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A1. Additional experimental details

In this supplementary, we provide additional experimen-
tal details. Section A1.1 ablates the number of temporal
transformers in our Factorised encoder model, Section A1.2
provides additional details about the regularisers we used
and Sec. A1.3 details the training hyperparamters used for
our experiments. Finally, Sec. A1.4 provides further details
about the Kinetics dataset as it is a dynamic dataset consist-
ing of YouTube videos which may be removed.

A1.1. Temporal transformers in Factorised encoder
model

Table A1 ablates the effect of the number of temporal
transformers, Lt, in our Factorised encoder model on Ki-
netics 400 using ViViT-B as the backbone. We observe that
the Top-1 accuracy on Kinetics is not sensitive to the choice
of Lt. We also include an “average pooling baseline” cor-
responding to Lt = 0. As described in Sec. 4.2 of the main
paper, instead of using temporal transformers to fuse tempo-
ral information across the video, we simply average pool the
representations from each spatial transformer. This baseline
performs substantially worse compared to Lt ≥ 1.

A1.2. Further details about regularisers

In this section, we provide additional details and list the
hyperparameters of the additional regularisers that we em-
ployed (Tab. 3 of the main paper). Hyperparameter values
for all our experiments are listed in Tab. A2.

Stochastic depth Stochastic depth regularisation was
originally proposed for training very deep residual net-
works [3]. Intuitively, the outputs of a layer, `, are “dropped
out” with probability, pdrop(`) during training, by setting the
output of the layer to be equal to its input.

Following [3], we linearly increase the probability of
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Table A1. The effect of varying the number of temporal transform-
ers, Lt, in the Factorised encoder model (Model 2). We report the
Top-1 accuracy on Kinetics 400. Note that Lt = 0 corresponds to
the “average pooling baseline” in Sec. 4.2 of the main paper.

Lt 0 1 4 8 12

Top-1 75.8 78.6 78.8 78.8 78.9

dropping a layer according to its depth within the network,

pdrop(`) =
`

L
pdrop, (A1)

where ` is the index of the layer in the network, and L is the
total number of layers.

Random augment Random augment [2] randomly ap-
plies data augmentation transformations sequentially to an
input example. We follow the public implementation1, but
modify the data augmentation operations to be temporally
consistent throughout the video (in other words, the same
transformation is applied on each frame of the video).

The authors define two hyperparameters for Random
augment, “number of layers” , the number of augmentation
transformations to apply sequentially to a video and “mag-
nitude”, the strength of the transformation that is shared
across all augmentation operations. Our values for these
parameters are shown in Tab. A2.

Label smoothing Label smoothing was proposed by [5]
originally to regularise training Inception-v3. Concretely,
the label distribution used during training, ỹ, is a mixture
of the one-hot ground-truth label, y, and a uniform distribu-
tion, u, to encourage the network to produce less confident
predictions during training:

ỹ = (1− λ)y + λu. (A2)

There is therefore one scalar hyperparamter, λ ∈ [0, 1].

1https://github.com/tensorflow/models/blob/
master/official/vision/beta/ops/augment.py

https://github.com/tensorflow/models/blob/master/official/vision/beta/ops/augment.py
https://github.com/tensorflow/models/blob/master/official/vision/beta/ops/augment.py


Table A2. Training hyperparamters for experiments in the main paper. “–” indicates that the regularisation method was not used at all.
Values which are constant across all columns are listed once. Datasets are denoted as follows: K400: Kinetics 400. K600: Kinetics 600.
MiT: Moments in Time. EK: Epic Kitchens. SSv2: Something-Something v2.

K400 K600 MiT EK SSv2

Optimisation
Optimiser Synchronous SGD
Momentum 0.9
Batch size 64
Learning rate schedule cosine with linear warmup
Linear warmup epochs 2.5
Base learning rate 0.1 0.1 0.25 0.5 0.5
Epochs 30 30 10 50 35

Data augmentation
Random crop probability 1.0
Random flip probability 0.5
Scale jitter probability 1.0
Maximum scale 1.33
Minimum scale 0.9
Colour jitter probability 0.8 0.8 0.8 – –
Rand augment number of layers [2] – – – 2 2
Rand augment magnitude [2] – – – 15 20

Other regularisation
Stochastic droplayer rate, pdrop [3] – – – 0.2 0.3
Label smoothing λ [5] – – – 0.2 0.3
Mixup α [6] – – – 0.1 0.3

Table A3. Additional details about the Kinetics datasets. As Kinetics consists of YouTube videos which may be removed by their original
creators, we note the exact sizes of our dataset. Furthermore, we include results on the validation and test sets for our ViViT-L/16x2 model.

Number of examples Validation Test
Train Validation Test Top-1 Top-5 Top-1 Top-5 Views

Kinetics 400 214 834 17 637 34 579 81.7 93.8 80.8 93.2 1× 3
Kinetics 600 363 213 27 676 55 377 82.9 94.6 82.5 94.3 1× 3

Mixup Mixup [6] constructs virtual training examples
which are a convex combination of pairs of training exam-
ples and their labels. Concretely, given (xi, yi) and (xj , yj)
where xi denotes an input vector and yi a one-hot input la-
bel, mixup constructs the virtual training example,

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj . (A3)

λ ∈ [0, 1], and is sampled from a Beta distribution,
Beta(α, α). Our choice of the hyperparameter α is detailed
in Tab. A2.

A1.3. Training hyperparameters

Table A2 details the hyperparamters for all of our experi-
ments. We use synchronous SGD with momentum, a cosine
learning rate schedule with linear warmup, and a batch size
of 64 for all experiments. As mentioned in the main paper,

we employed additional regularisation only when training
on the smaller Epic Kitchens and Something-Something v2
datasets.

A1.4. Kinetics dataset details

Kinetics [1, 4] is a dynamic dataset – it consists of
YouTube videos which are specified by their URLs, and it is
possible that these videos are removed by their original cre-
ators. As a result, we report the exact number of videos in
our version of Kinetics in Tab. A3. Furthermore, for com-
pleteness, we also report our results on the Kinetics test set.
We note, however, that the prior work that we compared to
in Tab. 6a and 6b of the main paper did not report results on
the test set.
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