
Supplementary Material:
Bootstrap Your Own Correspondences

A. Implementation Details

RANSAC Baselines. We use the Open3D [5] RANSAC
implementation and use the same parameters for all exper-
iments, including our features. We run RANSAC for 105

iterations with estimates being scored on the number of in-
liers (within a threshold of 3 cm). It is worth emphasizing
that this work is focused on learning better geometric fea-
tures. As a result, our comparison here is against other fea-
tures (e.g., FPFH and FCGF), not against RANSAC. Since
a better tuned RANSAC (e.g., more iterations) would im-
prove the performance of all methods, it does not affect any
of our contributions.

Registration loss. Our registration loss is the weighted
mean-squared error between the aligned correspondences.
As we note in Sec. 3.1, the loss is back-propagated to the
encoder through both the weights w and the transformation
T. Hence, it would be possible to train the models by ap-
plying losses on just the weights or just the transformation.
In our experiments, we found that we got the best results
by training the visual encoder using the weighted errors and
training the geometric encoder without using the weights.
Hence, the geometric registration loss is simply the mean-
squared error between the aligned correspondences, with-
out weighting. This only affects the loss calculation; we
still use the weights when estimating the transformation for
both feature modalities.

B. Qualitative Results

We present additional qualitative results in the supple-
mental material to provide a clearer picture of our model
performance as well as its limitations. We visualize the ex-
tracted features using t-SNE [3], the resulting correspon-
dences, and registration. We emphasize that the RGB im-
ages are only used for visualization; our model operates on
the uncolored point cloud computed from depth images. We
found that using color images to visualize the correspon-
dences and to color the registered point cloud provided a
clearer image of the model’s performance.

t-SNE visualization. We visualize the features extracted
from the point clouds by using t-SNE to map each vector
from a 32-dimensional vector to a single dimension that
is converted to a color using matplotlib’s Spectral color
map [2]. This is inspired by the visualization used by [1].
We use the features from both input pairs when calculating
t-SNE. This allows similar features between both images to
be mapped to similar colors.

Feature Extraction. As shown in Figure B.1, our model
extracts features that appear to consistently map the same
parts of the scene to similar features. This allows the model
to extract correct correspondences and accurately register
the point clouds. We found it interesting that the t-SNE
mapping of the features shows discrete jumps around object
boundaries. It would be interesting to explore the efficacy
of our training pipeline for learning tasks like 3D object de-
tection or semantic segmentation. While PointContrast [4]
has explored the use of correspondence losses as a pretext
task for pretraining networks with 3D segmentation and de-
tection as downstream tasks. It would be interesting to see
if a simple linear probe could allow us to learn accurate
segmentation on top of our pretrained features, as well as
how well this performs compared to a model trained using
ground-truth correspondences.

Correspondence estimation. We also find that our
model is able to extract accurate correspondences for dif-
ferent scenes and different degrees of overlap. As a result,
our model is able to accurately register point clouds under
a variety of setups. Furthermore, the density of extracted
correspondences allows us to accurately register the object
even if some of the correspondences are incorrect.

Failure modes. Finally, we also observe some failure
modes in our model that are shown in the bottom 3 rows.
In the seventh row, the model’s correspondences appear to
be mapping points on the sink’s surface across the images,
resulting in the registration being slightly off. We observe
this pattern for images with large, fairly flat surfaces. This
can be seen to a larger extent in the eighth row where the
model extracts correspondences between random points on

1



the carpet, resulting in very poor registration performance.
Finally, the bottom row shows a case where the incorrect
depth estimation results in erroneous registration. In this
case, the input incorrectly specified the open window as a
flat surface, resulting in a large number of incorrect corre-
spondences.

References
[1] Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully

convolutional geometric features. In ICCV, 2019. 1
[2] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-

puting in Science & Engineering, 9(3):90–95, 2007. 1
[3] Laurens Van der Maaten and Geoffrey Hinton. Visualizing

data using t-SNE. Journal of machine learning research,
9(11), 2008. 1

[4] Saining Xie, Jiatao Gu, Demi Guo, Charles R. Qi, Leonidas
Guibas, and Or Litany. Pointcontrast: Unsupervised pre-
training for 3d point cloud understanding. In ECCV, 2020.
1

[5] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv, 2018. 1



Figure B.1. Our model can accurately estimate correspondences and register point clouds for a variety of indoor scenes and differing
degrees of overlap between point clouds. This is enabled by learning good point-level features as shown by the t-SNE visualization in
the third and fourth columns. The distinctiveness of the learned features enables accurate correspondence estimation and registration. We
observe several failure modes that can be caused by relatively flat geometry (rows 7 and 8) or incorrect depth input (row 9).


