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A. Loss Landscape Visualization

To further stress the effectiveness of MeTAL, we analyze and compare the loss landscapes from MAML [6] and MeTAL.
To this end, we employ a loss landscape visualization scheme [24] used for MAML analysis in [4]. Santurkaret al. [24]
analyze the stability and smoothness of optimization landscape by measuring loss variations (i.e. loss landscape), changes in
gradients (i.e. gradient predictiveness), and the maximum difference in gradients (i.e. “effective” β-smoothness). Figure A
demonstrates loss variations (a), changes in gradients (b), and the maximum difference in gradients (c) are measured for
meta-validation set at the first inner-loop step and averaged for each meta-training epoch on 5-way 5-shot miniImageNet
classification. The thinner shades in (a), (b), and the lower value in (c) indicate the smoother loss landscape. MeTAL
(orange) shows a relatively smoother loss landscape (i.e. the learned loss function is relatively well-behaved), compared to
MAML (blue).
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Figure A: Inner-loop loss landscape visualization

B. Few-Shot Classification

In this section, we provide more few-shot classification results on CIFAR100-derived [11] benchmarks and more thorough
comparisons with the recent optimization-based meta-learning algorithms.

B.1. CIFAR100-based Datasets

In addition to Table 1 in the main text, we further validate the effectiveness of MeTAL on other few-shot classification
benchmarks: namely, CIFAR-FS [5] and FC100 [18]. Both CIFAR-FS and FC100 are derived from CIFAR100 [11] and
composed of images with low-resolution of 32 × 32. Bertinetto et al. [5] uses a procedure similar to miniImageNet [21]
and randomly samples and splits the original CIFAR100 dataset to obtain CIFAR-FS. On the other hand, FC100 [18] is
obtained by using a dataset construction process similar to tieredImageNet [22], in which class hierarchies are used to split



# query # non-query # distractor MeTAL ALFA+MeTAL

15 0 0 70.52± 0.29% 74.10± 0.43%

0 5 0 68.90± 0.39% 71.62± 0.34%
0 10 0 69.76± 0.48% 72.33± 0.27%
0 15 0 70.40± 0.34% 73.48± 0.20%
5 10 0 70.02± 0.45% 72.98± 0.32%

10 5 0 70.06± 0.41% 73.21± 0.36%

0 0 5 67.69± 0.39% 69.72± 0.45%
0 0 10 67.02± 0.48% 70.02± 0.49%
0 0 15 66.97± 0.34% 70.63± 0.46%
5 5 5 67.58± 0.47% 71.50± 0.45%

Table A: Investigation on the effectiveness of MeTAL under various semi-supervised few-shot classification scenarios. In ad-
dition to support examples, different combination of unlabeled examples are used in inner-loop optimization. miniImageNet
5-way 5-shot classification accuracy is reported with a 4-CONV backbone. # implies the number of unlabeled examples per
each way. Each distractor image is sampled from a different class.

the original dataset to simulate more challenging few-shot learning scenarios. The overall results and comparisons with
recent optimization-based meta-learning algorithms on the two datasets are presented in Table B.

The table illustrates that, for the same base learner backbone (4-CONV or ResNet12), MeTAL proves a state-of-the-art
performance when used together with ALFA [3], which is a recently introduced inner-loop optimizer for optimization-based
meta-learning algorithms. Specifically, MeTAL is shown to outperform even recent methods that use pretrained networks
or larger networks (WRN-28-10), especially on 5-shot classification. Note that SIB [9] and SIB + E3BM [16] also attempt
to explicitly utilize transductive setting, similar to MeTAL. MeTAL (with the same backbone or sometimes even smaller
backbone) outperforms SIB and its variants, which use pretrained networks, suggesting that the task-adaptive loss function by
MeTAL effectively extracts useful information from the unlabeled examples. Furthermore, MeTAL exhibits similar tendency
that can be observed in Table1 in the main text: MeTAL provides consistent performance improvement across different
baselines, base learner backbone, and datasets. These experimental results reinforce our claim that learning a good loss
function, which has been significantly less explored, is just as beneficial for generalization as learning a good initialization
or a good optimizer.

B.2. Detailed comparisons on ImageNet-based Datasets

We augment Table 1 in the main text with more comparisons with other recent optimization-based meta-learners, as
presented in Table C. Similar to results on CIFAR-based benchmarks, MeTAL is shown to outperform most recent methods
with the similar base learner backbone (4-CONV or ResNet12), including methods that utilize pretrained feature extractor,
which may limit their application or effectiveness to classification problems only. Providing the competitive performance
without relying on pretraining or data augmentation, our proposed method MeTAL demonstrates its effectiveness in achieving
generalization.

C. Semi-Supervised Inner-Loop Optimization
Recently, metric-based meta-learning algorithms, such as the method from [15], have attempted to make full use of the

unlabeled query set by exploiting its feature similarity with the labeled support set. Under such scenario (a.k.a. transductive
setting), many recent metric-based meta-learning algorithms have achieved outstanding performance. On the other hand, the
transductive setting or transductive inference is rarely explored among optimization-based learners. Recent few works [2, 9]
have applied transductive inference to optimization-based methods to utilize the information available from the unlabeled
query set. However, these works only explore finetuning to the given query set, without considering a scenario, where they
may exist a batch of unlabeled data prior to the inference or meta-test time [22]. We perform a small ablation study that
shows MeTAL does not learn to finetune to the given query set but rather learns to extract information from the unlabeled
images.

To this end, we introduce a semi-supervised few-shot classification setting, similar to [22]. Similar to how Ren et al. [22]
has set up semi-supervised few-shot classification, we divide unlabeled data into query set, non-query set, and distractor set.



Model Base learner CIFAR-FS FC100

Backbone 1-shot 5-shot 1-shot 5-shot

BOIL [17] 4-CONV 58.03± 0.43% 73.61± 0.32% 38.93± 0.45% 51.66± 0.32%
MAML + gcp-sampling [14] 4-CONV 57.62± 0.97% 72.51± 0.72% - -
MAML++ + gcp-sampling [14] 4-CONV 60.14± 0.97% 73.98± 0.74% - -
SIB * [9] 4-CONV 68.7± 0.6% 77.1± 0.4% - -
META-RHKS-I [28] 4-CONV - - 38.90± 1.90% 51.47± 0.86%
META-RHKS-II [28] 4-CONV - - 41.20 ± 2.17% 51.36± 0.96%
MAML + E3BM [16] 4-CONV - - 39.9± 1.8% 52.6± 0.9%

MAML‡ 4-CONV 57.63± 0.73% 73.95± 0.84% 35.89± 0.72% 49.31± 0.47%
MeTAL (Ours) 4-CONV 59.16± 0.56% 74.62± 0.42% 37.46± 0.39% 51.34± 0.25%

ALFA + MAML [3] 4-CONV 59.96± 0.49% 76.79± 0.42% 37.99± 0.48% 53.01± 0.49%
ALFA + MeTAL (Ours) 4-CONV 69.19 ± 0.27% 79.33 ± 0.28% 42.24 ± 0.47% 55.36 ± 0.16%

MetaOpt † [13] ResNet12 72.0± 0.7% 84.2± 0.5% 41.1± 0.6% 55.5± 0.6%

MAML‡ ResNet12 63.81± 0.54% 77.07± 0.42% 37.29± 0.40% 50.70± 0.35%
MeTAL (Ours) ResNet12 67.97± 0.47% 82.17± 0.38% 39.98± 0.39% 53.85± 0.36%

ALFA + MAML [3] ResNet12 66.79± 0.47% 83.62± 0.37% 41.46± 0.49% 55.82± 0.50%
ALFA + MeTAL (Ours) ResNet12 76.32 ± 0.43% 86.73 ± 0.31% 44.54 ± 0.50% 58.44 ± 0.42%

SIB * [9] WRN-28-10 80.0± 0.6% 85.3± 0.4% - -
SIB + E3BM∗ [16] WRN-28-10 - - 46.0± 0.6% 57.1± 0.4%

* Pretrained
† Trained with data augmentation.
‡ Reproduced.

Table B: 5-way 1-shot and 5-way 5-shot classification test accuracy on CIFAR-based datasets: CIFAR-FS and FC100.

Query set is a set of examples whose classes are to be estimated. Non-query set is a set of examples that belong to the same
task (same set of classes) as the query set. The difference from the query set is that the non-query set is available before the
inference time or query set is given Distractor set is a set of examples that belong to different tasks (different classes).

Table A reports the 5-way 5-shot classification test accuracy with a 4-CONV base learner backbone on miniImageNet
when various combinations of three types of unlabeled examples are used, instead of original 15 query examples per class
(first row in the table), during the inner-loop optimization. The table shows that the classification accuracy increases with
the number of non-query unlabeled examples, implying that MeTAL learns to generalize better by extracting relevant infor-
mation from the unlabeled examples, instead of finetuning/overfitting to the given set of unlabeled examples. Surprisingly,
MeTAL manages, to some extent, the performance under the presence of irrelevant or maybe even destructive distractor sets.
In particular, the accuracy of MeTAL does not drop significantly with increasing number of distractor sets. This further cor-
roborates that MeTAL, unlike other methods, does not finetune or overfit to the given unlabeled examples but rather attempts
to obtain better generalization.

D. Visual Tracking

To further demonstrate the applicability and flexibility of MeTAL, we apply our proposed method in visual tracking.
Visual tracking is a challenging problem, in which the goal is to track the target whose bounding box is given only in the
first frame of the video. As such problem setting is inherently a few-shot learning problem, one of the most flexible few-
shot learning methodologies MAML [6] has gained attention from visual tracking community. In particular, Park et al. [19]
has employed MAML to one of the existing tracking algorithms, such as CREST [25] to better adapt to object appearance
changes throughout video frames, naming the newly obtained tracker MetaCREST. We use their publicly released code and
apply MeTAL to MetaCREST to evaluate the capability and flexibility of the proposed task-adaptive loss function under
more realistic and challenging scenarios, as shown in Table D and Figure B. Both quantitatively and qualitatively, MeTAL
demonstrates performance improvement over MetaCREST, validating the effectiveness and flexibility of MeTAL in learning



Model Base learner miniImageNet tiredImageNet

Backbone 1-shot 5-shot 1-shot 5-shot

MAML + E3BM [16] 4-CONV 53.2± 1.8% 65.1± 0.9% 52.1± 1.8% 70.2± 0.9%
Meta-RHKS-I [28] 4-CONV 51.10± 1.82% 66.19± 0.80% - -
Meta-RHKS-II [28] 4-CONV 50.03± 2.09% 65.40± 0.91% - -
BOIL [17] 4-CONV 49.61± 0.16% 66.45± 0.37% 48.58± 0.27% 69.37± 0.12%
MAML + Meta-Dropout [12] 4-CONV 51.93± 0.67% 67.42± 0.52% - -
Meta-SGD + Meta-Dropout [12] 4-CONV 50.87± 0.63% 65.55± 0.57% - -
ModGrad [8] 4-CONV 53.20± 0.86% 69.17± 0.69%
MAML + gcp-sampling [14] 4-CONV 49.65± 0.85% 65.37± 0.70% - -
MAML++ + gcp-sampling [14] 4-CONV 52.34± 0.81% 69.21± 0.68% - -
MAML + L2F [4] 4-CONV 52.10± 0.50% 69.38± 0.46% 54.40± 0.50% 73.34± 0.44%
SIB∗ [9] 4-CONV 58.0 ± 0.6% 70.7± 0.4% - -

MAML‡ 4-CONV 49.64± 0.31% 64.99± 0.27% 50.98± 0.26% 66.25± 0.19%
MeTAL (Ours) 4-CONV 52.63± 0.37% 70.52± 0.29% 54.34± 0.31% 70.40± 0.21%

ALFA + MAML [3] 4-CONV 50.58± 0.51% 69.12± 0.47% 53.16± 0.49% 70.54± 0.46%
ALFA + MeTAL (Ours) 4-CONV 57.75 ± 0.38% 74.10 ± 0.43% 60.29 ± 0.37% 75.88 ± 0.29%

Warp-MAML [7] 4-CONV(128)§ 52.3± 0.8% 68.4± 0.6% 57.2± 0.9% 74.1± 0.7%
SIB∗ [9] 4-CONV(128)§ 63.26± 1.07% 75.73± 0.71% - -

MAML + L2F ResNet12 57.48± 0.49% 74.68± 0.43% 63.94± 0.48% 77.61± 0.41%
MetaOpt † [13] ResNet12 62.64± 0.61% 78.63± 0.46% 65.99± 0.72% 81.56± 0.53%
SIB + IFSL∗ † [27] ResNet10 67.10 ± 0.56% 78.88± 0.35% 77.64 ± 0.58% 85.09± 0.35%

MAML‡ ResNet12 58.60± 0.42% 69.54± 0.38% 59.82± 0.41% 73.17± 0.32%
MeTAL (Ours) ResNet12 59.64± 0.38% 76.20± 0.19% 63.89± 0.43% 80.14± 0.40%

ALFA + MAML [3] ResNet12 59.74± 0.49% 77.96± 0.41% 64.62± 0.49% 82.48± 0.38%
ALFA + MeTAL (Ours) ResNet12 66.61± 0.28% 81.43 ± 0.25% 70.29± 0.40% 86.17 ± 0.35%

LEO-trainval∗ [23] WRN-28-10 61.76± 0.08% 77.59± 0.12% 66.33± 0.05% 81.44± 0.09%
LEO + L2F∗ [4] WRN-28-10 62.12± 0.13% 78.13± 0.15% 68.00± 0.11% 83.02± 0.08%
SIB∗ [9] WRN-28-10 70.0± 0.6% 79.2± 0.4% - -
ModGrad [8] WRN-28-10 65.72± 0.21% 81.17± 0.20% - -
SIB + E3BM∗ [16] WRN-28-10 71.4± 0.5% 81.2± 0.4% 75.6± 0.6% 84.3± 0.4%
SIB + IFSL∗ † [27] WRN-28-10 71.31 ± 0.56% 81.73 ± 0.34% 81.97 ± 0.56% 88.19 ± 0.34%

* Pretrained
† Trained with data augmentation.
‡ Reproduced.
§ Larger 4-CONV architecture with 128 filters.

Table C: 5-way 1-shot and 5-way 5-shot classification test accuracy on ImageNet-based datasets: miniImageNet and tiered-
ImageNet.

a loss function that provides better generalization for each task. Note that in visual tracking, it is difficult to handle query
examples (a new frame) as we could in few-shot classification or simple few-shot regression. As such, we do not employ
semi-supervised inner-loop optimization and thus only evaluate the effectiveness of a task-adaptive loss function.

E. Visualization of Affine Transformation Parameters

In addition to Figure 2 in the main text, we illustrate the affine transformation parameters generated by our proposed
adapter meta-network gψ for other loss learner network parameters in Figure C. Exhibit consistent tendency with Figure
2, MeTAL demonstrates dynamic behaviour across inner-loop steps and tasks. Interestingly, MeTAL learns to dynamically
change the offset (β) of the second layer bias while minimizing the scaling.



Model Precision Success rate

MetaCREST [19] 0.7994 0.6029
MetaCREST + MeTAL 0.8253 0.6143

Table D: Precision and success rate measured over 100 sequences in the OTB2015 dataset [26] by using one-pass evaluation
(OPE) protocol.
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Figure B: Examples of meta-tracking results. Yellow boxYellow box denotes MetaCREST and red boxred box denotes MetaCREST+MeTAL.
Results are shown for sequences in the OTB2015 dataset where each row shows selected frames from bird1, diving, drag-
onBaby, and girl2 sequences.

F. Implementation Details

For experiments on N -way k-shot classification in this work, we follow the typical settings that are similar to [6] when
training and reporting results for our baselines (MAML [6], MAML++ [1], ALFA [3]) and our method MeTAL. During both
meta-training and evaluation, inner-loop optimization (a.k.a. fast adaptation) is performed with a fixed number (5 in this
work) of inner-loop steps with an inner-loop learning rate of α = 0.1. Meta-training for each reproduced baseline and our
method is performed with second-order gradients and a meta-learning rate of η = 0.001 for 100 epochs, each of which has
500 iterations. As with the typical settings [6, 1, 3], each task consists of 15 query examples (15 shots) per class (hence 75
in total for 5-way classification: |DQ

i | = 75) for both meta-training and evaluation. Again, as with previous works, models
are trained with a meta-batch size of 2 for 5-shot and 4 for 1-shot classification. Similar to [1, 3], all results reported in this
work are obtained by an ensemble of 5 top-validation-performance models from the same run, the whole process of which is
repeated 3 times with different random seeds.

For a base learner network f , we adopt an architecture design from [1, 21, 6, 3] for 4-CONV and [18, 4, 3] for ResNet12.
In particular, 4-CONV has 4 convolution layers with a fully-connected layer and softmax at the end for classification. Each
convolution layer is composed of 48 convolution filters of size 3 × 3, a batch normalization [10] unit, a Leaky ReLU non-
linear activation unit, and a max pooling layer of size 2 × 2. ResNet12 has 4 residual blocks with, again, a fully-connected
layer and softmax at the end for classification. Each residual block is composed of three convolution operations, each with a
filter size of 3× 3. In between convolution operations, a batch normalization unit and a ReLU non-linear activation unit are
placed. At the end of each residual block has a sequence of a batch normalization unit, a skip connection, a ReLU non-linear
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Figure C: Visualization of affine transformation parameters generated by the meta-network gψ across different layers of loss
learner network Lϕ, different inner-loop steps, and different validation tasks. Visualization is performed on 5-way 5-shot
miniImageNet validation set.

activation unit, and a max pooling unit of size 2 × 2. A skip connection itself has a batch normalization unit and a ReLU
non-linear activation unit. The first residual block has 64 filters for each convolution operation, with each successive residual
block having double the number of filters from a preceding block. Each experiment with 4-CONV base learner backbone
is performed on a single NVIDIA GeForce GTX 2080Ti GPU while ResNet12 base learner backbone on a single NVIDIA
Quadro RTX 8000 GPU.

For the proposed loss adapter meta-network gψ , we employ a 2-layer MLP with ReLU activation unit between layers, as
described in the main text. The dimensions of input and hidden units are the same (1 + L + N ), where L is the number of
layers of a base learner backbone network f and N is the dimension of the output of a base learner f . The input dimension is
1+L+N as the meta-network takes in a typical classical loss value L (cross entropy for classification), the layer-wise mean
of base learner network weights, and the output of base learner f . For semi-supervised settings, when feeding unlabeled
query information into the meta-network, it should match the input dimension of 1 + L + N . Because unlabeled query
examples lack ground-truth, cross entropy loss cannot be obtained. To replace the cross entropy loss, we calculate entropy
of the output of base learner to replace cross entropy loss in the case of unlabeled examples. The output dimension of gψ is
4Lϕ = 8, generating affine transformation parameters γ, β for weight and bias of each layer of loss leaner meta-network
Lϕ that has 2 layers (Lϕ = 2). As we desire to produce one set of affine transformation parameters for the whole task, not
for each example, we take a batch-wise mean of the input such that the output has a batch dimension of 1 (one set of affine
transformation parameters). A similar architecture design is employed for loss learner meta-network Lϕ: a 2-layer MLP with
ReLU activation unit between layers. The network input and hidden unit dimension is 1+L+N while the output dimension
is 1. As the network needs to produce 1-dimensional scalar value for backpropagation operation (using autograd package in
PyTorch library [20]), we took a batch-wise mean of its output to reduce the dimension to 1 (Note this is in contrast to the loss
adapter meta-network gψψ that takes a batch-wise mean of the input). For the best performance, each pair of meta-networks
gψψ and Lϕ has different meta-parameters for support and query examples and for each inner-loop step. This does not
increase the number of parameters significantly and boosts the performance by 1 ∼ 2%. As for regression, similar network
designs are used for the two meta-networks. For more details, please refer to the released code1.
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