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In this supplementary material, we provide (1) the derivations for the proposed AngMF distribution, (2) quantitative
evaluation with additional metrics, (3) cross-dataset evaluation on KITTI [4] and DAVIS [5], (4) discussion on failure modes
and (5) additional qualitative comparison against the state-of-the-art.

1. Derivations for the proposed AngMF distribution
In the paper, we introduced a variant of the von Mises-Fisher distribution [3], such that its negative log-likelihood (NLL) is

the angular loss with learned attenuation. We call this the Angular vonMF (AngMF) distribution. In this section, we provide
the derivations for Eq. 4, Eq. 5 and Eq. 6 in the paper.

1.1. Probability density function (Eq. 4)

The NLL of the distribution should have the form of

Li = C(κi) + κi cos
−1 µT

i n
gt
i , (1)

where i is the pixel index and cos−1 µT
i n

gt
i is the angle between the predicted mean direction µi and the ground truth surface

normal ngt
i . The angular error is weighted by the concentration parameter κi, which encodes the network’s confidence in the

predicted mean direction. The first term C(κi) should be a monotonically decreasing function of κi in order to prevent the
trivial solution where κi = 0 ∀ i. Then, the probability density function (PDF) should look like

p(ni|µi, κi) = D(κi) exp(−κi cos
−1 µT

i ni), (2)

where C(κi) = − log(D(κi)). We can then compute the cumulative probability of the angular error cos−1 µT
i ni being less

than some threshold α∗. See Fig. 1-(a) for the axes orientation used for the integration.

P [cos−1(µT
i ni) ≤ α∗] =

∫ 2π

0

∫ α∗

0
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= 2πD(κi)
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0
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i + 1

(3)

Solving P [cos−1(µT
i ni) ≤ π] = 1 gives

D(κi) =
1

2π

κ2
i + 1

1 + exp(−κiπ)
. (4)
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Figure 1. (a) The axes orientation used for the integrations in Eq. 3 and Eq. 9. The mean direction µ is aligned with the z-axis, and is thus
excluded in the integration. (b) Visualization of Eq. 5 for different values of κ. κ determines how concentrated the distribution is towards
the mean direction. (c) Eq. 7, Eq. 8 and Eq. 9 plotted for different values of κ. The expected error decreases as the confidence κ increases.

Inserting Eq. 4 into Eq. 2 gives

pi(ni|µi, κi) =
(κ2

i + 1) exp(−κi cos
−1 µT

i ni)

2π(1 + exp(−κiπ))
, (5)

which is Eq. 4 in the paper. Fig. 1-(b) visualizes the distribution for different values of κ. As κ increases, the distribution
becomes more concentrated around the mean direction.

1.2. Negative log-likelihood (Eq. 5)

The network is trained by minimizing the NLL of the ground truth normal. The training loss can thus be written as

Li = − log(κ2
i + 1) + log(1 + exp(−κiπ)) + κi cos

−1 µT
i n

gt
i , (6)

where we drop the constant term, log 2π. This is Eq. 5 in the paper.

1.3. Measure of uncertainty (Eq. 6)

Inserting Eq. 4 to Eq. 3 gives

P [cos−1(µT
i ni) ≤ α∗] =

1− exp(−κiα
∗)(cosα∗ + κi sinα

∗)

1 + exp(−κiπ)
. (7)

From this, we can calculate the probability density function for the angular error α via differentiation.

p(α|µi, κi) =
d

dα

(
1− exp(−κiα)(cosα+ κi sinα)

1 + exp(−κiπ)

)
=

− exp(−κiα)(− sinα+ κi cosα) + κi exp(−κiα)(cosα+ κi sinα)

1 + exp(−κiπ)

=
exp(−κiα) sin(α)(κ

2
i + 1)

1 + exp(−κiπ)

(8)



Then, the expected value of α can be obtained as

E[α] =

∫ π

0
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(9)

which is Eq. 6 in the paper. This quantity is used as a measure of the aleatoric uncertainty. Fig. 1-(c) visualizes Eq. 7, Eq. 8
and Eq. 9 for different values of κ. The expected error decreases as κ increases. For κ = 0, the distribution is uniform and
the expected error is π/2.

2. Quantitative evaluation with additional metrics
In this section, we provide the quantitative evaluation of our method with additional metrics. Tab. 1, Tab. 2 and Tab. 3 are

extensions of Tab. 4, Tab. 5 and Tab. 6 in the paper, respectively. Fig. 2 and Fig. 3 are extensions of Fig. 8 in the paper.

2.1. Comparison against TiltedSN

Tab. 1 provides comparison against TiltedSN [2] on ScanNet [1] with additional metrics. Note that the difference in the
accuracy (% of pixels with error less than t◦) increases for lower thresholds.

Method mean median rmse 5.0◦ 7.5◦ 11.25◦ 22.5◦ 30◦

TiltedSN[2] 12.6 6.0 21.1 42.8 57.5 69.3 83.9 88.6
Ours 11.8 5.7 20.0 45.1 59.6 71.1 85.4 89.8
Difference -0.8 -0.3 -1.1 +2.3 +2.1 +1.8 +1.5 +1.2

Table 1. Quantitative comparison against TiltedSN [2] on ScanNet [1].

2.2. Quality of the estimated uncertainty

Tab. 2 and Tab. 3 compare different methods of estimating the surface normal uncertainty. ”Drop” (making 8 inferences
with dropout enabled), ”Aug” (making 2 inferences by flipping the image) and ”Drop+Aug” (making 8×2 inferences by
applying both) are task-independent approaches which does not require the output to be distributional. The proposed pipeline,
trained with the NLL losses, significantly outperforms other approaches across all metrics, suggesting that the estimated
uncertainty better correlates with the prediction error.

Method
AUSC ↓ AUSE ↓

mean median rmse 11.25◦ 22.5◦ 30.0◦ mean median rmse 11.25◦ 22.5◦ 30.0◦

Drop 9.01 4.91 15.84 19.32 8.66 6.07 4.02 0.91 9.61 10.23 6.10 4.76
Aug 8.64 4.68 15.08 18.75 8.26 5.64 3.93 0.97 9.14 10.25 5.84 4.42
Drop + Aug 8.16 4.68 14.32 16.73 7.18 4.97 3.22 0.73 8.15 7.75 4.65 3.68
Ours (NLL-vonMF) 7.03 4.47 10.96 14.24 5.51 3.53 2.11 0.56 4.80 5.10 2.92 2.24
Ours (NLL-AngMF) 6.83 4.25 10.92 13.47 5.27 3.45 2.13 0.56 4.98 5.01 2.86 2.22

Table 2. Quantitative evaluation of uncertainty on NYUv2 [7].



Method
AUSC ↓ AUSE ↓

mean median rmse 11.25◦ 22.5◦ 30.0◦ mean median rmse 11.25◦ 22.5◦ 30.0◦

Drop 7.25 4.35 12.51 13.95 5.49 3.60 3.24 1.02 7.55 8.58 4.14 2.94
Aug 7.06 4.08 12.58 13.72 5.36 3.48 3.32 1.03 7.92 8.81 4.13 2.87
Drop + Aug 6.87 4.17 12.07 12.73 4.82 3.13 2.93 0.92 7.20 7.49 3.51 2.49
Ours (NLL-vonMF) 5.84 3.92 9.30 10.31 3.21 1.94 1.85 0.64 4.38 4.69 1.86 1.30
Ours (NLL-AngMF) 5.64 3.73 9.07 9.48 3.11 1.90 1.88 0.66 4.38 4.47 1.88 1.29

Table 3. Quantitative evaluation of uncertainty on ScanNet [1].

2.3. Sparsification curves

Fig. 2 and Fig. 3 provide the sparsification curves for NYUv2 [7] and ScanNet [1], respectively. When evaluated on all
pixels, all methods perform similarly. However, as the pixels with high uncertainty are removed, our method gets significantly
more accurate than the others, suggesting that our uncertainty correlates better with the prediction error. For ”Ours (NLL-
AngMF)”, we also show the ideal sparsification (oracle) by sorting the pixels by the error.
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Figure 2. Sparsification curves for NYUv2 [7].
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Figure 3. Sparsification curves for ScanNet [1].

3. Cross-dataset evaluation on KITTI and DAVIS
In the paper, we performed a cross-dataset evaluation by training the network on ScanNet [1] and testing it on NYUv2

[7] without fine-tuning. However, this is not a challenging task as both datasets contain images of indoor scenes with similar
visual features. In this section, we further demonstrate the generalization ability of our method by testing the network (trained
only on ScanNet) on two challenging datasets - KITTI [4] and DAVIS [5]. The results are provided in Fig. 4 and Fig. 5. For
comparison, we also provide the predictions made by TiltedSN [2].

The ground truth surface normal for ScanNet is calculated from a 3D mesh that is obtained by fusing thousands of depth-
maps. For this reason, the ground truth generally does not exist for dynamic objects such as humans. As the dataset is
collected in indoor scenes, it also does not contain instances of cars and buildings. Nonetheless, the network can generalize
well for such unseen objects. We believe that this is because the network utilizes low-level features, such as edges and shades,
which are universal in most datasets. Fig. 7, which will be discussed in Sec. 4, supports such argument. Even when the input
image only contains edges or shades, the network can infer the 3D structure.
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Figure 4. Cross-dataset evaluation on KITTI [4].
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Figure 5. Cross-dataset evaluation on DAVIS [5].



4. Failure modes
In this section, we discuss the failure modes of the proposed method.

4.1. Tilted images

Fig. 6 shows the predictions made for tilted images. The network is robust against mild rotations (∼20◦), but suffers
when the images are tilted severely (30◦∼). Nevertheless, the expected error (clamped between 0◦ and 60◦ in all images)
also increases for such images, demonstrating the usefulness of the estimated uncertainty. Tilted images can be handled by
using a spatial rectifier to warp the images such that its surface normal distribution matches to that of the training images, as
done in [2]. This will be investigated in our future work.
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Figure 6. Predictions made for tilted images.

4.2. Inherent ambiguity of the problem

To understand the visual cues used by the network, we created artificial images consisting only of edges and shades. Fig.
7 shows the predictions made by the network. The first three images show ”Y”-shaped structures and the other three are their
vertically flipped versions. Note that the depth of each pixel can have any arbitrary value, meaning that the surface can have
any form. It can be a concave (or convex) corner or even a drawing on a flat wall.

For the last three images, the network thinks that it is a concave corner. This is because such structure was mostly seen
in the lower corners of cuboid-shaped rooms. However, the prediction is not clear for the ”Y”-shaped structures. We believe
that this is because such structure was seen in both concave corners (upper corners of rooms) and convex corners (external
corners of furnitures). To handle such ambiguity, the network should estimate a multi-modal surface normal distribution,
which consists of multiple uni-modal distributions with mixing coefficients. This will be investigated in our future work.
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Figure 7. Predictions made for artificial images consisting only of edges and shades.

5. Additional comparison against the state-of-the-art
Lastly, we provide additional qualitative comparison against GeoNet++ [6] (in Fig. 8) and TiltedSN [2] (in Fig. 9).
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Figure 8. Additional qualitative comparison against GeoNet++ [6] on NYUv2 [7]. Despite the poor quality of the ground truth, our method
can recover the fine details of the scene geometry (see the areas pointed by the red arrows).
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Figure 9. Additional qualitative comparison against TiltedSN [2] on ScanNet [1]. The predictions made by our method contain higher level
of detail (see the areas pointed by the red arrows).


