
Appendix

A. Implementation Details

Sampling the support mini-batches. In each iteration, PAWS randomly samples a small support mini-batch from the set
of available labeled samples to compute the unsupervised consistency loss. Specifically, these support samples are used to
determine the soft pseudo-labels for the unlabeled image views. To construct the support mini-batch in each iteration, we
first sample a subset of classes, and then sample an equal number of images from each sampled class. Notably, we sample
images with replacement. Therefore, while images in the same support mini-batch in a given iteration are always unique,
some of the images may be re-sampled in the subsequent iteration’s support mini-batch. This decision was made to simplify
the implementation, although it is possible that epoch-based sampling of the support mini-batches (i.e., iterating through
labeled samples with random reshuffling) could lead to improved performance.

Projection & prediction heads. The projection head is a 3-layer MLP with ReLU activations, consisting of three fully-
connected layers of dimension 2048, and Batch Normalization applied to the hidden layers. The prediction head is a 2-layer
MLP with ReLU activations, consisting of two fully-connected layers. The hidden layer has dimension 512, and the output
layer has dimension 2048. Batch Normalization is applied to the input of the prediction head as well as to the hidden layer.
The architectures of these projection and prediction heads are similar to those used in previous works on self-supervised
learning [4, 32, 1].

Fine-tuning details. Following [1], we fine-tune a linear classifier from the first layer of the projection head in the pre-
trained encoder f✓, and initialize the weights of the linear classifier to zero. Specifically, we simultaneously fine-tune the
encoder/classifier weights by optimizing a supervised cross-entropy loss on the small set of available labeled samples. We do
not employ weight-decay during fine-tuning, and only make use of basic data augmentations (random cropping and random
horizontal flipping). Following the experimental protocol of BYOL [4], we sweep the learning rate {0.01, 0.02, 0.05, 0.1, 0.2}
and the number of epochs {30, 50}. Similarly to BYOL, to avoid performing parameter selection on the ImageNet validation
set (used for reporting), we use a local validation set (12000 images from the ImageNet train set). Optimization is conducted
using SGD with Nesterov momentum. We use a momentum value of 0.9 and a batch size of 1024. All results are reported
using a single center-crop.

Nearest neighbours classifier. We also report additional results without fine-tuning the encoder. Specifically, the PAWS-
NN results in Table 1 are reported by directly applying a soft nearest neighbours classifier to the pre-trained representations.
To determine a class prediction for an image x, we compare its representation, z = f✓(x), to the representations of the
available labeled training samples, zS 2 RM⇥d, and subsequently choose the class label with the highest probability under
the similarity classifier; i.e., argmax

k2[1000] [⇡d (z, zS)]k. All results are reported using a single center-crop. Figure 4

z

p(y|z) Âi

d(z,zi)
Âk d(z,zk)

yi

z1

y1

d(z
, z 1

)

z2

y2

d(z, z2)

z3

y3

d(z, z
3)

Figure 4: Soft Nearest Neighbours classifier ⇡d. For a K-way classification problem, and a scalar-valued similarity function d(·, ·) � 0, the similarity
classifier assigns a soft pseudo-label y 2 [0, 1]K to a representation z by measuring its similarity to a set of labeled representations {zi}i with class labels
{yi 2 [0, 1]K}i. The soft pseudo-label y is a weighted average of the labels {yi}i, with labels corresponding to more similar representations assigned
larger weights.

provides a schematic of the nearest neighbours classifier in an illustrative example with only only three labeled training
images.

Momentum. When using momentum in our experiments, unless otherwise specified, we implicitly refer to classical mo-
mentum, commonly referred to as heavy-ball or Polyak momentum, given by

vt+1 = �vt � ⌘t
1

|B|
X

x2B
r✓`(x, ✓t)

✓t+1 = ✓t + vt+1,

(2)

where � � 0 is the momentum parameter and ⌘t � 0 is the learning rate. The model parameters are denoted by ✓ and the
velocity buffer is denoted by v. Note that in some deep learning frameworks, such as PyTorch and Tensorflow, the update is
instead written

vt+1 = �vt +
1

|B|
X

x2B
r✓`(x, ✓t)

✓t+1 = ✓t � ⌘tvt+1.

(3)

Specifically, in eq. (3), the learning rate is not incorporated into the velocity buffer update. Thus, under a trivial re-
parameterization, the eq. (3) implementation can be interpreted as classical momentum with a time-varying momentum
schedule, given by {� ⌘t

⌘t�1
}t>0. Thus, training with learning rate warmup can result in momentum values > 1 during the

warmup phase, leading to instability early on in training. Additionally, note that training using the implementation of mo-
mentum SGD in eq. (3) with an adaptive learning rate, e.g., as prescribed by the LARS optimizer, can lead to drastically
different momentum values at consecutive iterations. However, it is worth pointing out that the LARS optimizer provided
in the popular NVIDIA APEX package wraps around the optimizer, and applies learning-rate adaptation by directly scaling
the gradient before the optimization step. Therefore, using the NVIDIA APEX implementation of LARS with the PyTorch
implementation of momentum SGD, without accounting for the subtle implementation differences of PyTorch momentum,
produces an odd hybrid of equations (2) and (3). In our experiments, we use the original version of classical momentum with
a constant momentum parameter (i.e., equation (2)), and observe a non-trivial improvement in performance, especially when
coupled with LARS adaptation.

Multi-Crop. Figure 2 illustrates the PAWS method when generating two views of each unlabeled image, however, as
mentioned in Section 5, we use the multi-crop data-augmentation of SwAV [3] to generate more than two views of
each image in all of our experiments. Given an unlabeled image, we generate several views of that image by taking
two large crops (224 ⇥ 224) and six small crops (96 ⇥ 96). We use the RandomResizedCrop method from the
torchvision.transformsmodule in PyTorch. The two large-crops (global views) are generated with scale (0.14, 1.0),
and the six small-crops (local views) are generated with scale (0.05, 0.14), following the original implementation in [3].

When computing the PAWS loss, each small crop has two positive views (the two global views), and each large crop
has one positive view (the other global view). Specifically, let x 2 Rn⇥(3⇥H⇥W) denote a mini-batch of n unlabeled
images. For each image xi in the mini-batch, we generate two large crop views, x(1)

i
,x(2)

i
2 R3⇥224⇥224, and six small

crop views, x(3)
i

, . . . ,x(8)
i

2 R3⇥96⇥96. Let z(1)
i

, . . . , z
(8)
i

2 Rd denote the representations computed from x(1)
i

, . . . ,x(8)
i

respectively, and let p(1)
i

, . . . , p
(8)
i

denote the predictions for representations z
(1)
i

, . . . , z
(8)
i

respectively. Lastly, let p :=
1
8n

P
n

i=1

P8
k=1 ⇢(p

(k)
i

) denote the average of the sharpened predictions (recall ⇢(·) is the sharpening function defined in
Section 3). The overall PAWS objective to be minimized is

1

8n

nX

i=1

H(⇢(p(1)

i
), p(2)

i
) +H(⇢(p(2)

i
), p(1)

i
) +

8X

k=3

H

⇢(p(1)

i
) + ⇢(p(2)

i
)

2
, p

(k)
i

!!
�H(p). (4)

In equation (4), p(1)
i

and p
(2)
i

correspond to the two large crop views, and p
(3)
i

, . . . , p
(8)
i

correspond to the six small crop
views. Thus, from equation (4), the target for p(1)

i
is the sharpened positive view prediction ⇢(p(2)

i
), and similarly, the target

for p(2)
i

is the sharpened positive view prediction ⇢(p(1)
i

). For the small views, p(3)
i

, . . . , p
(8)
i

, we use both ⇢(p(1)
i

) and ⇢(p(2)
i

)
as positive view predictions and average those to produce a single target. This is similar to the use of multicrop in SwAV [3].

While the multi-crop augmentation makes the notation in equation (4) a little cumbersome, note that this objective is nearly
identical to the objective in equation (1), except that (4) also includes a sum over the small crop-views,

P8
k=3(· · ·).

Intuitively, by only using the large crops as positive samples (note that small crops are never positive samples for any
of the other views), the method learns a global-to-local feature mapping, which maps local features in the small crops to
global features in the large crops. The multi-crop augmentation is in fact an essential component of the PAWS algorithm. As
will be shown in Appendix D, the multi-crop augmentation strategy in PAWS is not only important when training on large
internet images, containing possibly obfuscated objects at various scales, such as ImageNet [41], but is also important for
small object-centric images, such as CIFAR10 [43]. This observation suggests that the benefit of “local-to-global” matching
induced by the multi-crop augmentation strategy in PAWS goes beyond simply inducing obfuscation or scale invariant image
representations.

B. Additional Ablation Experiments

Longer training. The results reported in Section 6 illustrate the performance of PAWS after 100 and 200 pre-training
epochs. We have not observed substantial benefits to training for longer than this. Results after pre-training longer are shown
in Table 5 for ResNet-50 1⇥ and 2⇥ architectures. While PAWS does not seem to benefit from longer training, it is interesting

Top-1

Architecture Epochs 1% 10%

ResNet-50 100 63.8 73.9
ResNet-50 200 66.1 75.0
ResNet-50 300 66.5 75.5

ResNet-50 (2⇥) 100 68.2 77.0
ResNet-50 (2⇥) 200 69.6 77.8
ResNet-50 (2⇥) 300 69.6 77.7

Table 5: Longer Training. Examining the impact of longer training for various ResNet architectures on ImageNet. In both 1% and 10% label settings,
and across both ResNet-50 and ResNet-50 (2⇥) architectures, training for more than 200 epochs is generally not necessary and only yields marginal
improvements.

to observe that, by contrast, PAWS-NN, which performs nearest neighbours classification (no fine-tuning), may benefit from
longer training, as suggested by Table 1.

Prediction head. As noted in Section 5, we include a prediction head to facilitate comparison to previous work [4], where it
was suggested as a mechanism to prevent representation collapse. Table 6 illustrates that this is not needed when pre-training
with PAWS, and in fact the performance of PAWS is marginally better when the prediction head is omitted during pre-training.

Top 1

100 epochs 200 epochs

With Prediction Head 73.9 75.0
Without Prediction Head 74.2 75.2

Table 6: Prediction Head. Examining the effect of the prediction-head when training a ResNet-50 on ImageNet and 10% of the training set is labeled. Our
default setup is shaded in green. Unlike self-supervised methods that collapse without a prediction head [4, 32], PAWS still converges without a prediction
head, as predicted by the theoretical result Proposition 1.

ME-Max regularization. Recall that PAWS pre-training uses a cross-entropy loss with sharpened targets to encourage
representations of different views of the same image to be consistent (reducing cross-entropy), and it also uses the mean-
entropy maximization regularizer to maximize the entropy of the average prediction, computed across the unlabeled samples
in the mini-batch. Table 7 illustrates the effect of training with only the cross-entropy term and disabling the ME-MAX
regularization. While the impact is more pronounced in the setting with only 1% labeled data, using ME-MAX regularization
improves performance in all cases.

Top 1

1% 10%

With ME-MAX 63.8 73.9
Without ME-MAX 52.9 73.6

Table 7: ME-Max Regularization. Examining the effect of the ME-MAX regularizer when training a ResNet-50 on ImageNet for 100 epochs. Our default
setup is shaded in green. The ME-MAX regularizer is especially helpful in the 1% label setting, but only provides a marginal improvement in the 10% label
setting.

C. Comparison to Supervised Learning

100 200

0

20

40

60

80

Supervised

76.5% top-1
90 epochs

100% labels63.8
66.1

73.9 75.0

Pre-training Epochs

T
o

p
-1

ResNet-50

1% labels

10% labels

100 200

0

20

40

60

80

Supervised

77.8% top-1
90 epochs

100% labels
68.2 69.6

77.0 77.8

Pre-training Epochs

T
o

p
-1

ResNet-50 (2⇥)

1% labels

10% labels

100 200

0

20

40

60

80

Supervised

78.9% top-1
90 epochs

100% labels
69.8 69.9

78.5 79.0

Pre-training Epochs

T
o

p
-1

ResNet-50 (4⇥)

1% labels

10% labels

Figure 5: Comparing ResNet architectures trained using PAWS on ImageNet, with only a small fraction of the training instances labeled, to the same ResNet
architectures trained in a fully supervised manner on ImageNet with all training instances labeled. Supervised models are reported from SimCLR [2,
Appendix B.3], and ablated over the same data-augmentations used to train PAWS. We report results for the best supervised model found by [2] over the
data-augmentation sweep. When training with ResNet-50 (2⇥) and ResNet-50 (4⇥) architectures, PAWS matches the performance of fully supervised
learning. Specifically, PAWS is the first method to, with only 10% of training instances labeled, match fully supervised learning on ImageNet with 100%
of training instances labeled, using the same architecture, and without distilling from a larger teacher model. Notably, this result is achieved with only 200
epochs of training.

1 10 100

65

70

75

80

66.5%

75.5%

79.2%

64.2 %

73.1 %

75.9%

76.5%

Percentage of labeled data

T
o

p
1

(%
)

(ImageNet, ResNet-50)

paws (300ep)

paws-nn (300ep)

Supervised (90ep)

Figure 6: Examining PAWS scaling when training a
ResNet-50 on ImageNet with various percentages of
labeled data. PAWS-NN refers to performing nearest-
neighbour classification directly using the PAWS-
pretrained representations, with the labeled training
samples as support, while PAWS refers to fine-tuning
a classifier using the available labeled data after PAWS-
pretraining. Supervised models are reported from Sim-
CLR [2, Appendix B.3], and ablated over the same
data-augmentations used to train PAWS. We report
results for the best supervised model found by [2]
over the data-augmentation sweep. When trained with
100% of the available labels, PAWS surpasses fully
supervised learning and produces representations that
are well calibrated for non-parametric classification
(PAWS-NN).

Figure 5 compares PAWS semi-supervised training to supervised learn-
ing with the same architecture using a standard cross-entropy loss. The su-
pervised baseline is trained on the full set of ImageNet labels, whereas the
PAWS result is obtained by pre-training (and fine-tuning) with access to only
a small fraction of the ImageNet labels. The supervised models are reported
from SimCLR [2, Appendix B.3], where they are swept over the number of
training epochs {90, 500, 1000}, and ablated over the data-augmentations
used in PAWS pre-training {crop/flip, crop/flip+color distortion, crop/flip+
color distortion + Gaussian blur}. Figure 5 reports results for the best su-
pervised model found by [2], which corresponds to 90 epochs of training
with random crop/flip for the ResNet-50, and 90 epochs of training with
random crop/flip+color distortion for the wider ResNets. When training
with ResNet-50 (2⇥) and ResNet-50 (4⇥) architectures, PAWS matches the
performance of fully supervised learning. Specifically, PAWS is the first
method to, with only 10% of training instances labeled, match fully super-
vised learning on ImageNet with 100% of training instances labeled, using
the same architecture, and without distilling from a larger teacher model.
Notably, this result is achieved with only 200 epochs of training. However,
as a word of caution, this experiment should only be interpreted as a type
of ablation, since the performance of supervised learning models can likely
be improved by incorporating additional advanced supervised augmentation
strategies like Mixup [44], CutMix [45], and AutoAugment [46], which si-
multaneously learns a data-augmentation policy during training.

WideResNet-28-2, CIFAR10, 4000 labels

Method Epochs Top-1

Supervised Learning with full dataset [6] 1000 94.9 ± 0.2

Methods using label propagation:

Temporal Ensemble [47] 300 83.6 ± 0.6
Mean Teacher [8] 300 84.1 ± 0.3
VAT + EntMin [13] 123 86.9 ± 0.4
LGA + VAT [48] – 87.9 ± 0.2
ICT [14] 600 92.7 ± 0.0
MixMatch [9] – 93.8 ± 0.1
ReMixMatch [10] – 94.9 ± 0.0
EnAET [49] 1024 94.7 ±
UDA [15, 6] 2564 94.5 ± 0.2
FixMatch [11] – 95.7 ± 0.1
MPL [6] 2564 96.1 ± 0.1

Non-parametric classification:

PAWS-NN 600 96.0 ± 0.2

(a)

Additional Architectures, CIFAR10, 4000 labels

Method Architecture Params Epochs Top-1

SimCLRv2 [1] ResNet-200 (+SK) 95M 800 96.0

SimCLRv2 [1] ResNet-18 (+SK) 12M 800 92.1

Non-parametric classification:

PAWS-NN WideResNet-28-2 1.5M 600 96.0

PAWS Training Cross-Entropy Loss

0 100 200 300 400 500 600
0

0.5

1

1.5

2

Pre-training Epochs

L
o

s
s

(b)

Figure 7: Training a WideResnet-28-2 on CIFAR10.*For label propagation methods, the number of epochs is counted with respect to the unsupervised mini-
batches. *For Meta Pseudo-Labels (MPL), the number of epochs only includes the student-network updates, and does not count the additional 1,000,000
teacher-network updates (computationally equivalent to roughly an additional 2564 epochs) that must happen sequentially (not in parallel) with the student
updates. PAWS-NN refers to performing nearest-neighbour classification directly using the PAWS-pretrained representations, with the 4000 labeled training
samples as support. We report the mean top-1 accuracy and standard deviation across 5 seeds for the 4000 label split.

D. Additional Experiments — CIFAR10

We also evaluate the PAWS pre-training scheme on the CIFAR10 [43] dataset using a single NVIDIA V100 GPU. We first
pre-train a network using PAWS on CIFAR10 with access to 4000 labels, and then report the nearest-neighbour classification
accuracy on the test set using the 4000 labeled training images as support. On CIFAR10 we only report PAWS-NN, and do
not fine-tune a linear classifier on top of the network. For details on the Nearest Neighbours classifier, see Appendix A.

Implementation details. We adopt similar hyper-parameters to the ImageNet experiments. Specifically, for pre-training,
we use the LARS optimizer with a momentum value of 0.9, weight decay 10�6, cosine-similarity temperature of ⌧ = 0.1, and
target sharpening temperature of T = 0.25. To construct the different image views, we use the multi-crop strategy, generating
two large crops (32⇥32), and six small crops (18⇥18) of each unlabeled image. We use the RandomResizedCropmethod
from the torchvision.transforms module in PyTorch. The two large-crops (global views) are generated with scale
(0.75, 1.0), and the six small-crops (local views) are generated with scale (0.3, 0.75). We use a batch-size of 256 and linearly
warm-up the learning rate from 0.8 to 3.2 during the first 10 epochs of pre-training, and decay it following a cosine schedule
thereafter. To construct the support mini-batch at each iteration, we also randomly sample 640 images, comprising 10 classes
and 64 images per class, from the labeled set, and apply label smoothing with a smoothing factor of 0.1. For all sampled
images (both unlabeled images and support images) we apply the basic set of SimCLR data-augmentations, specifically,
random crop, horizontal flip, and color distortion (but no Gaussian blur). However, in contrast to the ImageNet setup, we also
generate two views of each sampled support image. On CIFAR10 we find it much easier for the network to learn to classify
the images than to perform instance discrimination. Generating two views of each sampled support image helps the network
improve its instance discrimination ability and produce representations that are invariant to the data-augmentations used for
training.

The encoder f✓ in our experiments is a WideResNet-28-2 [50] trunk without dropout, containing a 3-layer MLP projection
head, consisting of three fully-connected layers of dimension 128, and Batch Normalization applied to the hidden layers. To
simplify the implementation, we do not include a prediction head after the projection head. As shown in Table 6 on ImageNet,
PAWS pre-training works well without a prediction head, and we find this to be true on CIFAR10 as well.

Following pre-training, we freeze the batch-norm layers, and fine-tune the trunk of the network for 180 optimization steps
on the available labeled samples using the supervised contrastive loss of [40], and do not apply any data-augmentations

during this phase. The point of these few optimization steps is to tighten the representation clusters of the labelled training
samples before using them as support to classify the test images. For this phase, we use momentum SGD with a batch-size
of 640 (comprising 64 images from 10 classes), and sample the mini-batches with replacement; i.e., while images in the
same mini-batch in a given iteration are always unique, some of the images may be re-sampled in the subsequent iteration’s
mini-batch. We use a cosine-temperature of ⌧ = 0.1, momentum parameter 0.9, a learning rate of 0.1 with cosine-decay, and
no weight-decay.

Results. Table 7a compares PAWS-NN to other semi-supervised learning methods trained using identical networks
(WideResNet-28-2) on CIFAR10 with access to 4000 labels. Although the intention here is to simply validate PAWS on
another dataset, the observations are similar to ImageNet. By using the pre-trained representations directly in a nearest
neighbour classifier, PAWS can match the state-of-the-art on CIFAR10 with significantly less training. It is possible that care-
fully fine-tuning a linear classifier on top of the trunk and incorporating more advanced data-augmentations would further
improve performance. Table 7b compares PAWS-NN to the self-supervised SimCLRv2 [1] method trained (and fine-tuned)
with larger architectures. The PAWS method achieves superior performance in fewer pre-training epochs, using a residual
network containing over 60⇥ fewer parameters.

E. Alternative Strategies for Non-Collapse

Proposition 1 provides a theoretical guarantee that the proposed method is immune to the trivial collapse of representa-
tions. The underlying principle is that collapsing representations result in high entropy predictions under the non-parametric
similarity classifier, but the targets are always low-entropy (because we sharpen them), and so collapsing all representations
to a single vector is not a stationary point of the training dynamics. In this section we demonstrate two simple alternative
strategies to guarantee non-collapse of representations without making the target-sharpening assumption.

E.1. Semi-Supervised Prediction

If an image in the sampled mini-batch of image views has a class label, then we can directly use that class label as the target
for its prediction p, rather than using the positive view prediction, p+, as the target. Under such a scenario, Proposition 2
provides the theoretical guarantee.

Assumption 3 (Semi-Supervised Image Views). Each mini-batch of image views contains at least one labeled sample.

Proposition 2 (Non-Collapsing Representations — Semi-Supervised). Suppose Assumptions 1 and 3 hold. If the represen-
tations collapse, i.e., z = zi for all zi 2 S , then krH(p+, p)k > 0, and the solution is non-stationary.

Proof. The proof is identical to that of Proposition 1, up to the last step. At which point, letting z correspond to the labeled
instance in the mini-batch of images views, we have that the target p+ is not equal to the uniform distribution because it
corresponds to the corresponding ground truth class label. From which it follows that p 6= p

+ and krH(p+, p)k > 0. ⌅

Note that Proposition 2 is only presented as a theoretical alternative strategy to prevent collapse, but is not used in our
experiments; instead, we always use the sharpened positive view prediction p

+ as the target for the anchor view prediction p.

E.2. Entropy Minimization

A third possible strategy to guarantee non-collapsing representations without using the target sharpening assumption is to
add an entropy minimization term [12] to the loss. As shown in the proofs for Propositions 1 and 2, collapsing representa-
tions always result in high-entropy predictions p. These high-entropy predictions result in large non-zero gradients due to
the entropy minimization term (which as the name implies is minimized when the entropy is low), and so, just as before,
collapsing representations are not stationary points of the training dynamics. While adding an entropy minimization term
to the loss is a conceptually simple strategy, target sharpening is arguably even simpler, and, by Proposition 1, suffices to
guarantee non-collapsing representations, so we do not use entropy minimization in our experiments.

F. Ethical Considerations

Increasing model and dataset sizes is a proven approach to improving the performance of image recognition models.
Depending on the intended application, more accurate image recognition models may yield substantial social benefits for
society; e.g., improving the quality and safety of systems relying on image recognition. However, as with any engineering

problem, there is no free lunch, and one must not stop grappling with the ethical concerns of more computationally expensive
training pipelines, such as potentially larger environmental footprints (depending on the compute cluster used for training)
and exclusionary ramifications. Computationally intensive training pipelines may exclude participation from researchers
without access to the computational resources needed to conducted such experiments, which in-turn may lead to slower
progress in the field.

The proposed method in this work matches the current state-of-the-art in data-efficient image recognition using consid-
erably smaller models and fewer training epochs. While our method still benefits from wider and deeper architectures, we
demonstrate that the performance of smaller models is not yet saturated, and that research targeting improvements on these
smaller models may very well translate to larger-scale settings.

However, generally speaking, we caution against conflating increased computational effort with larger models, since we
observe that this relationship is not always linear. For example, when training a ResNet-50 (2⇥) for 12 hours (100 epochs)
on 64 V100 GPUs, we obtain 68% top-1 accuracy in the 1% label setting and 77% in the 10% label setting. Conversely,
when training a smaller ResNet-50 for 17 hours (200 epochs) on 64 V100 GPUs, we obtain 66% top-1 accuracy in the 1%
label setting and 75% in the 10% label setting.

G. Historical Perspective

Constructivist learning theory—developed a near half-century ago by Jean Piaget and built on notions of schemata put
forth by Immannuel Kant—has (surprisingly) withstood the test of time. Constructivism not only revolutionized school
curricula in the 20th century, but remains to this day a crucial element of many teaching philosophies—placing greater
emphasis on spontaneous learning through self-regulation and concrete activities, often under the pseudonym of Project-
Based Learning in primary and secondary schools, and Lab-Based Instruction in post-secondary institutions. At the heart
of Constructivism is the idea that every individual possesses mental schemata—representations relating to distinct semantic
concepts—and that learning occurs through the process of assimilation and accommodation.5 During assimilation, the mind
adapts its representation of new experiences to fit its existing schemata, while during accommodation, the existing schemata
are updated to make sense of new experiences. In short, Constructivism purports that knowledge is “constructed” through
self-guided exploration, and that mental representations of semantic concepts in sensorimotor observations are learned by
conforming new observations to past experiences and vice versa.

It is of particular interest to us to note that one of Piaget’s tenets was that sensorimotor development came about the process
of optimizing a non-purposive mental objective using assimilation and accommodation. Non-purposive learning generally
refers to the process of learning without working towards any particular purpose or goal. As such, non-purposive learning
is generally concerned with deriving mental models, or schemata, of sensorimotor observations, under which all new obser-
vations can be readily explained in terms of past observations. Clearly, non-purposive learning is closely related to the idea
embodied nowadays by task-agnostic self-supervised pre-training, but differs slightly. Whereas current task-agnostic self-
supervised learning approaches predict inputs from inputs in a fully unsupervised manner, non-purposive learning approaches
do not preclude the use of semantic information. To the contrary, semantic information can be used to aid in the construction
of sensorimotor schemata; i.e., non-purposive learning can be unsupervised, semi-supervised, weakly-supervised, or fully
supervised. This paper proposes a non-purposive method for semi-supervised learning.

Criticisms of Constructivist Learning Theory. Despite the widespread success of Constructivisim, one of the weaknesses
of Piagetian theory is its lack of specificity in describing the mechanisms by which assimilation and accommodation occur
to produce mental representations of semantic concepts in sensorimotor observations [51]. It is perhaps for this reason that
Piaget was especially interested in the emerging field of cybernetics (a precursor to artificial intelligence developed in the 40’s
by Norbert Wiener) and has gone so far as to say that “Life is essentially auto-regulation,” and “cybernetic models are, so far,
the only ones throwing any light on the nature of auto-regulatory mechanisms” [52]. Piaget advocated for cybernetic models
with great aplomb, “I wish to urge that we make an attempt to use it” [53], and may have attempted to use them himself had
it not been for his advanced age. Unfortunately, despite the clear links to cybernetics, the connection to Constructivism did
not readily carry over to artificial intelligence (AI) in the 70’s due to the largely symbolic nature of AI approaches at the time;
e.g., it was not obvious how to represent the near infinite variations of a hand-drawn curve in a single concise representation
(i.e., a schema); an issue which is now largely resolved by gradient-based learning and modern neural network architectures.

5The term schema may be familiar to researchers working with relational database systems, where it has become standard jargon referring to the logical
structure of a database (in close relation to its original meaning in psychology).

