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1. Generating label noise

The label noise is generated according to symmetric
class-dependent and instance-dependent noise transition
matrices.

Noise transition matrix The noise transition matrix
T (x) was proposed to explicitly model the generation pro-
cess of label noise, where Tij(x) = Pr(Ȳ = j|Y = i,X =
x), Pr(A) denotes as the probability of the event A, X as
the random variable for the instance, Ȳ as the noisy label,
and Y as the latent clean label. At a high level, the ij-th en-
try of the transition matrix denotes the probability that the
instance will flip from the clean class j to the noisy class i.

Symmetric class-dependent label noise If the flip rate
is α, the diagonal entries of a symmetric transition matrix
are 1− α and the off-diagonal entries are α/(c− 1) [2].

Instance-dependent label noise We generate the
instance-dependent label noise according to the following
Algorithm 1 [8].

Algorithm 1 Instance-dependent Label Noise Generation
Input: Clean samples {(xi, yi)}ni=1; Noise rate τ .
1: Sample instance flip rates q ∈ Rn from the truncated
normal distribution τN (τ, 0.12, [0, 1]);
2: Independently sample w1, w2, . . . , wc from the standard
normal distribution N (0, 12);
3: For i = 1, 2, . . . , n do
4: p = xi × wyi

; // generate instance-dependent flip rates
5: pyi = −∞; // control the diagonal entry of the
instance-dependent transition matrix
6: p = qi × softmax(p); // make the sum of the
off-diagonal entries of the yi-th row to be qi
7: pyi

= 1− qi; // set the diagonal entry to be 1− qi
8: Randomly choose a label from the label space accord-
ing to possibilities p as noisy label ȳi;
9: End for.
Output: Noisy samples {(xi, ȳi)}ni=1

*Correspondence to Tongliang Liu (tongliang.liu@sydney.edu.au).

2. Compare results with SELF
The performance of our re-implemented SELF [6] is not

as good as that in the original paper. For a fair compari-
son, we change our backbone consistently with SELF and
compare with the results from the original paper directly
(without Mean Teachers [7]). Specifically, the network is
changed to ResNet26 with Shake-shake regularization [1].
The learning rate is set to 0.05 with weight decay of 2e-4.

Table 1 and Table 2 show that Me-Momentum outper-
forms SELF by a large margin in CIFAR10 and CIFAR100
with Symmetric 40% and Symmetric 60% noise. The gap
between the performance of Me-Momentum and SELF be-
comes larger in Symmetric 60% in both datasets compared
with Symmetric 40% because hard confident examples play
a more important role in more noisy examples. Specifically,
both of the methods are based on the same backbone with
Cross-Entropy loss, so the improvement of Me-Momentum
can only be as a result of the quality of extracted confident
examples. Therefore, Me-Momentum is able to extract bet-
ter hard confident examples than SELF.

Table 1. Means and standard deviations of classification accuracy
compared with SELF on CIFAR10

Sym-40 Sym-60
SELF 87.35% 75.47%
Ours 92.31% 87.88%

Table 2. Means and standard deviations of classification accuracy
compared with SELF on CIFAR100

Sym-40 Sym-60
SELF 61.40% 50.60%
Ours 68.25% 59.51%

Furthermore, the performance of Me-Momentum can be
improved by changing a better backbone. However, to show
the effectiveness of the proposed method and avoid com-
plexity, we choose the standard CNN network in the paper.

3. Experiments on high noise rates
In Table 3, we evaluate our method on Symmetric 50%.

Note that we only make use of confident examples and dis-
card the non-confident examples. If the noise rate is too



Table 3. Means and standard deviations of classification accuracy on symmetric 50% label noise with different datasets
Flipping-Rate Cross-Entropy MentorNet Co-teaching Forward Joint Optim DMI T-revision CDR Ours

MNIST Sym-50% 97.51% 90.13% 91.68% 97.86% 97.79% 97.04% 98.38% 98.13% 98.52%
±0.28% ±0.09% ±0.21% ±0.22% ±0.13% ±1.15% ±0.21% ±0.17% ±0.09%

CIFAR10 Sym-50% 77.11% 70.71% 72.80% 77.92% 85.00% 78.28% 83.40% 82.64% 86.40%
±0.43% ±0.24% ±0.45% ±0.66% ±0.17% ±0.48% ±0.65% ±0.89% ±0.34%

CIFAR100 Sym-50% 39.73% 38.45% 51.60% 38.59% 57.97% 49.81% 57.71% 55.30% 58.06%
±2.74% ±0.25% ±0.49% ±1.62% ±0.67% ±1.22% ±0.84% ±0.96% ±0.59%

high, e.g., noise rate 80%, the number of extracted examples
may become too small, which means there are not enough
examples to sufficiently train the model. This could be ad-
dressed by making use of the non-confident examples by
using the semi-supervised learning method, e.g., SELF [6],
DivideMix [4]. However, our aim is to verify the effective-
ness of the method to extract high-quality confident exam-
ples, not to boost the classification performance.

4. Me-Momentum with clean validation sets
We conduct experiments with clean validation sets. In

Table 4, we can observe that a clean validation set will help
to select a better model compared with the noisy validation
set. The final performance will become better.

Table 4. Means and standard deviations of classification accuracy
with clean validation set on CIFAR10

with noisy validation set with clean validation set
Sym-20 91.44 ± 0.33% 91.60 ± 0.31%
Sym-40 88.39 ± 0.34% 89.14 ± 0.51%
Sym-50 86.40 ± 0.34% 86.88 ± 0.70%
Inst-20 90.86 ± 0.21% 91.34 ± 0.24%
Inst-40 86.66 ± 0.91% 87.80 ± 0.84%

5. Comparison of training time
We compare the training time with representative base-

lines on CIFAR10 with ResNet18 in Table 5. The number
of the inner loop varies because the inner loop stops by ex-
ploiting a noisy validation set. Note that we discard non-
confident examples and only use confident examples to train
the model. The training time in each round would be much
less than the normal training.

Table 5. Comparison of training time with different baselines on
CIFAR10

Methods Training time
CE 68 mins

JointOptim 88 mins
Co-teaching 91 mins
T-revision 232 mins

CDR 178 mins
Ours Sym-50 169.4 ± 18.8 mins
Ours Inst-40 160.0 ± 21.0 mins

Note that CE stands for the normal neural network train-
ing by employing the cross-entropy loss function. The total

number of epochs for CE is set to 200. Since the number of
the inner loop varies in the proposed method, we have re-
ported the average training time of five runs and the standard
deviation. Note that Me-momentum has a smaller training
time on the instance-40% noise than that on the symmetric-
50% noise. This may be caused by that the former setting
is more difficult than the latter one and less confident exam-
ples are extracted. The conclusion is that the training time
of the proposed method is shorter than T-revision and CDR
but longer than Co-teaching, and JointOptim.

6. Experiments complementary to Clothing1M
Clothing1M contains 1 million examples with real-world

noisy labels, the number of examples cross classes are sig-
nificantly imbalanced. Moreover, the ratio of examples
cross classes in the training dataset is also dramatically dif-
ferent from that of the validation and test dataset.

A common way to deal with the imbalance is to make the
number of training examples in each class the same. That
is to say, we need to reduce the number of training exam-
ples for different classes to the least number of the classes.
Therefore, the method cannot fully use training examples,
especially on an extremely imbalanced training dataset. We
take two approaches to deal with it. 1) We introduce the im-
portance reweighting technique to different examples [3].
Suppose the number of samples for class j on the training
(validation) dataset is N j

train (resp. N j
val). The weight of

samples in class j is calculated as:

W j =
1
C

∑C
j=1 N

j
train

N j
train

×
N j

val
1
C

∑C
j=1 N

j
val

, (1)

where C is the total number of classes.
2) We extract the confident examples separately accord-

ing to the class. Specifically, we select a classifier based on
the highest score in each class, where the score S for class
j is obtained with:

Sj = β ×Accuracyj + (1− β)× Precisionj . (2)

We set β to 0.45 in experiments. Then, we use the clas-
sifier to extract the confident examples in this class.

7. Experiments complementary to Section 3.1
In Section 3.1, we discuss the statistics of the extracted

confident examples. However, due to the space limit, in the
paper, we only provide parts of the empirical results.
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Figure 1. Statistics of the extracted confident examples on MNIST by Me-Momentum. We call one update of the classifier and the extracted
confident examples as one round. We illustrate how the label precision of the extracted confident examples, the number of the extracted
confident examples, and the classification accuracy of the classifier trained by using the extracted confident examples change during the
training of Me-Momentum. The dash lines in the middle column indicate the number of clean labels in the noisy training data.



0 5 10 15 20
Rounds

84

86

88

90

92

94
T

es
t A

cc
ur

ac
y

(CIFAR10, Symmetric-20%)

0 5 10 15 20
Rounds

32k

33k

34k

35k

36k

37k

C
on

fid
en

t D
at

a 
N

um
be

r

(CIFAR10, Symmetric-20%)

0 5 10 15 20
Rounds

95

96

97

98

99

100

L
ab

el
 P

re
ci

si
on

(CIFAR10, Symmetric-20%)

0 5 10 15 20
Rounds

84

86

88

90

92

94

T
es

t A
cc

ur
ac

y

(CIFAR10, Instance-20%)

0 5 10 15 20
Rounds

32k

33k

34k

35k

36k

37k
C

on
fid

en
t D

at
a 

N
um

be
r

(CIFAR10, Instance-20%)

0 5 10 15 20
Rounds

95

96

97

98

99

100

L
ab

el
 P

re
ci

si
on

(CIFAR10, Instance-20%)

0 2 4 6 8 10 12
Rounds

76

78

80

82

84

86

88

90

T
es

t A
cc

ur
ac

y

(CIFAR10, Symmetric-40%)

0 2 4 6 8 10 12
Rounds

23k

24k

25k

26k

27k

28k

C
on

fid
en

t D
at

a 
N

um
be

r

(CIFAR10, Symmetric-40%)

0 2 4 6 8 10 12
Rounds

94

95

96

97

98

99
L

ab
el

 P
re

ci
si

on

(CIFAR10, Symmetric-40%)

0 5 10 15 20
Rounds

76

78

80

82

84

86

88

90

T
es

t A
cc

ur
ac

y

(CIFAR10, Instance-40%)

0 5 10 15 20
Rounds

24k

25k

26k

27k

28k

29k

30k

C
on

fid
en

t D
at

a 
N

um
be

r

(CIFAR10, Instance-40%)

0 5 10 15 20
Rounds

88

90

92

94

96

98

L
ab

el
 P

re
ci

si
on

(CIFAR10, Instance-40%)

Figure 2. Statistics of the extracted confident examples on CIFAR10 by Me-Momentum. We call one update of the classifier and the
extracted confident examples as one round. We illustrate how the label precision of the extracted confident examples, the number of the
extracted confident examples, and the classification accuracy of the classifier trained by using the extracted confident examples change
during the training of Me-Momentum. We have three distinct peaks in these figures because we have set Nouter = 3 and the classifiers are
re-initialized in the outer loop. The dash lines in the middle column indicate the number of clean labels in the noisy training data.
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Figure 3. Statistics of the extracted confident examples on CIFAR100 by Me-Momentum. We call one update of the classifier and the
extracted confident examples as one round. We illustrate how the label precision of the extracted confident examples, the number of the
extracted confident examples, and the classification accuracy of the classifier trained by using the extracted confident examples change
during the training of Me-Momentum. We have three distinct peaks in these figures because we have set Nouter = 3 and the classifiers are
re-initialized in the outer loop. The dash lines in the middle column indicate the number of clean labels in the noisy training data.

8. Experiments complementary to Section 3.2

In Section 3.2, we have visualized the extracted confi-
dent examples by using t-SNE [5]. It verifies that the pro-
posed Me-Momentum is effective to extract hard confident
examples. However, due to the space limit, in the paper,
we only provide parts of the empirical results. In this sup-
plementary material, we provide the visualization of all the
employed datasets and settings.

Specifically, we show how the confident examples are
progressively extracted in the inner and outer loops. In the
figures, green, blue, and red dots represent confident exam-

ples extracted at the beginning, middle, and end rounds of
the loops, respectively.

On the datasets of MNIST and CIFAR10, we can clearly
see that the blue and red dots are mostly located at the
boundaries of the clusters of green dots. On CIFAR100,
we can also clearly see that there are lots of blue and red
dots which are outside of the green clusters in the second
and fourth figures. This supports and justifies our claim that
Me-Momentum is able to extract hard confident examples
(those are close to the decision boundary).

The figures are presented on the following pages.



Figure 4. Visualization of the extracted confident examples on MNIST. The first column is about the confident data extracted in the first run
of the inner loop; while the second column is about the confident data extracted in the outer loop.



Figure 5. Visualization of the extracted confident examples on CIFAR10. The first column is about the confident data extracted in the first
run of the inner loop; while the second column is about the confident data extracted in the outer loop.



Figure 6. Visualization of the extracted confident examples on CIFAR100. The first column is about the confident data extracted in the first
run of the inner loop; while the second column is about the confident data extracted in the outer loop.



Figure 7. Visualization of the extracted confident examples on CIFAR100. The first column is about the confident data extracted in the first
run of the inner loop; while the second column is about the confident data extracted in the outer loop.
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