
Appendix: Rethinking the Truly Unsupervised Image-to-Image Translation

1. Qualitative comparison on the number of
pseudo domains K̂

Please refer to Figure 1. in Appendix.

2. Training details
We train the guiding network for the first 65K iterations

while freezing the update from both the generator and the
discriminator. Then, we train the whole framework 100K
more iterations for training all the networks. The batch size
is set to 32 and 16 for 128×128 and 256×256 images, re-
spectively. Training takes about 36 hours on a single Tesla
V100 GPU with our implementation using PyTorch[11].
We use Adam [5] optimizer with β1 = 0.9, β2 = 0.99
for the guiding network, and RMSprop [3] optimizer with
α = 0.99 for the generator and the discriminator. All learn-
ing rates are set to 0.0001 with a weight decay 0.0001. We
adopt hinge version adversarial loss [6, 13] with R1 reg-
ularization [8] using γ = 10 (Eq. 5). We set λrec =
0.1, λGstyle = 0.01, λEstyle = 1, and λMI = 5 in equa-
tion. 6 for all experiments. When the guiding network
is simultaneously trained with the generator, we decrease
λEstyle and λMI to 0.1 and 0.5, respectively. For evaluation,
we use the exponential moving average over the parame-
ters [4] of the guiding network and the generator. We ini-
tialize the weights of convolution layers with He initial-
ization [1], all biases to zero, and weights of linear lay-
ers from N(0, 0.01) with zero biases. The source code
will be available publicly. The source code is available at
https://github.com/clovaai/tunit.

3. Evaluation protocol
For evaluation, we use class-wise Fréchet Inception Dis-

tance (FID) [2], which is often called mFID in literatures
and D&C [9]. FID measures Fréchet distance between real
and fake samples embedded by the last average pooling
layer of Inception-V3 pre-trained on ImageNet. Class-wise
FID is obtained by averaging the FIDs of individual classes.
In the experiments with fewer labels, we report the mean
value of best five mFID’s over 100K iterations. For ex-
ample, we use entire real images of each class and gener-
ate 810 fake images where 18 × (K − 1) source images
(K = 10 for AnimalFaces-10) and five reference images

of AnimalFaces-10 are used to produce those fake images.
We choose the source images from all classes except for the
target class. For each source image, the five references are
selected arbitrarily. For D&C, we generate fake images the
similar number of training images with randomly selected
source and reference images. Then, we use Inception-V3
pre-trained on ImageNet for extracting feature vectors and
measure D&C by using the feature vectors.

4. Difference between the sequential and joint
training in Section 4.1

To investigate the effect of the adversarial loss to the
guiding network, we trained TUNIT under two settings; 1)
joint training and 2) sequential training. The former is to
train all the networks in an end-to-end manner as described
in Section 3, and the latter is to first train the guiding net-
work with LE for 100k iterations and then train the gener-
ator and the discriminator using the outputs of the frozen
guiding network as their inputs. Note that for the sepa-
rate training, the guiding network does not receive feedback
from the translation loss LG in Eq. (6).

5. Architecture details

For the guiding network, we use VGG11 before the lin-
ear layers followed by the average pooling operation as the
shared part and append two branches Eclass and Estyle. The
branches are one linear layer with K̂ and 128 dimensional
outputs, respectively. The detailed information of the gen-
erator, the guiding network and the discriminator architec-
tures are provided in Table 1, Table 2 and Table 3.



Source Reference K̂=1 K̂=4 K̂=7 K̂=10 K̂=13 K̂=16 K̂=20

Figure 1: Qualitative comparison on the number of pseudo domains K̂. The performance varies along with K̂. When we set K̂ large
enough, the results are reasonable.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 128× 128× 3

Conv7×7 - IN 128× 128× ch
Conv4×4 Stride 2 IN 64× 64× 2ch
Conv4×4 Stride 2 IN 32× 32× 4ch
Conv4×4 Stride 2 IN 16× 16× 8ch

ResBlk - IN 16× 16× 8ch
ResBlk - IN 16× 16× 8ch
ResBlk - AdaIN 16× 16× 8ch
ResBlk - AdaIN 16× 16× 8ch

Conv5×5 Upsample AdaIN 32× 32× 4ch
Conv5×5 Upsample AdaIN 64× 64× 2ch
Conv5×5 Upsample AdaIN 128× 128× ch
Conv7×7 - - 128× 128× 3

Table 1: Generator architecture. “ch” represents the channel
multiplier that is set to 64. IN and AdaIN indicate instance
normalization and adaptive instance normalization, respec-
tively.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 128× 128× 3

Conv3×3 MaxPool BN 64× 64× ch
Conv3×3 MaxPool BN 32× 32× 2ch
Conv3×3 - BN 32× 32× 4ch
Conv3×3 MaxPool BN 16× 16× 4ch
Conv3×3 - BN 16× 16× 8ch
Conv3×3 MaxPool BN 8× 8× 8ch
Conv3×3 - BN 8× 8× 8ch
Conv3×3 MaxPool BN 4× 4× 8ch

GAP - - 1× 1× 8ch
FC - - 128
FC - - K̂

Table 2: Guiding network architecture. “ch” represents
the channel multiplier that is set to 64. The architecture is
based on VGG11-BN. GAP and FC denote global average
polling [7] and fully connected layer, respectively.



LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 128× 128× 3

Conv3×3 - - 128× 128× ch
ResBlk - FRN 128× 128× ch
ResBlk AvgPool FRN 64× 64× 2ch
ResBlk - FRN 64× 64× 2ch
ResBlk AvgPool FRN 32× 32× 4ch
ResBlk - FRN 32× 32× 4ch
ResBlk AvgPool FRN 16× 16× 8ch
ResBlk - FRN 16× 16× 8ch
ResBlk AvgPool FRN 8× 8× 16ch
ResBlk - FRN 8× 8× 16ch
ResBlk AvgPool FRN 4× 4× 16ch

LReLU - - 4× 4× 16ch
Conv4×4 - - 1× 1× 16ch
LReLU - - 1× 1× 16ch

Conv1×1 - - K̂

Table 3: Discriminator architecture. “ch” and K̂ represent
the channel multiplier that is set to 64 and the number of
clusters, respectively. FRN indicates filter response normal-
ization [12].

6. Comparison with Swapping autoencoder

Figure 2: Comparison with SwAE. SwAE sometimes fails to cap-
ture the domain features. We recommend to zoom in.

Swapping autoencoder (SwAE) [10] can conduct the im-
age translation without the domain labels by using the fea-
ture vector of the reference images. Therefore, it can be
compared with TUNIT. Figure 2 shows the qualitative com-
parison between TUNIT and SwAE. Since SwAE does not
define domains, it occasionally fails to capture the exact do-
main properties (col. 1,3,4 and 6). Meanwhile, TUNIT cap-
tures various aspects of domains; it changes species along

with styles. It shows that TUNIT better handles translation
across domains. Originally, we did not compare SwAE be-
cause their practical usefulness and the possible tasks differ
from ours. Notably, similar to many unsupervised learners,
TUNIT can serve as a strong baseline for semi-supervised
models. Table 3 and Fig. 4 show that TUNIT is successful
in a semi-supervised setting. This is clearly not possible by
SwAE due to their design choice. Besides, TUNIT further
translates domains specified by cluster ids via their average
styles (Appendix Fig. 10). It is especially useful when a
user wants to explore various domains without references.
In contrast, SwAE always requires a reference.

7. Comparison with StarGANv2
We additionally compare TUNIT with StarGANv2 on

AnimalFaces-10 and Food-10. We employ StarGANv2
with supervision as the reference for the upper-bound. The
table below shows the quantitative result.

AnimalFaces-10 Food-10
mFID D&C mFID D&C

StarGANv2 (Supervised) 33.67 1.54/0.91 65.03 1.09/0.76
TUNIT (Unsupervised) 47.70 1.04/0.81 52.20 1.08/0.87

StarGANv2 outperformed unsupervised TUNIT on
AnimalFaces-10, but TUNIT outperformed StarGANv2
on Food-10. Considering that TUNIT uses no labels and
StarGANv2 uses set-level labels, we emphasize that our
achievement is impressive.

8. Perceptual study on disentanglement
We conducted the user study (selecting the best in style

and content) on two datasets and compared models (from
Table 1) as follows. The result shows that the proposed
(F,G) largely outperforms the others.

A B C D E F G

Preference(%)↑ 3.0 6.2 3.2 10.8 12.3 19.2 45.3



9. t-SNE visualization & cluster example im-
ages

Figure 3: t-SNE visualization and representative images
of each domain for AFHQ Cat.

Figure 4: t-SNE visualization and representative images
of each domain for AFHQ Dog.



Figure 5: t-SNE visualization and representative images
of each domain for FFHQ.

Figure 6: t-SNE visualization and representative images
of each domain for LSUN Car.



10. Additional Comparison with FUNIT:
AFHQ, LSUN Car and FFHQ

Figure 7: AFHQ Cat, unsupervised reference-guided
image-to-image translation results of FUNIT and TUNIT.
The content and the style are from the source and the ref-
erence, respectively. While FUNIT usually fails to reflect
the style of the reference image, TUNIT generates the fake
images with the style – color, fur texture.

Figure 8: AFHQ Wild, unsupervised reference-guided
image-to-image translation results of FUNIT and TUNIT.
FUNIT rarely reflects the correct style of the reference im-
age – the species, on the other hand, TUNIT translates the
source image to the correct species.

Figure 9: LSUN Car, unsupervised reference-guided
image-to-image translation results of FUNIT and TUNIT.
While TUNIT generates plausible and changes the color of
the source image to that of the reference image, FUNIT not
also generates unrealistic image but also fails to changes the
color.

Figure 10: FFHQ, unsupervised reference-guided image-to-
image translation results of FUNIT and TUNIT. Our model,
TUNIT can remove or add the glasses to the source while
preserving the identity better than FUNIT. In addition, TU-
NIT can change the hair color (last column) and the hair
style – especially, bang (fifth column). It is hard to spec-
ify the definition of domains in the results of FUNIT while
domains of TUNIT are more interpretable.



11. Additional Results of TUNIT including
semi-supervised setting

11.1. AnimalFaces-10

(a) Results guided by average style vectors

(b) Results guided by reference images
Figure 11: AnimalFaces-10, unsupervised image-to-image translation results.



11.2. AFHQ Cat

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 12: AFHQ Cat, unsupervised image-to-image translation results.



11.3. AFHQ Dog

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 13: AFHQ Dogs, unsupervised image-to-image translation results.



11.4. AFHQ Wild

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 14: AFHQ Wild, unsupervised image-to-image translation results.



11.5. FFHQ

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 15: FFHQ, unsupervised image-to-image translation results.



11.6. LSUN Car

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 16: LSUN Car, unsupervised image-to-image translation results.



11.7. Summer2Winter (S2W)

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 17: Summer2Winter (S2W), unsupervised image-to-image translation results.



11.8. Photo2Ukiyoe

Results guided by reference images
Figure 18: Photo2Ukiyoe, unsupervised image-to-image translation results.



11.9. AnimalFaces-149, comparing with SEMIT

Figure 19: Qualitative comparison with SEMIT and FUNIT, semi-supervised translation results on AnimalFaces-149 (1% of
labeled samples are used).



12. Difference between equation (2) and equa-
tion (4)

Equation (2) and (4) have similar forms – contrastive
loss, but they are used for different purposes. We use equa-
tion (2) to improve the representation power of the guiding
network, which affects the performance of the generator and
the discriminator. On the other hand, equation (4) is used to
enforce the generator to reflect the style of a reference im-
age when translating a source image. To examine the effect
of each loss, we train models without either equation (2)
or (4) on AnimalFaces-10. The mFID score without equa-
tion (2) or (4) is 86.8 and 93.3, respectively. Both models
are significantly worse than the original setting (47.7). It
means that both equation (2) and (4) should be considered
during training. In addition to the purpose, they are differ-
ent in terms of the way to choose positive pairs. We use a
real image and its randomly augmented version as a positive
pair in equation (2) while we use the translated image and
reference image as a positive pair. In summary, the role of
equation (2) is to enhance the representation power of the
guiding network and lead the guiding network to learn how
to encode the style vector in terms of a style encoder while
the role of equation (4) is to guide the generator to learn
how to interpret the provided style vector as a form of the
output image.

13. FID and LPIPS on unlabeled dataset
We also utilize LPIPS to evaluate the models in addition

to FID and D&C. However, LPIPS is not proper to evaluate
the loyalty for reflecting the reference image and the fidelity
of images, we use LPIPS with FID. Figure 20 shows the re-
sult. It is clear that a model with high FID and LPIPS gen-
erates a noise-like image. Even if FID is low, a model with
high LPIPS also fails to conduct the reference-guided im-
age translation, because it does not preserve the structure of
the source image. The model with low LPIPS and high FID
might be an adversarial example of LPIPS. We generate the
image via optimization on LPIPS. If a model exhibits low
FID and LPIPS, it might not reflect the visual feature of the
reference image enough. The simple combination of LPIPS
and FID can detect several failed models but can not evalu-
ate the loyalty for the reference image. We suggest that the
rigorous way to combine several metrics for the quantita-
tive evaluation of the reference-guided translation might be
a interesting future work.
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