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1. Network Architecture
For a given input image either generated by our wave-

optics simulator or captured by our camera prototype, we
reconstruct a hyperspectral image and a depth map using
a convolutional neural network (CNN). Figure 2 shows our
network architecture. Our CNN architecture is inspired by a
U-net [10] with the difference of using two decoders instead
one. The network takes a RGB sensor image as inputs. Dur-
ing training, 256×256 patches are fed through a basic block
layer that consists of two pairs of a 3×3 convolutional layer
with batch normalization and PReLU. We use max pooling
after each of this basic block to implement the encoder ar-
chitecture. The spatial resolution is reduced by half at each
pooling stage and the number of channels is doubled. We
obtain the feature with 1024 channels after the encoder. A
counterpart decoder has the similar design with the encoder
using a basic block at each spatial resolution and a trans-
posed convolution for upscaling. We have skip connections
from the encoders to the decoders at each resolution. The
final convolutional layers enable us to match the number of
output channels to the hyperspectral image and the depth
map. For the spectral decoder, we added the spectrally up-
sampled image of to the output of the spectral decoder for
residual learning.

2. Hyperspectral-Depth Dataset
Our HS-D dataset has 16 indoor scenes. Each scene has

a triplet of a hyperspectral image, a depth map, and a back-
ground mask with pixel-accurate alignment. The hyper-
spectral image is in reflectance domain, making it effective
for spectral augmentation as shown in the main paper. Spec-
tral range starts from 420 to 680 nm in 10 nm intervals, re-
sulting in 27 spectral channels. The depth map has accurate
values ranging from 0.4 to 2.0m obtained by a structured
light scanning. The background mask for invalid spectral
and depth regions is also provided for selectively choosing
valid patches for training. Every image has the spatial reso-
lution of 2824× 4240.

Data augmentation for HS-D training. We augment
our HS-D dataset for robust learning. First, we spatially
scale the images with the factors of 0.25, 0.50, and 1.00.
We use bilinear interpolation for hyperspectral images and
nearest-neighbor interpolation for depth maps and back-
ground masks. Second, we augment depth maps by glob-
ally translating the depth values along the z-axis by -0.2 m,
0.0 m, and 0.2 m. Third, we spectrally augment the dataset
by multiplying the hyperspectral reflectance images with 29
different CIE standard illuminants, yielding radiance maps
under various illuminations. In total, we have ∼20,000
patches.

Benchtop combinational system for dataset acquisition.
We build a benchtop combinational imaging system to cap-
ture our HS-D dataset. We use a projector (EPSON EB-
X31) and a liquid-crystal-tunable-filter hyperspectral cam-
era which consists of a machine vision camera (Pointgrey
GS3-U3-91S6M-C), a liquid crystal tunable filter (VariSpec
LCTF VIS), a relay lens (Sigma A, f /1.4, 50 mm), a colli-
mating lens (Sigma A, f /1.4, 50 mm), and an imaging lens
(Nikon, f /2.0, 35 mm). To capture each scene, we illu-
minate it with a solid-state plasma light source (Thorlabs
HPLS-30-4) and capture spectral images with the f-number
of 22 from 420 nm to 700 nm by the LCTF modulation. We
capture and average the five spectral images for the low
wavelengths (420 nm to 450 nm) to mitigate noise. We then
turn off the plasma light source and sequentially illuminate
the scene with the gray-code patterns using the projector
and capture the images with the point gray camera. The
LCTF is set to 600 nm for the structured-light capture.

HS-D dataset from raw captures. We obtain dark-level
images of the hyperspectral camera by capturing spectral
images while blocking incident light to the lens. We sub-
tract the dark levels from every raw capture and denoise
it with 3×3 median filtering. In each scene, we have a
standard reflectance tile (Spectralon) that provides the cali-
brated illumination spectrum incident to the scene. We use
this measurement to obtain reflectance images.

We estimate depth maps using triangulation from the
gray-coded inputs [6]. Note that the structured-light scan-



(a) Simulation

(b) Calibration

Figure 1. (a) Our learned PSF shows depth and spectral dependency, allowing us to acquire both data from a single shot. (b) We calibrate
the PSF of the fabricated DOE matched with the simulation counterpart.

ning often provide inaccurate reconstruction for image re-
gions with low albedo. Therefore, we manually mask the
black background out and apply depth refinement for the
foreground objects [5], resulting in a dense depth map for
each scene. The spatial resolution of each hyperspectral-
depth image is 2824×4240.

Preprocessing for training and testing. We divide 18
scenes into 13 scenes for training and 5 for testing. We then
collect 256×256-sized HS-D patches. Background domi-
nant patches having invalid depth values or too low inten-
sity are excluded for both training and testing. We also en-
sured that only one of the 13 training scenes includes a Col-
orChecker in a set of training minibatches in order to avoid
overfitting to this target.

3. HS-D Encoded PSF

Our learned PSF changes its shape for spectrum and
depth. Figure 1 shows the spectral-depth dependency of the
simulated PSF as well as the calibrated PSF obtained from
our prototype DOE.

Calibration. We calibrate the PSF for a combination of

depth values and spectrum. To this end, we use a solid-
state plasma light source (Thorlabs HPLS-30-04) covered
with a high-power precision pinhole (Thorlabs P23C) with
a 25µm aperture. In a dark room, we place the illumina-
tion module at target distances from ∼0.4 to 2.0 m. We ap-
ply spectral filtering in front of the camera using a Varispec
LCTF filter in 10 nm intervals and captured HDR hyper-
spectral images at each depth. We also calibrate the spectral
response function of the Canon Mark III camera by measur-
ing its response to the calibrated light source [1].

Diffraction efficiency. Prototype DOEs typically present
a low-frequency component in its PSF as zeroth-order
diffraction, due to the low diffraction efficiency [8, 4]. We
examine the frequency response of our DOE prototype by
capturing a black-white scene (Figure 3). As expected, our
PSF consists of two-frequency components: one with high
frequency and the other with low frequency, where each can
be modeled as a Gaussian function of mean (1445/10.74)
and standard deviation (1458/312.27) in pixels. We attempt
to mitigate such low-frequency degradation of the captured
images as detailed in Section 7.
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Figure 2. Reconstruction Network. The input to the network is a sensor image with three channels (RGB). The single-encoder-dual-decoder
architecture with skip connections enable us to reconstruct a depth map and a hyperspectral image of 25 channels from 420 to 660 nm in
10 nm intervals. For details of the spectral upsampling, we refer to the main paper. The top row shows the width and height of the patch
sizes during training. We denote the number of channels in each layer, where the input and output channels are shown in the top and the
bottom of each block.
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Figure 3. Analyzing the PSF of the prototype DOE. (a-b) Due to
the low diffraction efficiency of the DOE prototype, we have a
low-frequency component in the PSF in addition to the intended
high-frequency component. (c) For a row on the image, we plot
the gradient values, revealing the high-frequency and the low-
frequency components.

4. Details on Hyperspectral Comparison

With consideration of computational resource and algo-
rithms performance, we adjusted the spatial resolution of

experiments. For Jeon et al. [4] and ours, we use the half
resolution of the test images in 1412-by-2120. For Baek et
al. [1], we reduce the resolution of the input image by one-
eighth as their method takes about 45 minutes to process a
353-by-530 hyperspectral image.

5. Details on Depth Comparison

We compared our approach to two other DOE-based
depth imaging methods: Wu et al. [13] and (c) Chang et
al. [3]. The experimental configurations of these three meth-
ods are different including the effective pixel pitch, aperture
diameter, the network design, the training dataset, and the
camera response function. We implemented a PSF simula-
tor for Chang et al. [3] and simulated PSFs with the same
configuration of our prototype. For Wu et al. [13], we ob-
tained the PSFs using the author-provided DOE height map
that assumes the pixel pitch of 4.29 um and the aperture size
of 0.8 mm. The simulated PSFs are shown in the main paper
demonstrating that the simulated PSF shapes match those
reported in the original works. Our U-net-based reconstruc-
tion network was used to train all DOE designs on our HS-
D dataset. Note that the spectral decoder was deactivated in
this experiment.



6. DOE initialization
Jointly optimizing a DOE and a CNN for hyperspectral-

depth imaging is a challenging, non-convex inverse prob-
lem that aims at simultaneously solving multiple tradi-
tional problems, including phase retrieval, spectral super-
resolution, monocular depth estimation, and deconvolu-
tion. This non-convex nature makes it crucial to find a
good initialization of the optimization parameters. In par-
ticular, the initialization of the DOE has been shown to
be important and is specific to a target application [13].
For hyperspectral-depth imaging, we therefore seek to
find a proper initialization of the DOE through a Fisher-
information-based optimization to obtain the initial DOE
height field [11]. Since the Fisher information matrix for the
general hyperspectral depth imaging problem is too large
to evaluate, we consider a simpler subproblem where we
estimate the location and wavelength of a monochromatic
point-source emitter from its single RGB image (Jc). Its
Fisher information matrix I then describes the sensitivity
of the observed PSF to the spatial emitter positions (px, py ,
pz) and wavelengths (pλ). When the brightness of the point
source is known, the Fisher information matrix under the
Gaussian noise model is given as:

Iij (δ) =
∑
c,k

1

σ2

∂Jc (k; δ, h)

∂δi

∂Jc (k; δ, h)

∂δj
, (1)

where δ = {px, py, pz, pλ}, σ is the standard deviation of
the Gaussian noise, k is the pixel index, and h is the DOE
height field. While the Fisher information depends on the
position and wavelength of the point-source emitter, we aim
to find a DOE height field that provides high Fisher infor-
mation for all sources in our design space. To achieve this,
we optimize the height of the DOE by minimizing the mean
of the A-optimality of the Fisher information matrix over a
set of monochromatic point sources located on the optical
axis:

minimize
h

1

N

∑
pλ∈Λ

∑
pz∈z

A (pz, pλ;h), (2)

where A is the A-optimality, which is the trace of the in-
verse of the Fisher information matrix I. The design space
of the imaging system is characterized by the set of wave-
lengths Λ and the set of the depth layers z where the point
sources are placed. Since Equation (2) is not a convex prob-
lem, we solve it based on stochastic gradient descent op-
timization, using the Adam optimizer. This optimization
itself requires an initialization, for which we choose a con-
ventional Fresnel DOE lens pattern. We set the brightness
of the point source so as to ensure the maximum intensity of
the captured PSFs of a Fresnel lens is 0.8 of the maximum
intensity of the image.

Evaluation. We tested three different initial DOE designs
for end-to-end HS-D imaging: the Fresnel lens, the spiral

DOE [4], and the Fisher-information-based DOE. Table 1
compares how much the end-to-end optimization process of
optics improves the accuracy of reconstructed spectral and
depth information for different initializations. Among the
three candidates, we chose the Fisher-based initialization as
it is superior to other initializations in terms of spectral and
depth accuracy.

Initialization Fresnel Spiral [4] Fisher [11]

Sp
ec

. PSNR [dB] 27.96→28.68 26.90→27.67 28.51→29.31
SSIM 0.74→0.78 0.64→0.75 0.79→0.81

D
ep

th RMSE [m] 0.21→0.19 0.32 → 0.26 0.23 → 0.20
MAE [m] 0.15 → 0.12 0.20 → 0.18 0.15 → 0.12

Table 1. DOE initialization for end-to-end learning. We used three
different DOE initializations for our end-to-end optimization. The
Fisher-initialized DOE optimization is superior to other initializa-
tions for spectral and depth reconstruction, and the Fresnel-lens-
initialized optimization is the second best option.

7. End-to-end Optimization

Phase vs. height. Instead of optimizing DOE height,
we use its unwrapped phase for the optimization variable.
This avoids additional complexity of employing physical-
fabrication constraints as a loss function. Specifically, we
optimize the unwrapped phase shift φ by the DOE at the
wavelength of 550 nm. Once the phase is optimized, we ap-
ply phase wrapping to φwrap and convert this to a physical
DOE height as h = λ

2π
φwrap

(ηλ−1) .

Training details. We implement end-to-end optimization
in Pytorch and uses the Adam optimizer [7]. The total num-
ber of network parameters is 39,484,378. The learning rates
for the DOE phase and network weights are set as 10−4. We
decay the learning rates differently for the DOE and net-
work by 0.1 per 10 epochs and 0.1 per 20 epochs, respec-
tively, following [13]. Once the DOE shape is converged,
we fix the DOE and keep training the network for training
efficiency. The end-to-end training takes 12 epochs in about
48 hours, after which the reconstruction part was trained for
an additional 30 epochs, also taking 48 hours. We use a
workstation equipped with a 3.40 GHz Intel i7-3770 CPU,
32 GB of main memory, and an NVIDIA Titan Xp GPU
with 12 GB memory. For testing, it takes about 1.45 seconds
to reconstruct a hyperspectral-depth image with the resolu-
tion of 1412×2120.

Finetuning. After we built the prototype with the fab-
ricated DOE and calibrated the PSF of the prototype, we
found that low diffraction efficiency of the real DOE causes
a long tail of PSF with low levels of intensity (similar to
noise), forming a very large convolution kernel. To meet the
requirement of memory footprint in GPU, we excluded the
noisy long tail from our real PSF model. It results in com-
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Figure 4. Reconstruction performance under different illuminants.
(a) We evaluate our method on the HS-D test dataset augmented
with 29 CIE standard illuminants. (b) Reconstruction accuracy of
spectrum and depth is affected by the frequency of the illuminant
as observed by degradation at fluorescent illuminants (F10-F12)
and an LED illuminant (LED-RGB1).

mon hazy artifacts also observed in previous works of DOE
engineering works [4, 12]. We extend a recent approach [9]
that mitigates the hazy artifacts from DOE images at a sin-
gle depth level. Instead, we capture a set of natural spectral
images and the prototype camera input at different distance
levels, yielding the real-DOE training dataset as shown in
Figures 5.

Specifically, once we fabricated the DOE design, we
captured 400 natural images (selected from the MIT-
Adobe FiveK dataset [2]) displayed on a high-luminance
55-inch display (LG signage 55XS2B, peak luminance:
2,500 cd/m2) using the real-DOE camera, at 7 different
depths from 0.4 to 2.0 m, resulting in 2,800 images in to-
tal. See Figures 5(a). At the same time, we captured hy-
perspectral images using a custom-built hyperspectral cam-
era (a machine vision camera equipped with a liquid-crystal
bandpass filter in front of the objective lens.). These hy-
perspectral images are registered to the images taken by the
prototype camera by deriving a set of homography matrices
estimated by the checkerboard-calibration target.

By doing so, we can refine the parameters of our recon-
struction network using the real-DOE training dataset. As
each training patch consists of a constant depth value, we
perform patch-wise reconstruction at test time and recon-
structs the final output via the mean of overlapping patches.
This additional refinement compensates the physical gap

(a) Acquisition setup for refinement

DOE + 
Camera

High-luminance display

(b) thumbnails

Figure 5. We build an acquisition setup to record a pair of HS-D
information of natural images (Adobe FiveK), specifically used to
mitigate the artifacts by diffraction inefficiency in the real-DOE
prototype.

between the synthetically optimized DOE and the fabricated
DOE, which causes low diffraction efficiency. See Figure 7.

8. Analysis

Comparison with depth imaging. The experimental con-
figurations of these three methods (Chang et al. [3]/Wu
et al. [13]/ours) are all different including the effec-
tive pixel pitch (4.29/9.60/6.75 um), aperture diameter
(0.800/2.835/3.000 mm), the network design (three differ-
ent variants of U-net), the training dataset (real RGB-D
dataset/synthetic RGB-D dataset/real HS-D dataset), and
the camera response function. Therefore, we varied the de-
sign parameters of their DOEs only while fixing the other
configuration parameters to be the same as ours. We imple-
mented the phase shift of the thin lens for Chang et al. [3]
and used the DOE design provided by the authors for Wu
et al. [13]. For fair comparison, we use our reconstruction
network for all DOE designs. Note that the spectral decoder
was deactivated in this experiment.

Illumination. We synthetically evaluate our end-to-end
HS-D imaging under 29 different CIE standard illuminants
by averaging the hyperspectral PSNR and the depth RMSE
values of five different test scenes. Figure 4 shows the
results. Our HS-D imaging estimates depth with high
accuracy consistently under various illuminations, except
for one LED illuminant with a sharp peak near the in-
frared wavelength (LED-RGB1). This illuminant is almost
monochromatic (at the spectral resolution of our system),
and hence the images lack the spectral cues needed to in-
fer the depth with high accuracy. We note however, that
the depth estimation works well for more natural types of
illumination. Our method captures the spectral informa-
tion with high accuracy under most illuminants in general.
Under high-frequency illuminants, such as fluorescent F10,
F11, F12, and LED-RGB1, our spectral reconstruction per-
forms suboptimally due to the strong-peak illumination of
fluorescent and LED light. We found that our end-to-end
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Figure 7. Comparison of reconstruction results with/without the
additional refinement process for the real-DOE prototype. The ad-
ditional refinement of the reconstruction network improves depth
accuracy in particular.

HS-D imaging performs robustly under sun, tungsten, gen-
eral fluorescent, and general LED lights.

Spectral resolution. Our method suffers from high-
frequency spectral changes due to the low-frequency nature
of hyperspectral-depth PSF kernels. We evaluate our spec-
tral accuracy with a synthetic colorchecker under two high-
frequency illuminations of LED-BH1 and F7 in Figure 6.
While our method follows the low-frequency trend of spec-
tral signatures, the estimates deviate from the ground truth
in terms of spectral details. We refer to Figure 4 in Supple-
mental Document for quantitative analysis.

Spatial resolution. We evaluate the spatial resolution of
our real-prototype results in terms of modulation transfer
function (MTF) by capturing a spatial-resolution target as
shown in Figure 8. These two input and output images are
converted to luminance to compute MTFs. Qualitative and
quantitative results show that the spatial resolution is im-
proved by our reconstruction process for the real-DOE pro-
totype.

Computational Efficiency. Our end-to-end design pro-
cess of optimizing the optimal DOE profile takes place only
once at the initial system design step. The required run-

Figure 8. Spatial resolution analysis of input and output spectral
images of our real prototype. These two images are converted
to luminance to compute MTFs. The MTF of output is clearly
improved by our reconstruction network.

ning time of our computational optimization is smaller than
most conventional optics design approaches which require
tedious semi-manual optimization.

End-to-end Learning for Distributions. Our method op-
timizes a pattern of DOE for given system parameters, such
as target depth, wavelength samples, and camera parame-
ters. While this may seem like a drawback requiring opti-
mization for a particular system-design sample, our end-to-
end learning method is not fundamentally limited in this re-
spect. Our method can be straightforwardly tweaked based
on the end goal to incorporate target “distributions,” not a
single sample, so that on-average performance can be opti-
mized by randomizing system parameters per each training
iteration of the stochastic gradient descent.

9. DOE Fabrication
The DOE height map is parameterized as a bitmap with

a resolution of 375×375 features and a pixel pitch of 8µm,
resulting in a DOE aperture of 3mm. Note that, for fabri-
cation, we upsample the DOE height field to a resolution of
3000×3000 of 1µm pixel pitch with nearest neighbor inter-
polation to match with the simulation process, and quantize
the height range to 62 levels (21.5 nm/level). Our fabricated
DOE exhibits real PSFs similar to the simulation (Figure 9).

The diffractive optical element is fabricated through soft
lithography [14]. A master mold is made with positive pho-
toresist (AZ-1512, MicroChemicals) spun on a titanium-
coated glass substrate. The pattern is written by a direct-
write gray-scale photolithography machine (MicroWriter
ML3, Durham Magneto Optics Ltd) and developed with a
MF-319 developer (Microposit). After the development,
polydimethylsiloxane (PDMS, SYLGARD 184, Dow) is
cast and cured at room temperature with the master mold
to form another mold. This PDMS mold is used to trans-
fer the pattern to a 3 mm-thick float glass substrate (30-773,
Edmund Optics).

The glass substrate is preprocessed to form a circular
aperture with the layers of chromium and gold through a
lift-off process. A drop of UV-curable resin (NOA61, Nor-
land Products, its refractive index at 546.1 nm is 1.5634) is
then sandwiched between the glass substrate and the PDMS
mold, and is exposed to a mercury-vapor lamp to cure the
resin. After the PDMS mold is peeled off, the pattern is



Figure 9. (a) We fabricate the learned DOE with the soft lithogra-
phy. (b) To calibrate the PSFs of the prototype, we place a LCTF
filter in front of the DOE and capture the hyperspectral images of
a point light source at different depths. (c) Calibrated PSFs of the
prototype show similar trend with the simulated PSFs.

replicated on the NOA61-resin layer which acts as a DOE.
As the fabrication accuracy of the DOEs cannot be directly
measured due to their microscale patterns, the accuracy of
the fabrication system was indirectly measured on 15 refer-
ence holes which are designed to have different depths over
2µm. The depths of the fabricated reference holes were
measured with a profilometer (KLA Tencor Alpha Step D-
500). The RMSE of the 15 sample points was 173.2 nm, and
the estimated quantization scale was 20.5 nm/level. The re-
maining area of the glass substrate is covered by a chrome
aperture mask of the same diameter (3 mm) placed on the
same side where the DOE is printed.

10. Discussion

Spectral-depth tradeoff. Since we aim to estimate both
spectrum and depth, the DOE and reconstruction network
could be optimized favorably for one of them. While adjust-
ing the weights of the main loss function of our method can
balance this, it would be interesting to develop a method for
handling this tradeoff in a fairer manner. Also, we observed
that there are similarly shaped PSFs in the spectrum and
depth slices of the optimized PSF. Even though we allevi-
ate this with the reconstruction network by learning spatio-
spectral priors, the ambiguity in the PSF is still challenging
to resolve perfectly. To improve the reconstruction quality
for spectrum and depth information, it would be worthwhile
to optically resolve this ambiguity using multiple DOEs or
other optical elements in future work.

Training strategy. The optimization problem for end-to-
end optics includes many non-convex optimization prob-
lems and thus the initialization is critical and the training

Input Estimated spectrum Estimated  depth

2.0

[m]

0.8

2.0

[m]

0.8

Figure 10. On regions where pixels are saturated by specular high-
lights, our method results in reconstruction artifacts in both the
spectrum and depth map.

strategy of both optics and neural network is also impor-
tant. In this work, we followed the existing conventions
for the DOE initialization and network training in recent
studies [3, 13]. Developing better training strategies for
end-to-end optimization would be an interesting avenue of
future work. Also, employing more advanced reconstruc-
tion schemes inspired by traditional optimization methods
would be helpful to make the reconstruction interpretable
in terms of end-to-end optics, even though it was not fea-
sible in this work because of the demanding GPU memory
for the problem of HS-D simulation and reconstruction.

Textureless and saturated regions. Our method falls in
the regime of PSF engineering approaches, which funda-
mentally depend on texture information, similar to stereo
imaging or depth-from-defocus imaging. This limits the ac-
curacy of the reconstruction quality on texture-less or sat-
urated surfaces as shown in the various results. In future
work, it would be interesting to simultaneously estimate re-
construction confidence maps in addition to spectrum and
depth, and then propagate the highly confident reconstruc-
tion to the regions with low confidence. Figure 10 shows a
failure case of reconstruction on the saturated pixel regions.

Signal-dependent Poisson Noise. We use signal indepen-
dent Gaussian noise for hyperspectral-depth image simula-
tion. Employing a signal-dependent Poisson noise is chal-
lenging because of the discrete nature of the sampling pro-
cedure, making it non-differentiable. Reparameterization
trick exists for the differentiable Poisson noise, however this
induces instability of training. Therefore, following previ-
ous works on end-to-end optimization of optics and recon-
struction, we use only the Gaussian noise.

Spectral range. In principle, our proposed method can
be extended to a wider spectral range (e.g., infrared wave-
lengths). However, our target spectral range is limited to
visible spectrum (420 to 660 nm) by the camera response
function of a DSLR camera. It would be an interesting
future work of extending our method to different spectral
ranges.

Decoupled DOEs. Mechanically changeable DOEs spe-



cialized for depth and spectrum respectively is an interest-
ing future work that could provide higher accuracy with the
analogy to conventional multi-mode microscopes with ro-
tating reconfigurable optics.
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