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1. Polynomials and Non-local blocks
In this section, we describe the assumptions on the pa-

rameter tensor needed to frame Poly-NL and the Non-Local
block as polynomial functions.

Given an input matrix X ∈ RN×C , the polynomial func-
tion of Eq.(4) of the main paper reads

Y = (((W [3] •X) •X) •X) (1)

It enumerates all the possible 3rd order interactions, as
shown in the element-wise formula:

y(a,b) =

N∑
c,e,g

C∑
d,f,h

w3(a,b,c,d,e,f,g,h)
x(c,d)x(e,f)x(g,h) (2)

where w3(a,b,c,d,e,f,g,h)
are the elements of W [3], a tensor of

order 8 and dimension RN×C×N×C×N×C×N×C .

Structuring W [3]
NL . The Non-local block, as described in

Eq.(2) of the main paper

YNL = XWfX
⊤XWg (3)

can be viewed as a special case of 3
rd

order polynomials.
Hence, it can alternatively be computed as follows

YNL = (((W [3]
NL •X) •X) •X) (4)

where W [3]
NL is a tensor of order 8 and dimension

RN×C×N×C×N×C×N×C in charge of extracting the sub-
set of non-local dependencies. The elements of the ten-
sor are listed as wNL

3(a,b,c,d,e,f,g,h)
where indexes a, c, e, g are

ranging from 1 to N and b, d, f, h are ranging from 1 to
C. Similarly, the scalars wf (d,f) and wg(h,b) enumerate
the elements of the matrices Wf ∈ RC×C ,Wg ∈ RC×C

respectively. The two formulations are equivalent for the

following assumptions on the elements wNL
3(a,b,c,d,e,f,g,h)

: i)
elements are null for every c different from a ii) elements
are null for every g different from e ii) remaining ele-
ments wNL

3(a,b,c,d,e,f,g,h)
are equal to wf (d,f)wg(h,b). Using

the aforementioned structure, the parameter tensor of the
3
rd

polynomial function considers only relations associated
with non-local dependencies.

Structuring W [3]
Poly-NL. The Poly-NL, as described in

Eq.(6) of the main paper can be computed as follows

YPoly-NL = (Φ(XW1 ⊙XW2)⊙X)W3, (5)

where W1 ∈ RC×C , W2 ∈ RC×C , and W3 ∈ RC×C are
matrices of learnable parameters and Φ is an average pool-
ing function. Analogously to what described in the previous
paragraph, the above equation can also be computed as fol-
lows

YPoly-NL = (((W [3]
Poly-NL •X) •X) •X) (6)

where W [3]
Poly-NL is a tensor of order 8 and dimension

RN×C×N×C×N×C×N×C of elements wPoly-NL
3(a,b,c,d,e,f,g,h)

,
with indexes a, c, e, g ranging from 1 to N and b, d, f, h

ranging from 1 to C. The structure of the tensor W [3]
Poly-NL

considers only a subset of all possible 3
rd

order dependen-
cies. In particular, its elements wPoly-NL

3(a,b,c,d,e,f,g,h)
are null for

every c different from a or g different from e and equal to
w′

1(h,d)w2(f,d)w3(d,b) in the remaining cases. Without loss
of generality, we consider the values w1

′
(h,d) enumerating

the parameters of the matrix W′
1 = W1/N , where the 1/N

term of the average pooling function is merged with the
parameter matrix. Similarly to the Non-Local block case,
Poly-NL can be viewed as 3

rd

order polynomial function,
where the tensor of parameters focuses on extracting non-
local interactions from the input tensor.



Method APbox APbox50APbox75APmaskAPmask50APmask75

MaskR-CNN 40.1 61.3 43.7 36.2 57.9 38.4
w/ Poly-NL
+ on Res3 40.8 62.8 44.3 36.8 59.3 39.0
+ on Res4 41.5 63.0 45.2 37.2 59.7 39.7
+ on Res5 40.9 62.7 44.6 36.7 59.3 38.9

(a) Instance Segmentation on ResNet-101

Method Easy MediumHard

ResNet-18 90.90 90.39 87.67
+ Non-local 91.23 90.97 88.16
+ TESA 91.67 91.25 88.87
+ Latent-GNN 91.46 91.02 88.61
+ Efficient-NL 91.52 91.09 88.65
+ Poly-NL 91.98 91.41 89.05

(b) Face Detection on ResNet-18 (x0.25)

Table 1: Additional Results. Tables report results on two different architectures for a) the Face Detection task on WIDER-
FACE and b) Instance Segmentation on COCO. Experiments are executed using an additional attention block at stage Res4.
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Figure 1: Precision-recall curves on the WIDER FACE test subsets of Easy, Medium, and Hard tracks. Different methods
are presented in different colors. Images are better seen using an electronic display.

2. Face Detection

Poly-NL Applied on Lightweight Face Detector. Be-
sides using ResNet-50 as backbone (in the main paper), we
also apply the proposed Poly-NL to the lightweight face de-
tector. More specifically, we use ResNet-18 with 1/4 of the
traditional channels (i.e. the channel numbers of C2, C3,
C4, and C5 are 16, 32, 64, and 128.) as the backbone. In
Table 1b, We placed one additional attention block at stage
Res4 and compared our Poly-NL method against other pop-
ular non-local blocks. The experiment shows consistent re-
sults with respect to the ResNet-50 architecture. Poly-NL
outperforms all competitors on Easy, Medium, and Hard
tracks, followed by TESA.

Efficiency. The proposed Poly-NL face detector using
ResNet-50 as the backbone is efficient and only takes 39.5
milliseconds on 2080Ti GPU to perform inference on an
image of VGA resolution (640× 480). By using lower pre-
cision like 16 or 8 bits, the speed can be further improved
by two to four times at the same cost. After we change
the backbone from ResNet-50 to ResNet-18 (1/4 channels),
the inference speed significantly improves to 200FPS on

2080Ti GPU and the lightweight face detector can easily
run in real-time on mobile devices.

Precision-Recall Curves. To obtain the evaluation results
from the WIDER FACE test set, we submitted the detec-
tion results of the proposed Ploy-NL face detector (ResNet-
50) to the organizers. Different from the single-scale test-
ing used in the main paper and Table 1b, we employ Test
Time Augmentation(TTA) on the test set. More specif-
ically, TTA includes multi-scale (the short edge of im-
age is [500, 800, 1100, 1400, 1700]), shift (the direction is
[(0, 0), (0, 1), (1, 0), (1, 1)]), horizontal flip and box voting.
As shown in Figure 1, we compared our method to other
recent state-of-the-art face detection algorithms (e.g. Re-
fineFace [9], RetinaFace [2], PyramidBox [6], DSFD [4],
SFDet [10], SFD [11], SSH [5], etc.). Our approach out-
performs these state-of-the-art methods in terms of AP in
all subsets, i.e. 96.7% (Easy), 95.8% (Medium) and 92.0%
(Hard) for test set. On the “hard” subset, which contains a
large number of tiny faces, our performance (average pre-
cision) is the best among all methods, indicating that the
proposed Poly-NL can effectively enhance the context mod-
eling to find tiny faces.
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Figure 2: Additional Runtime comparison between Poly-NL and other non-local methods executed on a Intel(R) Core(TM)
i9-9900X CPU.

Method APb APb50 APb75 APm APm50 APm75

MaskR-CNN (R50) 37.9 59.2 41.0 34.6 56.0 36.9
+SE 38.1 59.5 40.8 34.8 56.3 36.8
+Ours-2nd ord. 38.1 59.3 41.3 34.7 56.1 36.9
+GC 38.8 60.3 42.1 35.2 56.9 37.4
+Poly-NL 39.2 60.8 42.2 35.4 57.4 37.6

Table 2: Comparison between Poly-NL and various 2nd order methods on Instance Segmentation (COCO). Poly-NL out-
performs competitors thanks to the use of 3rd order interactions.

Visualisation Results. Figure 3 shows qualitative results
on the WIDER FACE validation subset. We randomly pick
28 diverse images to highlight the results generated by the
proposed Poly-NL face detector (ResNet-50). Detection re-
sults are shown by yellow rectangles and the brightness en-
codes the confidence. As can be seen, our face detector
works very well in crowded scenes and can find hundreds
of small faces in a wide variety of images, which indicates
that the proposed Poly-NL face detector generalizes well in
both indoor and outdoor scenes and under different lighting
conditions, poses, and occlusions.

3. Instance Segmentation

Ablation on a deeper architecture. We provide an addi-
tional ablation study on the Poly-NL placement for the task
of Instance Segmentation. We consider a MaskR-CNN ar-
chitecture and use as backbone a ResNet-101 network pre-
trained on ImageNet. As presented in the main paper, we
add one Poly-NL block at different stages of the baseline
architecture and report results on Table 1a. Consistently
with a ResNet-50 architecture, the use of Poly-NL improves
the baseline performance if placed at stage Res3, Res4, and
Res5. The use of a Poly-NL block at stage Res4 produces
the best performance on both detection and segmentation,
with an improvement of 1.4% ↑ in APbox and 1% ↑ in
APmask. Results show how Poly-NL is robust to different
placement and architectures.

Comparison with 2nd order methods. Differently from
our methods, CBAM [8], GCNet [1], and SE [3] pro-
cess only 2nd order interactions by design. While
2nd order methods avoid the quadratic complexity found
in NL, they consider a smaller set of interactions (i.e.∑N

c,e

∑C
d,f x(c,d)x(e,f)). To highlight the importance of

higher-level interactions we provide an ablation on instance
segmentation on COCO in Tbl. 2. It is evident that in
this task, where non-local patterns are crucial, substituting
Poly-NL with 2nd order methods causes a drop in perfor-
mance. We consider Eq. (6) of the main paper. Replac-
ing (XW1 ⊙ XW2) by only XW1 makes our method
a 2nd order polynomial (Ours-2nd ord.) close to SE, that
uses non-linearities and deploys a different pooling func-
tion. Our 2nd order results are on par with SE, lower than
Poly-NL, and highlight the importance of transitioning to
3rd order interactions for performance improvements. GC-
Net proposes to use the same contribution for every posi-
tion, making the conscious choice to lose part of the full
interaction patterns. Compared to this method, Poly-NL re-
tains access to every triplet of the original NL providing in
return better performance.

4. On the Use of Non-Linearities.

Poly-NL starts with the assumption of an embedded dot-
product similarity and doesn’t use any activation in its im-
plementation. As pointed out in Sec 3.2 and Tbl. 2.a of [7]



or Tbl. 1 in [1], non-local models are not sensitive to the
choices of the similarity function therefore for the Non-
Local block the use of softmax is not essential. The lack
of in-place non-linearities does not impact efficiency trends
nor prevent Poly-NL to outperform competitors (which
make use of non-linear mappings). Figure 2 reports addi-
tional efficiency trends for various spatial-attention blocks,
measured as CPU run time. As visible, Poly-NL exhibits
significantly less overhead when compared to prior work.

5. Additional Attention Patterns.
We provide additional visualizations of Poly-NL atten-

tion patterns. We consider a single Poly-NL block inserted
in a ResNet-50 architecture at stage Res4. We compare vi-
sual results of attention’s features learned for the task of
large-scale classification on Imagenet (Fig. 4) and instance-
segmentation on COCO (Fig. 5). In both cases, we visu-
alize the norm of the extracted features per spatial location
over the input image. The output of the Poly-NL block,
Z, is presented together with the input X and the attention
contribution Y. The images show the versatility of the at-
tention patterns learned by Poly-NL. Figure 4 shows results
for the classification task, where the attention contribution
highlights details overlooked by the input. The non-local
information captured by the attention block is then merged
with the input to produce the output Z. Analogously, Fig-
ure 5 visualize results for the task of instance segmentation.
In this case, the module learns to isolate noisy patterns in
the image. The output of Poly-NL returns a cleaner version
of the input, where the object instances are clearly visible.
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Figure 3: Qualitative results on the validation set of the WIDER FACE dataset, where rectangles show the detection results.
The detection confidence is represented by the brightness of the box (the color map at the end of the first row).



X Y Z = X+Y X Y Z = X+Y

Figure 4: Non-local dependencies for large-scale classification. The image reports additional visualizations of the features
learned by the Poly-NL module. Poly-NL captures long-range correlations and sums their contribution to the input features.



X Y Z = X+Y X Y Z = X+Y

Figure 5: Non-Local dependencies for instance-segmentation. Poly-NL extrapolates background information and uses the
attention contribution to highlight object’s instances.


