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We propose a novel inverse reinforcement learning for-
mulation using Maximum Entropy Deep Inverse Reinforce-
ment Learning (MEDIRL) for predicting the visual atten-
tion of drivers in accident-prone situations. In addition, we
introduce EyeCar, a new driver attention dataset in accident-
prone situations.

In this document, we provide more details to the main
paper and show extra results on ablation studies. We pro-
vide further details about the EyeCar dataset in Section S-1,
and more details on the architecture and implementation of
MEDIRL in Section S-2. We also provide additional results
from experiments and ablation studies (Section S-5). You
can find the code and dataset in our Github repository1.

S-1. EyeCar
EyeCar is a new driver attention allocation in accident-

prone situations. We follow BDD-A and DADA established
and standardized experimental design protocol for collect-
ing in-lab driver attention and create the EyeCar dataset ex-
clusively for various driving tasks which end in rear-end
collisions. EyeCar covers more realistic and diverse driv-
ing scenarios in accident-prone situations. Unlike DADA-
2000, EyeCar captures collisions from a collision point-of-
view (POV) perspective (egocentric) where the ego-vehicle
is involved in the accident.

Participants: We recruited 20 participants, 5 of them
were women, and the rest were men with at least three years
of driving experience. You can find more details of our par-
ticipants in Table S-1. Participants watched all the selected
dash-cam videos to identify hazardous cues in rear-end col-
lisions.

Driving videos: We selected 21 front-view videos from
the naturalistic driving dataset [2] that included rear-end

1https://github.com/soniabaee/MEDIRL-EyeCar

Gender Age Driving Experience Semi-autonomous vehicle Accident
5 female, 15 male 22-39 9.71(± 5.8) 25% 1%

Table S-1: Detailed information about individuals who par-
ticipate in the study.

collisions with high traffic density. The videos were cap-
tured in various driving conditions. These conditions con-
tain: traffic conditions (e.g., crowded and not crowded),
weather conditions (e.g., rainy and sunny), landscapes (e.g.,
town and highway), and times of the day (e.g., morning,
evening, night). It also contains typical driving tasks (e.g.,
lane-keeping, merging-in, and braking) ending to rear-end
collisions. Each rear-end collision video lasted for 30 sec-
onds, had a resolution of 1280×720 pixels, and had a frame
rate of 30 frames per second. All the conditions were coun-
terbalanced among all the participants.

Apparatus: We conducted this study in an experiment
booth with controlled lighting. The experiment was de-
signed to maximize the accuracy of the eye tracker to be
used as the ground truth for the evaluation of the estimated
driver attention allocation. The driving scenes were dis-
played on a 20-inch monitor with a pixel resolution of 2560
by 1440. Participants were seated approximately 60 cm
away from the screen. The head was stabilized with a chin
and forehead rest. A Logitech G29 steering wheel is placed
in front of the participants who were asked to view the
videos by assuming that they were driving a car. To control
the lighting and minimize possible shadows, a Litepanels
LED-daylight was used.

Eye movements were recorded using the screen-mounted
Tobii X3-120 system with a sampling rate of 120 Hz. The
eye-tracker was mounted under the screen of the monitor
placed in front of the participants. Due to the sensitivity
of the eye tracker, the vertical placement of the screen was
adjusted such that the center of the screen was at eye-level
for each participant. The system had to be calibrated for



Dataset Videos Accidents Events Gaze providers Duration(hrs) Number of Frames Annotation type Gaze pattern (per frame) Fixations
EyeCar 21 21 rear-end collisions 20 3.5 315K spatial and temporal raw and average 1,823,159

Table S-2: The EyeCar dataset detailed information.

Data Source Feature Type Values Scale

videos
day light categorical 0/1 per frame

speed categorical slow, normal, fast per frame

eye’s information
distance categorical near-reach, medium-reach, far-reach per fixation in a frame

fixation duration integer [110ms-447ms] per fixation in a frame

Table S-3: Detailed information about the videos and the fixations on each frame of each video.

A sample frame Instance Segmentation Light Detection Semantic Segmentation

Driving Mask Lane Detection Density Estimation Eye Fixations
Figure S-1: Overview of our dataset. The dataset also comes with a rich set of annotations: object bounding, lane marking,
full-frame semantic, and instance segmentation.

each participant using the Tobii Pro Studio animating nine
calibration points. Calibration accuracy was then recorded
to be within 0.6 degrees of visual angle for both axes of all
participants.

Procedure: Individuals are eligible to participate in this
study if they have normal or corrected to normal vision
and have at least three years of driving experience. Af-
ter enrolling in the program, individuals are asked to fill
out initial questions consisting of their age, driving experi-
ence, gender, whether they have experience with the semi-
autonomous vehicle or not, and if they have been involved
in any car accidents or not (see Table S-1).

The study had two sessions, and each lasts for 10±2 min-
utes. To decrease the chance of drivers’ fatigue and disen-
gagement, participants watched the first 10 videos in the
first session, and then after 5 minutes gap, they watched the
other 11 videos in the second session (the whole study takes
less than half an hour). The experiment received ethical ap-
proval from the University’s Institutional Review Board.

During the data collection, we asked participants to
‘task-view’ the collision videos and were free to fix their
eyes on their areas of interest. To incentivize participants
to pay attention and play the fall-back ready role in au-
tonomous vehicles, we further modified the experimental
design by sitting them in a low-fidelity driving simula-
tor consists of a Logitech G29 steering wheel, accelerator,
brake pedal, and eye-tracker.

S-1.1. Data Preprocessing:

Driving videos: EyeCar comes with a rich set of anno-
tations: object bounding, lane marking, full-frame seman-
tic, and instance segmentation (see Figure S-1). You also
can see the number of typical instances in each category in-
volved in an accident over all frames of videos in Figure S-
2.
Object detection: Understanding the scene is important not
only for autonomous driving but the general visual recogni-
tion. One of the main elements for a scene is the objects
of the scene, therefore locating object is a fundamental task
in scene understanding. We provide bounding box and in-
stance mask annotations for each of the frames in EyeCar.
The sample of the instances and masks are presented in Fig-
ure S-1. In addition, we provide the instance statistics of our
object categories in Figure S-2.
Light Detection: Any rear-end collision includes salient
stimuli such as brake lights. To detect this type of stimuli,
we convert each frame to HSV color space. First, we calcu-
late the average brightness level of each vehicle and traffic
light masks. Then, we calculate the brightness anomaly of
the selected masks by subtracting their average brightness
value from their actual brightness level at each frame. We
can determine the pixels corresponding to these anomalies
as well as their time of occurrence. Therefore, the location
of the target objects and their temporal occurrence interval
are annotated in EyeCar.
Depth Estimation: Recognizing the relative distance to the
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Figure S-2: The distribution of typical instances categories
involved in an accident over all frames of the EyeCar
videos.

other traffic participants (e.g., the lead vehicle) is crucial
for making optimal driving decisions. Therefore, we use
a supervised monocular depth estimation model to amplify
nearby regions (e.g., distance to a target object) of a driving
scene.
Lane Marking and Lane Changes: The lane marking de-
tection is critical for a task-related visual attention alloca-
tion of drivers, as an indicator of the type of maneuver. We
recognize the left and right lanes of the ego-vehicle by de-
lineating their boundaries. Our lane markings (Figure S-
1) are labeled with five main categories: road curb, double
white, double yellow, single white, single yellow. The other
categories are ignored during evaluation.

Eye information: We employ iMotion to extract the eyes’
features such as; pupil size, gaze location, fixation duration,
the sequence of fixation, and the start and end time of the
fixation points. Moreover, the visual responses and time
delay between the onset of the tasks’ stimuli (e.g., brake
lights) to perceive it by the participants were captured. The
abnormal or missing values of these features can lead us to
the wrong conclusion, therefore pre-processing of the raw
data is necessary for identifying such values and replac-
ing them with linearly interpolated values, outlier treatment,
statistical analysis, and data quality (e.g., calibration, exclu-
sion of trials and participants due to poor recording, track
loss).

To clean the data, we first extract the missing values of
the eyes’ features. We employ linear interpolation if the
percentage of the missing values is less than 20%. Then,
we calculated the abnormal values of features to detect the
outliers. We calculated the mean (µfeature) and the standard
deviation (σfeatures) of each feature (zero values are excluded
from our calculation) for each participant. Then, we set the
low and high thresholds as follows:

low threshold = µfeature − 3× σfeature

high threshold = µfeature + 3× σfeature

Abnormal values are those that values are less than the low
threshold and more than a high threshold. In addition to

the exclusion criteria described in the main text, we also ex-
cluded the sequences with more than 40% abnormal values
for eye fixations (see Figure S-4 for a sample of eye fix-
ation sequence). In this way, we decreased the chance of
drivers’ fatigue and disengagement. We have about 0.005%
of sequences with these conditions.

EyeCar dataset: After implemented all exclusion crite-
ria, we selected 416 variable-length eye fixation sequences.
EyeCar includes more than 315,000, rear-end collisions
video frames. In addition, each video frame comprises 4.6
vehicles on average, making EyeCar driving scenes more
complex than other visual attention datasets. GPS record-
ings in our dataset show the human driver action given the
visual input and the driving trajectories. The proportion of
high (65 ≤ v), normal (35 ≤ v ≤ 65), and low (35 ≥ v)-
speed categories are 38%, 39%, and 23%, respectively see
Table S-3.

A total of 1,823,159 fixations were extracted from the
eye position data, over the 20 subjects. The EyeCar dataset
contains 3.5 hours of gaze behavior from the 20 partici-
pants. The fixation maps highlight the direction of human
drivers’ gaze to a salient object when making driving deci-
sions in rear-end collisions. We also provide a raw fixation
map of multiple observers as well as an average fixation
map of them. We aggregate and smooth the gaze patterns
of these independent observers to make an attention map
for each frame of the video [1] and simulate the peripheral
vision of human [4].

S-2. Implementation
Depth Estimation: The predicted dense depth map Dt at
each time step t is combined with the visual feature Ft by
the following formula:

Ft ⊕Dt = Ft ⊙ λ ∗Dt + Ft,

where λ = 1.2. This value of lambda parameter helped
us to focus on the lead vehicle more than other surround-
ing vehicles during rear-end collisions. Note that the above
equation is equivalent to the main paper’s equation which is
written in a recurrent form.

State Representation: In our proposed state represen-
tation, we try to formulate the visual system mechanism
by considering the high-resolution visual information at
the eye fixation location (a selected patch in a grid space)
and low-resolution visual information outside of the eye-
fixation location.

To model the altering of the state representation followed
by each fixation, we propose a dynamic state model. To
begin with, the state is a low-resolution frame correspond-
ing to peripheral visual input. After each fixation made



Figure S-3: Illustration of a discretize frame along with gaze location points of all drivers in the EyeCar dataset. Drivers
allocate their attention to the driving task-related salient regions of the driving scene. The points show the gaze location of
drivers. The black points are out of the task-related regions. The blue points are in the driving mask (the gray area in the
frame). The green points are in the lead vehicle bounding box, and the yellow points are in the area of the target object (i.e.,
braking lights).

Samples of attentive 
drivers’ eye fixations

Excluded eye fixations

Figure S-4: A sample of attentive drivers’ average eye fix-
ations sequence for a given front-view video as well as the
excluded sequence. Note that the sizes of the circles are cor-
responding to the duration of the average eye fixation over
the last 30 frames before a collision.

Figure S-5: Examples of MEDIRL generated visual atten-
tion allocations on the EyeCar dataset. An attentive driver
eye fixation sequences are colored in green, and the model
generated is in blue. You can see that MEDIRL mainly fo-
cused on driving tasks related to rear-end collisions.

by a driver, we update the state by replacing the portion
of the low-resolution features with the corresponding high-
resolution portion obtained at each new fixation location.
At a given time step t, feature maps H for the original
frame (high-resolution) and feature maps L for the blurred
frame (low-resolution) are combined as follows:

O0,1 = L0,1, Ok+1,t = Ek,t ⊙Ht + (1− Ek,t)⊙Ok,t,

where ⊙ is an element-wise product. Ok,t is a context of
spatial cues after k fixations. Ek,t is a binary map with 1
at current fixation location and 0 elsewhere in a discretize
frame. The size of each patch is equal to the smallest
size(furthest) of the lead vehicle in the scene 12×17 (about
1◦ visual angle). To jointly aggregate all the temporal infor-
mation, we update the next frame by considering all context
of spatial cues in the previous frame as follows:

Ok,t+1 = Ek,t+1 ⊙Ht+1 + (1− Ek,t+1)⊙OK,t,

where OK,t is visual information after all fixations K of
time step t(previous frame).

Figure S-6: Ablation study on the proposed state represen-
tation. We remove one part by masking out or simply re-
moving from the state representation at each time.

Action Space: We aim to predict the next eye fixation
of drivers. It means, we need to predict the pixel loca-
tion where the driver is looking in the driving scene during
accident-prone situations. We discretize each frame into a
n×m grid where each patch matches the smallest size (fur-
thest) of the lead vehicle bounding box (see Figure S-3.
The maximum approximation error due to this discretiza-
tion procedure is 1.27 degrees, visual angel. Action ak,t
represents where the focus of attention can move at fixa-
tion k of time step t. The policy selects one out of n ∗ m
patches in a given discretize frame. The center of the se-
lected patch in the frame is a new fixation. Finally, the
changes (∆x,∆y) of the current fixation and the selected
fixation define the action space At: {left, right, up, down,
focus-inward, focus-outward, stay}, as shown in Figure ??
which has three degrees of freedom (vertical, horizontal, di-
agonal). We also excluded the patches that have no visits or
less than five visits for computational efficiency. It should
be noted that we did not pre-defined the radius of the direc-
tion for the agent. Therefore, the agent has the freedom to
pick any patch among the created ones.



Figure S-7: Predicted driver attention in a braking task for each compared model and MEDIRL (video #17). They all trained
on BDD-A. MEDIRL can learn to detect most task-related salient stimuli (e.g., traffic light, brake light). The redder color
indicates the expectation of a higher reward for fixation location.

Driving task and ego-vehicle speed: We embed the task
in our model by one-hot encoding maps which spatially re-
peat the one-hot vector. Therefore, we concatenate the task
embedding with other features in our proposed state repre-
sentation to have a task-dependent bias term for every con-
volutional layer. We then add another fully-connected layer
to encode the current speed of the ego-vehicle and concate-
nate the state with the speed vector.

Visual attention allocations: The eye fixation location is
generated from the probability map that MEDIRL has pro-
duced. We also applied Inhibition-of-Return to decrease the
likelihood that a previously inspected (possibly salient) re-
gion in the scene will be re-inspected, thereby encouraging
visual attention toward the next salient region in a driving
scene. Therefore, MEDIRL generates a new spatial proba-
bility map at every step.

Figure S-5 demonstrates the generated fixation location
in a single frame of different driving videos by MEDIRL.
MEDIRL mainly focused on driving tasks related to rear-
end collisions.

Maximum Entropy: To learn the policies, we maximize
the joint posterior distribution of visual attention allocation
demonstrations Ξ = {ξ1, ξ2, ..., ξq}, under a given reward
structure and of the model parameter, θ, across I . For a
single frame and given visual attention allocation sequence
ξq = {(s1, a1), ..., (sτ , aτ )} with a length of |τ |, the likeli-
hood is:

Lθ = (1/Ξ)
∑
ξi∈Ξ

logP (ξi, θ),

, where P (ξi, θ) is the probability of the trajectory ξi in
demonstration Ξ. In each iteration j of maximum en-
tropy deep inverse reinforcement learning algorithm, we
first evaluate the reward value based on the state features
and the current reward network parameters θj . Then, we
determine the current policy, πj , based on the current ap-
proximation of reward, Rj and transition matrix (i.e., the

outcome state-space of a taken action), T . Therefore, we
can benefit from the maximum entropy paradigm, which
enables the model to handle sub-optimal behavior as well
as stochastic behavior of experts, by operating on the distri-
bution over possible trajectories [6, 5].

Principle of Maximum Entropy [3] demonstrates that the
best distribution overcurrent information is one with the
largest entropy. Maximum Entropy also prevents issues
with label bias which means portions of state space with
many branches will each be biased to be less likely, and
while areas with fewer branches will have higher probabil-
ities (locally greedy). Maximum Entropy gives all paths
equal probability due to equal reward and uses a probabilis-
tic approach that maximizes the entropy of the actions, al-
lowing a principled way to handle noise, and it prevents la-
bel bias. It also provides an efficient algorithm to compute
empirical feature count, leading to a state-of-the-art perfor-
mance at the time. This process maximized total reward,
even over the short period of time (0.6± 0.2 seconds) that
our attentive drivers detect the target objects (brake light) in
rear-end collisions.

S-3. More Evaluations

S-3.1. Training and Testing on EyeCar

We train and test MEDIRL on EyeCar. To be able to
do it, we used leave-one-out cross-validation (one video as
test) and obtained the following results: (CC: 0.85, s-AUC:
0.8, KLD: 0.92), (CC: 0.83, s-AUC: 0.74, KLD: 1.58), (CC:
0.79, s-AUC: 0.77, KLD: 1.29), on lane-keeping, merging-
in, and braking driving tasks, respectively.

S-3.2. Training on EyeCar and Testing on Bench-
marks

We report the results of training on EyeCar and testing
on each benchmark for each driving task.



Dataset
Task Merging-in Lane-keeping Braking

CC↑ s-AUC↑ KLD↓ CC↑ s-AUC↑ KLD↓ CC↑ s-AUC↑ KLD↓
DR(eye)VE 0.88 - 0.89 0.91 - 0.70 0.88 - 0.81
BDD-A 0.92 0.89 0.87 0.94 0.94 0.82 0.96 0.90 0.86
DADA-2000 0.77 0.71 1.06 0.93 0.72 0.92 0.85 0.88 0.99

Table S-4: The results of training on EyeCar and testing on
each benchmark for each driving task.

S-4. Qualitative Comparison
We provide a qualitative comparison of MEDIRL against

other models in Figure S-7. It shows that MEDIRL can
reliably manage to capture the important visual cues in a
braking task in the case of a complex frame. In contrast,
nearly all other models partially capture the spatial cues
and predict attention mainly towards the center of the frame,
thereby ignoring the target and non-target objects (i.e., spa-
tial cues).

S-4.1. Challenging Environment

We also evaluate MEDIRL performance under extreme
weather conditions such as foggy weather. The BDD-A
dataset includes severe weather (e.g., foggy and snowy). We
report the results of MEDIRL trained and tested on BDD-
A in Table 2 of the paper, showing MEDIRL surpasses al-
most all the models. We further compared MEDIRL with
TASED-NET exclusively on the foggy videos extracted
from BDD-A.

Weather Methods CC↑ s-AUC↑ KLD↓

Foggy
TASED-NET 0.64 0.53 2.12

MEDIRL 0.72 0.62 1.45

Table S-5: Evaluating MEDIRL in a challenging driving
environment (i.e., foggy).

Despite the foggy weather conditions, the results high-
light that MEDIRL still performs better under all evaluation
metrics. The results will be added to supplementary mate-
rial. Generally, MEDIRL is more sensitive to false-negative
prediction, leading to significant improvement in KLD.

S-5. Ablation Studies
Figure S-6 shows the ablation study of the full state

representation on different test datasets. We can see
that the most important feature categories were seman-
tic/instance (Yt), followed by target object (Ut), and types
of driving tasks (Qt). The depth map features (Zt) are also
beneficial for the model performance whereas ego-vehicle
speed (vt) weakly impacted model performances. The re-
sults confirm the incorporation of low and mid-level visual
cues, and driving-specific visual features.

We study the benefits of each component of MEDIRL
by running ablation experiments (see Table S-5) with the
trained model on the BDD-A dataset and tested on EyeCar

Ablated versions
Dataset EyeCar BDD-A

CC ↑ KLD ↓ Fβ ↑ CC ↑ KLD ↓ Fβ ↑
-general features 0.36 3.55 0.21 0.41 3.51 0.27
-driving-related features 0.69 2.21 0.30 0.60 2.07 0.39
MEDIRL 0.84 0.81 0.61 0.89 0.88 0.78

Table S-6: Ablative study of MEDIRL using different com-
bination of modules. The model used here is trained on
BDD-A dataset and tested on EyeCar and BDD-A test
dataset.

and BDD-A test dataset. We employed our general scene
features and driving-related features to have a rich state rep-
resentation for our proposed MEDIRL model. To under-
stand the contribution of each component, we removed the
maps of each group one at a time and compared the cor-
responding performance of the model. MEDIRL is not re-
stricted to these backbones and could potentially incorpo-
rate new and more robust networks as submodules.
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