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In this supplementary, we include additional qualitative
results in the attached video (Sec. A1), additional analysis
on AVA (Sec. A2), analysis of the computation used by our
model (Sec. A3) and implementation details (Sec. A4).

A1. Additional qualitative results
Please refer to the attached supplementary video for ad-

ditional qualitative results on AVA, Action Genome and
UCF101-24.

The codec used is “H264 - MPEG-4 AVC” and has been
tested on “VLC Media Player”.

A2. AVA per-class analysis
Figure A1 presents per-class results on AVA for our

SlowFast baseline, spatial and spatio-temporal graph mod-
els when using a ResNet-50 backbone. We additionally
show the number of examples in the training set. Our pro-
posed graph models improve on both head and tail classes
in AVA. In fact, the largest absolute improvements are ob-
served on tail classes such as “cut”, “swim” and “sing to”.
However, note that the absolute accuracy of each class is
still correlated with the number of training examples. The
classes which all variants of our model perform the worst
on, are the classes with the least training examples such as
“point to (an object)”, “take a photo” and “turn (eg a screw-
driver)”. To emphasise the long-tailed distribution of AVA,
note that “point to (an object)” has the fewest training exam-
ples (just 97), whilst “watch (a person)” has the most with
168 148.

A3. Computation analysis
Table A1 shows the computation used by our models.

We measure compututation in terms of floating point oper-
ations (FLOPs), and GFLOPs denotes billions of FLOPs.

Our graph model is significantly more efficient than
Non-local in the last layer of the backbone as it only passes
messages to actor nodes, instead of all elements in the fea-
ture map. Computation increases linearly with the number

of frames processed, (and thus τc), as the majority of com-
pute is performed by the ResNet backbone The computation
required does not depend on τs.

Note that our graph model adds neglible compute com-
pared to the ResNet backbone. In particular, the spatial
model with GAT only adds 0.3% more FLOPs to the ResNet
backbone, while increasing SGCls R@20 by 4.5%.

Finally, we note that compute is essentially identical for
Action Genome and AVA models, as only the final “read-
out” layer changes.

A4. Additional Implementation details
Person detections For our spatio-temporal action detec-
tion experiments, we use external person detections as our
actor region proposals like [1, 10]. For our experiments
on AVA, we use the person detections publicly released
by [1, 10] during both training and testing. More specifi-
cally, this is a Faster-RCNN [5] model, pretrained on Mi-
crosoft COCO [4] and then finetuned on the training set of
AVA [2], using Detectron [11].

For our experiments on UCF101-24 [6], we finetune
a Faster-RCNN detector pretrained on COCO on the
UCF101-24 training set using Detectron.

When training on both AVA and UCF101-24 datasets, we
use both ground-truth and predicted person bounding boxes.
Predicted bounding boxes are assigned labels by matching
them to ground-truth boxes using an IoU threshold of 0.75.
Predicted bounding boxes which do not match any ground
truth boxes act as negative examples for all action classes.

OpenImages object detector For our “explicit object
representation” experiments on AVA, we use the publicly
available Faster-RCNN detector trained on OpenImages
v41.

Optimiser hyperparameters We train our models fol-
lowing the settings of the publicly released SlowFast

1. https://tfhub.dev/google/faster_rcnn/
openimages_v4/inception_resnet_v2/1
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Baseline Spatial Spatio-temporal Training examples

Figure A1. Mean Average Precision for each action class on AVA, for the SlowFast baseline, spatial- and spatio-temporal graph models
with a ResNet-50 backbone. The number of examples in the training set are shown with the blue line on the right, vertical axis. Note that
a logarithmic scale is used, as AVA has a long-tailed distribution of labels.

Table A1. Compute used by baseline and proposed models. Our graph model is significantly more efficient than Non-local in the last layer
of the backbone as it only passes messages to actor nodes, instead of all elements in the feature map. Computation increases linearly with
the number of frames processed, (and thus τc), as the majority of compute is performed by the ResNet backbone.

Model Frames GFLOPs Parameters (×106) SGCls R@20

SlowFast (ResNet 50) 32 74.18 34.6 48.9
Non-local in backbone 32 83.66 43.0 49.1

Spatial model, GAT, τc = 1 32 74.41 36.5 51.1
Spatial model, Non-local, τc = 1 32 74.47 37.0 50.4

Spatio-temporal, GAT, τc = 3 96 223.25 36.5 53.5
Spatio-temporal, GAT, τc = 5 160 372.08 36.5 53.8

code [1]. We train for 20 epochs using synchronous
Stochastic Gradient Descent (SGD) and a momentum of 0.9
on 8 Nvidia V100 (16 GB) GPUs. The learning rate was set
to 0.1, and reduced by a factor of 10 after 10 and 15 epochs
respectively. We employed a linear-warmup schedule for
the learning rate, increasing linearly from 1.25×10−4 to 0.1
in the first 5 epochs. We also used a weight decay of 10−7.
An epoch is defined as all the keyframes in the dataset.

Training loss functions For spatio-temporal action
recognition on AVA and UCF101-24, we use the binary
cross-entropy loss function. The loss function for a single

example is:

L(x, y) = − 1

C

C∑
i

yi log (σ(xi))+(1−yi) log (1− σ(xi)),

(A1)
where C is the number of classes, σ is the sigmoid activa-
tion function, x ∈ RC denotes the logits predicted by the
network and yi ∈ {0, 1} denotes the binary ground truth for
the ith class.

For scene graph classification, we use two loss functions:
One for predicting the object class of each bounding box
proposal, and another for predicting the relationship label



Table A2. Ablation study of the number of heads when using GAT
as the message passing function. Mean AP reported on AVA using
a ResNet-50 backbone.

Number of heads 1 2 3 4 5

Mean AP 25.4 25.8 25.9 25.9 25.9

between each of the N(N−1)
2 pairs of object proposals. For

the former, we use the softmax cross-entropy, as each pro-
posal can only be assigned a single object class. And for
the latter, we use the sigmoid cross-entropy, as there can
be multiple relationship labels between any pair of objects.
Concretely, the loss is

L(x,w, y, z) = λLobject(x, y) + Lrel(w, z) (A2)

Lobject(x, y) = −
1

N

N∑
i

C∑
j

yij log (Softmax(x)ij)

(A3)

Lrel(w, z) = −
2

N(N − 1)R

N∑
i

i−1∑
j

R∑
r

zijr log (σ(wijr))

+ (1− zijr) log (1− σ(wijr)) . (A4)

Here, N is the number of object proposals in the video clip,
R the number of relationship classes and C the number of
object classes. y is the one-hot, ground-truth object class la-
bel, z the binary ground-truth relationship label, and x and
w denote the object- and relationship-logits respectively.
On Action Genome [3], there are R = 25 relationship
classes, and C = 35 object classes. We set λ = 0.5 during
training on Action Genome to prevent the object class loss
from dominating the overall loss (the softmax cross entropy
has a higher loss than the binary sigmoid cross entropy at
the start of training).

Multi-headed attention For the GAT [8] and Non-
Local [9] message-passing functions used in the paper (Sec
3.4), it is common to compute “multi-headed” attention [7].
In all experiments reported in the main paper, we used 4
heads, as motivated by the ablation study using GAT on
the AVA dataset in Tab. A2. To combine the messages
from each head, we performed an attention-weighted con-
vex combination as done in Eq. 9 of the main paper.

Multiscale testing We use three scales when performing
multiscale testing (as done in Table 3 of the main paper).
Specifically, we resize input video-clips so that the shortest
side is 224, 256 and 320 respectively.
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