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In this document we recall the most relevant equations related to our formulation, and we show how they look like on
some examples, where we also analyze the output of our algorithm (Sec. 1). In addition, we report some visualization of the
real experiments reported in the main paper (Sec. 2).

1. Examples
Let G “ pV, Eq be a graph with n vertices and m edges, and let c1, . . . , cn P R4 be n generic camera centres (e.g.,

sampled at random). Recall that sampling centres at random permits to check solvability in a generic sense, namely with
cameras in a generic position, hence relying on the graph structure only. This is a standard procedure in solvability theory
(see [7, 1]). Of course, there is a very small chance (with probability 0) to sample a degenerate configuration.

Let LpGq “ psV, sEq denote the line graph associated with G. Viewing graph solvability [7] can be expressed as the problem
of (uniquely) recovering an unknown matrixGτ P GLp4,Rq for each node τ P sV , in addition to an unknown vector vτυ P R4

and an unknown scale aτυ P R‰0 for each edge pτ, υq P sE , such that the following equation holds for all the edges in LpGq:

GτG
´1
υ “ Zτυ (1)

where
Zτυ “ aτυI4 ` civ

T
τυ. (2)

Recall that the index i of the camera is defined as tiu“τXυ.
As shown in the main paper, the above system of equations can be equivalently expressed in terms of cycle consistency.

Specifically, a fundamental cycle basis [4] (or, more generally, a cycle consistency basis [3]) for the line graph is considered,
which is denoted by tC1, . . . , Cku, and equations of the following form are built for each cycle tτ1, τ2, τ3, . . . , τ`, τ1u in the
basis:

Zτ1τ2Zτ2τ3 ¨ ¨ ¨ ¨ ¨ Zτ`τ1 “ I4. (3)

By exploiting a suitable a change of variables, Eq. (3) rewrites:

Wτ1τ2Wτ2τ3 ¨ ¨ ¨ ¨ ¨Wτ`τ1 “ bkI4 (4)

where bk P R‰0 is an unknown scale, uτυ P R4 is an unknown vector and Wτυ is defined by the following expression:

Wτυ “ I4 ` ciu
J
τυ. (5)

Finally, recall that an auxiliary equation of the following form is also considered for each edge in the line graph:

zτυ detpI4 ` ciu
J
τυq ` 1 “ 0 (6)

where zτυ P R is an auxiliary variable. Equation (6) has the effect of automatically discarding non-invertible matrices and
null scales from the solution set of our problem.

Hereafter, for a given edge pτ, υq P sE in the line graph – which corresponds to two adjacent edges in the original graph
(i.e., τ “ ph, iq P E and υ “ pi, jq P E) – we will use the triplet ph, i, jq instead of pτ, υq for simplicity of exposition.



Example 1 (Non-solvable graph with infinite number of solutions). Suppose that G is a cycle of length 4, represented in
Fig. 1. Let c1, c2, c3, c4 P R4 represent known (generic) camera centres. Equation (1) rewrites

G12G
´1
23 “ a123I4 ` c2v

T
123

G23G
´1
34 “ a234I4 ` c3v

T
234

G34G
´1
41 “ a341I4 ` c4v

T
341

G41G
´1
12 “ a412I4 ` c1v

T
412

(7)

where the following variables are unknown

G12, G23, G34, G41 P GLp4q

a123, a234, a341, a412 P R‰0

v123,v234,v341,v412 P R4.

(8)

The line graph consists of a single cycle (of length 4), which is also a fundamental cycle basis (associated, e.g., with the
spanning tree T “ tp12, 23q, p23, 34q, p34, 41qu), as shown in Fig. 1. Equation (3) rewrites

I4 “ pa123I4 ` c2v
T
123q ¨ pa234I4 ` c3v

T
234q ¨ pa341I4 ` c4v

T
341q ¨ pa412I4 ` c1v

T
412q (9)

where the following variables are unknown

a123, a234, a341, a412 P R‰0

v123,v234,v341,v412 P R4.
(10)

Equation (4) rewrites
bI4 “ pI4 ` c2u

T
123q ¨ pI4 ` c3u

T
234q ¨ pI4 ` c4u

T
341q ¨ pI4 ` c1u

T
412q (11)

where the following variables are unknown

b P R‰0

u123,u234,u341,u412 P R4.
(12)

Observe that Eq. (11) involves less unknowns than (9), which in turn involves less unknowns than (7), as already observed in
the main paper. Finally, the auxiliary equations given in (6) become

z123 detpI4 ` c2u
T
123q ` 1 “ 0

z234 detpI4 ` c3u
T
234q ` 1 “ 0

z341 detpI4 ` c4u
T
341q ` 1 “ 0

z412 detpI4 ` c1u
T
412q ` 1 “ 0

(13)

where z123, z234, z341, z412 P R are unknown.
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Figure 1: Non-solvable viewing graph with 4 vertices (left) and corresponding line graph (middle), where edges are oriented arbitrarily.
Colors clarify correspondences between edges in the line graph and vertices in the original graph. On the right a spanning tree is reported,
where the root is coloured in black and the only non-tree edge is drawn with a dashed arrow.



The fact that the graph in Fig. 1 is not solvable can be easily deduced by counting the number of edges: the necessary
condition m ě p11n ´ 15q{7 is not satisfied here (see [7]). However, it is useful to analyze the output of our algorithm
on this simple example. Specifically, Fig. 2 shows the generators of the Gröbner basis [2] associated with the polynomial
system in Eq. (11) and (13), for a specific configuration of camera centers (sampled at random). Such generators encode a
set of equations which is equivalent to the original system but at the same time it is much simpler. Let us consider the last
generator (i.e. z 2z 3´ 1 “ 0): note that the product of z 2 and z 3 is fixed (it is equal to 1), but there is an infinite number
of solutions that satisfy such equation. Observe also that the remaining variables are uniquely determined – given z 2 and
z 3 – as all other equations are linear and they involve one unknown at a time (in addition to z 2 or z 3).

Figure 2: Gröbner basis associated with the polynomial system in Eq. (11) and (13), for a specific set of camera centres. For coherence
with our Macaulay2 implementation, here variables are linearly (0-based) indexed. Each term represents a polynomial which should be
equal to zero for the sought solution(s).

Example 2 (Non-solvable graph with finite number of solutions). The previous example refers to a non-solvable graph
with an infinite number of solutions. We now consider an example of a non-solvable graph where the number of solutions
is finite but strictly greater than one. Specifically, let us consider the graph with 9 nodes reported in Fig. 5 (left) of the
main paper. Our algorithm computed two solutions on this example, meaning that the graph is not solvable. Since a lot of
variables are involved here, we do not explicitly write all the equations for this example, but we only analyze the associated
Gröbner basis obtained for a specific configuration of random cameras (see Fig. 3). Let us consider the last generator (i.e.,
z 20ˆ2 ´ 4598z 20 ´ 4599 “ 0): observe that it defines an equation of degree two in one unknown. Observe also that
all other equations are linear and they involve one unknown at a time (in addition to z 20). Since we know that one of the
solutions is z 20 “ ´1, we see that the other solution for z 20 has to be real as well (namely z 20 “ 4599). Thus, all other
variables have to be real too, since they are linear functions of z 20. Hence, the whole polynomial system admits two distinct
real solutions.

Figure 3: Gröbner basis for checking solvability for the graph in Fig. 5 (left) of the main paper. For coherence with our Macaulay2
implementation, here variables are linearly (0-based) indexed. Each term represents a polynomial which should be equal to zero for the
sought solution(s).



Example 3 (Solvable graph). Suppose that G is the graph reported in Fig. 4. Let c1, c2, c3, c4 P R4 represent known
(generic) camera centres. Equation (1) rewrites

G41G
´1
12 “ a412I4 ` c1v

T
412

G12G
´1
23 “ a123I4 ` c2v

T
123

G23G
´1
34 “ a234I4 ` c3v

T
234

G34G
´1
41 “ a341I4 ` c4v

T
341

G12G
´1
42 “ a124I4 ` c2v

T
124

G42G
´1
23 “ a423I4 ` c2v

T
423

G41G
´1
42 “ a142I4 ` c4v

T
142

G42G
´1
34 “ a243I4 ` c4v

T
243

(14)

where the following variables are unknown

G12, G23, G34, G41, G42 P GLp4q

a412, a123, a234, a341, a124, a423, a142, a243 P R‰0

v412,v123,v234,v341,v124,v423,v142,v243 P R4.

(15)

If we consider the spanning tree T “ tp12, 42q, p42, 23q, p42, 34q, p42, 41qu, then the line graph admits a fundamental cycle
basis composed of four cycles (see Fig. 4): C1 “ p12, 23, 42q, C2 “ p42, 23, 34q, C3 “ p42, 34, 41q and C4 “ p41, 12, 42q.
Observe that each cycle consists of a sequence of vertices that is traversed in a cyclic order (clockwise or anticlockwise):
for each edge in the cycle, we consider the associated matrix or its inverse if the edge is traversed in forward or backward
direction, respectively. Thus Eq. (3) becomes

I4 “ pa123I4 ` c2v
T
123q ¨ pa423I4 ` c2v

T
423q

´1 ¨ pa124I4 ` c2v
T
124q

´1

I4 “ pa423I4 ` c2v
T
423q ¨ pa234I4 ` c3v

T
234q ¨ pa243I4 ` c4v

T
243q

´1

I4 “ pa243I4 ` c4v
T
243q ¨ pa341I4 ` c4v

T
341q ¨ pa142I4 ` c4v

T
142q

I4 “ pa412I4 ` c1v
T
412q ¨ pa124I4 ` c2v

T
124q ¨ pa142I4 ` c4v

T
142q

´1

(16)

where the following variables are unknown

a412, a123, a234, a341, a124, a423, a142, a243 P R‰0

v412,v123,v234,v341,v124,v423,v142,v243 P R4.
(17)

Equation (4) rewrites
b1I4 “ pI4 ` c2u

T
123q ¨ pI4 ` c2u

T
423q

´1 ¨ pI4 ` c2u
T
124q

´1

b2I4 “ pI4 ` c2u
T
423q ¨ pI4 ` c3u

T
234q ¨ pI4 ` c4u

T
243q

´1

b3I4 “ pI4 ` c4u
T
243q ¨ pI4 ` c4u

T
341q ¨ pI4 ` c4u

T
142q

b4I4 “ pI4 ` c1u
T
412q ¨ pI4 ` c2u

T
124q ¨ pI4 ` c4u

T
142q

´1

(18)

where the following variables are unknown

b1, b2, b3, b4 P R‰0

u412,u123,u234,u341,u124,u423,u142,u243 P R4.
(19)

Observe that the formulation implemented by our method (given in Eq. (18)) involves less unknowns than the one proposed
in [7] (given in Eq. (14)). By computing inverses explicitly1, Eq. (18) rewrites:

p1` cT2u423qp1` cT2u124qb1I4 “ pI4 ` c2u
T
123q ¨ pp1` cT2u423qI4 ´ c2u

T
423q ¨ pp1` cT2u124qI4 ´ c2u

T
124q

p1` cT4u243qb2I4 “ pI4 ` c2u
T
423q ¨ pI4 ` c3u

T
234q ¨ pp1` cT4u243qI4 ´ c4u

T
243q

b3I4 “ pI4 ` c4u
T
243q ¨ pI4 ` c4u

T
341q ¨ pI4 ` c4u

T
142q

p1` cT4u142qb4I4 “ pI4 ` c1u
T
412q ¨ pI4 ` c2u

T
124q ¨ pp1` cT4u142qI4 ´ c4u

T
142q

(20)

1The inverse of a matrix of the form I4 ` cuT is given by I4 ` cwT where w “ ´ 1
1`cTu

u.



Finally, the auxiliary equations given in (6) become

z412 detpI4 ` c1u
T
412q ` 1 “ 0

z123 detpI4 ` c2u
T
123q ` 1 “ 0

z234 detpI4 ` c3u
T
234q ` 1 “ 0

z341 detpI4 ` c4u
T
341q ` 1 “ 0

z124 detpI4 ` c2u
T
124q ` 1 “ 0

z423 detpI4 ` c2u
T
423q ` 1 “ 0

z142 detpI4 ` c4u
T
142q ` 1 “ 0

z243 detpI4 ` c4u
T
243q ` 1 “ 0

(21)

where z412, z123, z234, z341, z124, z423, z142, z243 P R are unknown.
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Figure 4: Solvable viewing graph with 4 vertices (left) and corresponding line graph (middle), where edges are oriented arbitrarily. Please
note that a vertex of the original graph (e.g., vertex 2) can appear multiple times as an edge of the line graph, as clarified by colors. On the
right a spanning tree is reported, where the root is coloured in black and non-tree edges are drawn with dashed arrows.

The graph in Fig. 4 is solvable according to [5] and our algorithm returns exactly one solution. Such conclusion can also
be easily deduced from Fig. 5, which reports the generators of the Gröbner basis associated with the polynomial system in
Eq. (20) and (21). Observe that each generator has exactly one solution, being a linear equation in one variable. In particular,
we get z 0 “ z 1 “ ¨ ¨ ¨ “ z 7 “ ´1, b 0 “ b 1 “ b 2 “ b 3 “ 1 and u 0 “ u 1 “ ¨ ¨ ¨ “ u 31 “ 0, as expected for a
solvable graph.

Figure 5: Gröbner basis associated with the polynomial system in Eq. (20) and (21), for a specific set of camera centres. For coherence
with our Macaulay2 implementation, here variables are linearly (0-based) indexed. Each term represents a polynomial which should be
equal to zero for the sought solution.

2. Visual Results
In this section we report some visual results associated with the real experiments reported in the main paper, where small

subgraphs (with 9 nodes) were sampled from large graphs appearing in real datasets. Figure 6 shows some unsolvable cases
whereas Fig. 7 reports some solvable examples.
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