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Here we present a detailed description of the Apollonius circle in Sec. 1, and show more results on different experiment
settings in Sec. 2.
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Figure 1. Illustration of the Apollonius circle in a two-dimensional Euclidean space.

1. Apollonius’ definition of a circle
A circle in a Euclidean space refers to a set of points, where all distances from each point to a particular point (i.e., center)

are equal. Apollonius of Perga, on the other hand, defines a circle as a set of points that have the same distance ratio for two
particular points (Fig. 1). Concretely, the Apollonius circle in a two-dimensional Euclidean space is defined as follows:
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where (a, b) and (c, d) are the two particular points, often called foci. From the last row in Eq. (1), we reformulate the radius
of this circle as follows:
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We can see that the radius is proportional to the distance between the foci, i.e., d12. This confirms that Apollonius calibration
handles the seen bias problem adaptively, even with the same value of σ (see Figure 4 in the main paper).
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Table 1. Comparison of different experiment settings on PASCAL VOC [6]. Exclude(classes): exclude all samples that
contain at least one of the classes; Ignore(classes): mark regions of the classes in ground-truth masks with void labels;
IN: pre-trained weights for ImageNet classification [5]; IN∗: pre-trained weights for ImageNet classification only with seen
classes.

Settings # of splits Training Inference Architecture Initialization Semantic
(backbone) features

ZS3Net [2] 5 Exclude(unseen classes) - DeepLabV3+ [4] IN∗ word2vec [10](ResNet-101 [8])

SPNet [12] 1 Ignore(background & unseen classes) Ignore(background class) DeepLabV2 [3] IN word2vec [10]
(ResNet-101 [8]) & fastText [9]

2. More results
Table 1 summarizes differences between experiment settings provided by ZS3Net [2] and SPNet [12] on PASCAL

VOC [6]. The main differences between them lie in training and inference processes. ZS3Net excludes training sam-
ples that contain at least one of the unseen classes. This, however, would leave a small number of training samples only,
since objects co-occur frequently. For example, almost half of the training samples are eliminated for the unseen-10 split
(10, 582 → 5, 408). To take into account this problem, SPNet uses all training samples but ignores pixels of unseen classes,
which is more feasible for the task of semantic segmentation. Note that SPNet however ignores the background class during
both training and inference. That is, SPNet requires pixel-wise annotations for the background class to discriminate fore-
ground objects from a background during inference, while ZS3Net does not impose any assumptions for inference. This is
why we have followed the setting of ZS3Net in the main paper. In the following, we present qualitative and quantitative
results for each experiment setting.

2.1. ZS3Net.

We vary the value of r to analyze its effect on the unseen-4 split of PASCAL VOC [6] and Context [11] in Fig. 2. We can
see that using r > 1 always gives better results than r = 1, confirming again the superiority of our BAR loss. We empirically
set r to 4 in all experimental settings provided by ZS3Net [2] in order to generate more virtual prototypes. Since the spatial
size of feature maps obtained from DeepLabV3+ is already small (e.g., 78×78), we do not use higher values of r, i.e., r > 4,
to maintain the spatial size. For temperatures in Eqs. (7) and (8), we first fix τs as one in order to reduce the cost of selecting
these hyperparmeters. Then, we find a value of τµ that allows the highest relation probability in Eq. (8) to be around 0.9. As
a result, we empirically set τµ to 5 and 7 for all experiments on PASCAL VOC and Context, respectively. We also analyze
effects of other hyperparameters (λ, σ) on PASCAL VOC and Context in Figs. 3 and 4, respectively. We first use a grid
search to set λ ∈ {10−3, 10−2, 10−1, 1, 10} with fixing the adjustable parameter σ to 0.5. From the top rows of Figs. 3
and 4, we can clearly see that our approach is robust to changes of the balance parameter λ. We then vary σ in the range
of (0, 1) with an interval of 0.1. From the bottom rows of Figs. 3 and 4, we can also see that Apollonius calibration brings
considerable performance improvement in the range of [0.5, 1). This method, however, degrades performance in the range
of (0, 0.5). A plausible reason is that the radius of the Apollonius circle becomes small as in Eq. (2), increasing classification
errors. It is worth noting that the values of hyperparameter used in the main paper (dotted lines) are not optimal, since we
have adopted a cross-validation [1] for each split.

We compare in Table 2 per-class mIoU scores on the unseen-4 split of PASCAL VOC. We can see that ZS3Net [2] obtains
mIoUU scores at the cost of mIoUS ones. For example, the mIoU score of a sheep class is 0. We reimplement ZS3Net
(‘ZS3Net†’), and find that ZS3Net requires a scaling factor for unseen classes to compute the CE loss during retraining.
This scaling factor is particularly important for improving performance in that ZS3Net† outperforms ZS3Net by simply
changing the value of the scaling factor from 100 to 10. We also report per-class results of ZS3Net using our visual encoder
(‘ZS3Net‡’). This model shows higher mIoUU scores than ZS3Net† for cow, motorbike, and sofa classes, demonstrating
once again that our approach alleviates the seen bias problem (see Table 3 in the main paper).

We provide in Fig. 5 visual examples using different losses in our framework. To the baseline, we show results without
BAR and SC losses in the third column. We can see that BAR and SC losses give better results than the baseline in the
fourth and fifth columns, respectively. In the two rightmost columns, we show BAR and SC losses complement each other
and Apollonius calibration considerably reduces the seen bias problem, respectively. In Figs. 7 and 8, we present qualitative
results on the unseen-4 split of PASCAL VOC and Context, respectively. We can see that our approach provides more
accurate results than ZS3Net, especially for unseen classes.
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Figure 2. Comparison of hIoU scores for different values of r on the unseen-4 split of PASCAL VOC [6] (left) and PASCAL
Context [11] (right). The dotted line indicates the value used in the main paper.
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Figure 3. Comparison of mIoU scores for different hyperparameters λ (top) and σ (bottom) on each split of PASCAL
VOC [6]. The dotted line indicates the value used in the main paper.
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Figure 4. Comparison of mIoU scores for different hyperparameters λ (top) and σ (bottom) on each split of PASCAL
Context [11]. The dotted line indicates the value used in the main paper.

Table 2. Per-class mIoU scores on the unseen-4 split of PASCAL VOC [6]. ∗: unseen classes; †: reimplementation; ‡: our
visual encoder. The results of ZS3Net [2] are obtained from the model provided by the authors, but differ from the original
ones. Numbers in bold are the best performance and underlined one is the second best.

Method bg. aero∗ bike bird boat bot bus car cat cha cow∗ tab dog hor mbik∗ pers plnt she sofa∗ trai tv hIoU
ZS3Net [2] 92.2 32.8 35.7 85.2 56.1 78.9 91.0 77.5 84.3 26.2 27.3 41.9 80.4 57.2 39.5 81.5 58.8 0.0 9.1 79.5 69.3 38.3
ZS3Net† 91.8 37.1 32.2 85.8 57.2 75.8 91.5 71.8 89.8 24.8 30.4 49.8 86.6 51.7 43.0 81.1 55.6 72.2 4.5 84.2 67.7 40.6
ZS3Net‡ 91.0 35.6 32.1 85.5 58.3 73.9 90.0 77.6 86.4 25.0 31.7 53.9 83.1 53.0 48.3 80.5 51.5 73.0 11.7 85.3 62.4 43.4
Ours 90.2 36.2 29.6 83.5 60.4 69.7 90.3 76.8 87.8 18.6 30.1 49.8 83.8 52.1 52.9 78.1 51.2 58.4 15.3 84.8 62.2 44.6



Input image. Ground truth. Lce + Lcenter. Lce + Lbar. Lce + Lsc. Lce + Lbar + Lsc. Ours.

Figure 5. Visual comparison using different losses in our framework on the unseen-4 split of PASCAL Context [11]. Note
that cow, motorbike, and cat are unseen classes.

2.2. SPNet.

To further demonstrate the effectiveness of our approach, we follow the experiment setting provided by SPNet [12] on
PASCAL VOC [6]. Specifically, it provides a single split that consists of 15 seen and 5 unseen classes (potted-plant, sheep,
sofa, train, and tv). For fair comparison, we use DeepLabV2 [3] with ResNet-101 [8] as our visual encoder. ResNet-101
is initialized by pre-trained weights for ImageNet classification [5]. For side information, we concatenate word2vec [10]
and fastText [9], resulting in a 600-dimensional semantic feature. We use the same training details aforementioned in the
main paper to train both encoders.

We have found that many virtual prototypes are located at boundaries between foreground and background. As the setting
provided by SPNet ignores background regions, we set r to 2. For temperature parameters, we adopt the same values as in
the experimental settings provided by ZS3Net. Other hyperparameters (λ = 1, σ = 0.8) are chosen by a cross-validation as
in [1]. Fig. 6 shows performance variations w.r.t. the value of r and σ. We can see that the behavior of mIoU scores w.r.t.
these hyperparameters is similar to the ones in Figs. 3 and 4.

We compare in Table 3 our approach with state-of-the-art GZS3 methods [2, 7, 12]. All numbers for other methods are
taken from CaGNet [7]. From this table, we can clearly see that our approach outperforms all other methods including
generative methods [2, 7] by a large margin in terms of mIoUU and hIoU. Note that our approach without using AC already
outperforms all other methods, demonstrating the effectiveness of the discriminative approach. In Fig. 9, we show qualitative
comparison of ours and CaGNet. We can clearly see that our approach provides better results.
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Figure 6. Comparison of mIoU scores for different hyperparameters r (left) and σ (right) on the experiment setting provided
by SPNet [12]. We empirically set λ to 1. The dotted line indicates the value chosen by a cross-validation.
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Ground truth. Ground truth. CaGNet. Ours.

Figure 9. Visual comparison of CaGNet [7] and ours on the experiment setting provided by SPNet [12], where potted-plant,
sheep, sofa, train, and tv are unseen classes. Note that all results show sharp object boundaries, since this setting uses
pixel-wise annotations for the background class during inference.


