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Abstract

This document provides further details about the training
algorithms of SAC [4], and the implementation details.

1. Training Algorithm
1.1. Soft Actor Critic

As introduced in Section 3.4 in the main paper, to adapt
the soft actor critic (SAC) [4] algorithm to our DRIVE
model training, original SAC algorithm needs to be sub-
stantially adapted. The Algorithm 1 summarizes the train-
ing steps of the improved SAC algorithm.

At first, the transitions including the current state st, ac-
tion at, immediate reward rt, next state st+1, and the hidden
states of LSTM layer ht are gathered into the replay buffer
D. For each gradient step, a mini-batch of transitions are
uniformly sampled from D to update different model com-
ponents, including the policy networks (actor), Q-networks
(critic), and RAE. As the actor update, automatic entropy
tuning, and RAE update are elaborated clearly in the main
paper, here we only present more details about how the
critic networks are learned during SAC training.

To update the critic, in practice, the Clipped Double
Q-learning [2] is used that two identical Q-networks θi
(i ∈ {1, 2}) are maintained. The loss function takes the sum
of the losses from the two outputs, i.e., J(θ) =

∑
i J(θi),

where each of them J(θi) is defined as the expectation of
mean-squared error:

J(θi) = E
[
(Qθi(s,a)− y(r, s′,a))

2
]
, (15)

Here, the optimization target y(r, s′,a) is defined as

y(r, s′,a) = r+γ(1−d)

(
min
j=1,2

Qθ̄j (s′, â′)− α log πθ(â
′|s′)

)
(16)

where r is the reward batch, γ is the discounting factor, and
d labels whether the sampled transitions are at the last step

Algorithm 1 Improved SAC for the DRIVE Model Training
Require: θ1, θ2, φ, β . Initial parameters

1: θ̄1 ← θ1, θ̄2 ← θ2 . Initialize target networks
2: D ← ∅, h0 ← 0 . Replay buffer and hidden states
3: for each iteration do
4: for each environment step do
5: Sample actions (at,ht) ∼ πφ(at|st,ht−1)
6: Compute state st with actions . See Eq. 2
7: Compute reward rt = rtA + rtF . See Eq. 4-6
8: D ← D ∪ {(st,at, rt,ht, st+1)}
9: end for

10: for each gradient step do
11: for each critic update do
12: θ ← θ − λ∇̂θJQ(θ) . Update by Eq. 15
13: end for
14: φ← φ− λ∇̂φJπ(φ) . Update by Eq. 11
15: α← max(α− λα∇̂αJ(α), α0) . See Eq. 12
16: θ̄ ← τθ + (1− τ)θ̄ . Update Q-target
17: β ← β − λ∇̂βJRAE(β) . Update by Eq. 14
18: end for
19: end for
Ensure: θ1, θ2, φ, β

T . Note that the sate s′ is the batch of next state from replay
buffer, while the action â′ is sampled from the output of
pre-updated policy network πθ, i.e., â′ ∼ πθ(·|s′) which
enables SAC to be an off-policy method. The entropy term
log πθ(â

′|s′) is obtained by the Eq. (8) in our main paper.

In this paper, the critic network parameters θ are updated
more frequently than other parameters by the gradients of
J(θ) to achieve more stable training. The Table 1 sum-
marizes the hyperparameter setting in experiments. Note
that the major hyperparameters are following existing liter-
ature [4]. For different datasets, we used the same set of
hyperparameters and do not tune them specifically.



Table 1. SAC Hyperparameter Settings
Parameters values

general learning rate (λ) 3 · 10−4

temperature learning rate (λα) 5 · 10−5

discounting factor (γ) 0.99
replay buffer size (D) 106

target smoothing coefficient (τ ) 0.005
temperature threshold (α0) 10−4

weight decay (w0) 10−5

anticipation loss coefficient (w1) 1
fixation loss coefficient (w2) 10

latent regularizer coefficient (ws) 10−4

sparse fixation reward parameter (η) 0.1
gradient updates per time step 4

actor gradient updates per time step 2
dim. of FC/LSTM layers output 64

dim. of latent embedding (z) 64
dim. of state (s) 128

dim. of action (a) 3
sampling batch size 64

video batch size 5

2. Implementation Details
Network Architecture. As shown in Fig. 2 in the main

paper, the saliency model is implemented with the existing
CNN-based saliency model [1], which takes as input with
the size 480×640×3 and output the feature volume V t with
the size 60× 80× 64 by default. The stochastic multi-task
agent consists of a shared RAE and two policy networks,
i.e., accident prediction and fixation prediction branches. In
our implementation, the encoder of RAE consists of three
fully-connected (FC) layers and the decoder is symmetric to
the encoder. Each policy branch consists of two FC layers
and one LSTM layer, followed by an FC layer for predicting
means and an FC layer for predicting the variance. ReLU
activations are used for all layers except for the last FC out-
put layer. According to the default SAC setting, the output
of policy networks at are activated by tanh functions so that
the values are constrained in (−1, 1). In order to map the
values to accident scores at and fixation coordinates pt, we
linearly scale the values by

at = 0.5(a
(0)
t + 1.0) (17)

pt = ψ(a
(1)
t ,a

(2)
t ) (18)

where the equation of at applied to tanh activation is equiv-
alent to sigmoid activation on FC layer output. The function
ψ maps the scaling factors (within (−1, 1)) defined in im-
age space H ×W to the input space h × w. This scaling
process is illustrated in Fig. 1.
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Figure 1. The scaling process (ψ). The continuous values a
(1)
t

and a
(2)
t which are within (−1, 1) defined in video frame space

H×W are mapped into the discrete input space h×w to represent
the 2-D coordinates of a fixation point.

Implementation. Our training algorithm is imple-
mented based on the SAC source code1. Since the image
foveation method [3] incurs computational cost due to the
Gaussian pyramid filtering, we implement this algorithm as
well as all the DRL environmental components by PyTorch
to support for GPU acceleration. For DADA-2000 videos,
the positive video clips (contains accident) are obtained by
trimming the video into be 5 seconds where the beginning
times are placed in the last one second with random jitter-
ing, while the negative video clips are randomly sampled
without overlap with positive clips. The spatial and tempo-
ral resolutions for DADA-2000 videos are reduced with ra-
tio 0.5 and interval 5, respectively, so that 30 time steps are
utilized and for each step the observation frames are with
the size 330 × 792. For DAD dataset, we only reduce the
temporal resolution with interval 4 so that 25 time steps of
each 5-seconds video clip are used.
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