loy. High-quality video generation from static
structural annotations. International Journal of Computer Vi-
sion, 128:2552–2569, 2020. 1, 3, 4, 5, 6

[4] Jun Xie, Martin Kiefel, Ming-Ting Sun, and Andreas Geiger.
Semantic instance annotation of street scenes by 3d to 2d label
transfer. In CVPR, 2016. 6


