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In this document, additional materials are provided to
supplement our main paper. In section 1, the preliminary
knowledge about the evidential deep learning and model
calibration are described in detail, which are helpful to un-
derstand the methodology of our main paper. In section 2,
additional implementation details are provided, which are
useful to reproduce our proposed method. Sections 3 and 4
provide additional experimental results to complement the
ones presented in our main paper.

1. Detailed Methodology
1.1. Preliminaries of Evidential Deep Learning

Existing video action recognition models typically use
softmax on top of deep neural networks (DNN) for classifi-
cation. However, the softmax function is heavily limited in
the following aspects. First, the predicted categorical prob-
abilities have been squashed by the denominator of soft-
max. This is known to result in an over-confident predic-
tion for the unknown data, which is even more detrimental
to open set recognition problem than the closed set recog-
nition. Second, the softmax output is essentially a point es-
timate of the multinomial distribution over the categorical
probabilities so that softmax cannot capture the uncertainty
of categorical probabilities, i.e., second-order uncertainty.

To overcome these limitations, recent evidential deep
learning (EDL) [8] is developed from the evidence frame-
work of Dempster-Shafer Theory (DST) [9] and the subjec-
tive logic (SL) [5]. For a K-class classification problem,
the EDL treats the input x as a proposition and regards the
classification task as to give a multinomial subjective opin-
ion in a K-dimensional domain {1, . . . ,K}. The subjec-
tive opinion is expressed as a triplet ω = (b, u,a), where
b = {b1, . . . , bK} is the belief mass, u represents the uncer-
tainty, and a = {a1, . . . , aK} is the base rate distribution.
For any k ∈ [1, 2, . . . ,K], the probability mass of a multi-
nomial opinion is defined as

pk = bk + aku, ∀y ∈ Y (1)

To enable the probability meaning of pk, i.e.,
∑
k pk = 1,

the base rate ak is typically set to 1/K and the subjective
opinion is constrained by

u+
K∑
k=1

bk = 1 (2)

Besides, for a K-class setting, the probability mass p=
[p1, p2, . . . , pK ] is assumed to follow a Dirichlet distribu-
tion parameterised by a K-dimensional Dirichlet strength
vector α = {α1, . . . , αK}:

Dir(p|α) =


1

B(α)

K∏
k=1

pαk−1
k , for p ∈ SK ,

0, otherwise,

(3)

where B(α) is a K-dimensional Beta function, SK is a K-
dimensional unit simplex. The total strength of the Dirichlet
is defined as S =

∑K
k=1 αk. Note that for the special case

when K = 2, the Dirichlet distribution reduces to a Beta
distribution and a binomial subjective opinion will be for-
mulated in this case.

According to the evidence theory, the term evidence is
introduced to describe the amount of supporting observa-
tions for classifying the data x into a class. Let e =
{e1, . . . , eK} be the evidence for K classes. Each entry
ek ≥ 0 and the Dirichlet strength α are linked according to
the evidence theory by the following identity:

α = e+ aW (4)

where W is the weight of uncertain evidence. With the
Dirichlet assumption, the expectation of the multinomial
probability p is given by

E(pk) =
αk∑K
k=1 αk

=
ek + akW

W +
∑K
k=1 ek

(5)

With loss of generality, the weight W is set to K and con-
sidering the assumption of the subjective opinion constraint
in Eq. (2) that ak = 1/K, we have the Dirichlet strength



αk = ek +1 according to Eq. (4). In this way, the Dirichlet
evidence can be mapped to the subjective opinion by setting
the following equality’s:

bk =
ek
S

and u =
K

S
(6)

Therefore, we can see that if the evidence ek for the k-th
class is predicted, the corresponding expected class proba-
bility in Eq. (1) (or Eq. (5)) can be rewritten as pk = αk/S.
From Eq. (6), it is clear that the predictive uncertainty u
can be determined after αk is obtained.

Inspired by this idea, the EDL leverages deep neural net-
works (DNN) to directly predict the evidence e from the
given data x for a K-class classification problem. In partic-
ular, the output of the DNN is activated by a non-negative
evidence function. Considering the Dirichlet prior, the
DNN is trained by minimizing the negative log-likelihood:

L(i)
EDL(y, e; θ) = − log

(∫ K∏
k=1

pyikik
1

B(αi)

K∏
k=1

pαik−1
ik dpi

)

=

K∑
k=1

yik (log(Si)− log(eik + 1))

(7)

where yi = {yi1, . . . , yiK} is an one-hotK-dimensional la-
bel for sample i and ei can be expressed as ei=g (f(xi; θ)).
Here, f is the DNN parameterized by θ and g is the evi-
dence function such as exp, softplus, or ReLU. Note that
in [8], there are two other forms of EDL loss function. In
our main paper, we found the Eq. (7) achieves better train-
ing empirical performance.

1.2. EDL for Open Set Action Recognition

To implement the EDL method on video action recog-
nition tasks, we removed the Kullback–Leibler (KL) diver-
gence regularizer term defined in [8], because the digamma
function involved in the KL divergence is not numerically
stable for large-scale video data. Instead, to compensate for
the over-fitting risk, we propose the Evidential Uncertainty
Calibration (EUC) as a new regularization. Together with
the Contrastive Evidence Debiasing module, the complete
training objective of our DEAR method can be expressed as

L =
∑
i

L(i)
EDL + w1LEUC + w2LCED (8)

where LEUC is defined in Eq. (3) in our main paper, and
LCED is the sum of (or one of for alternative training)
L(θf , φf ) and L(θh, φh) defined in Eq. (4) and Eq. (5) re-
spectively in our main paper. The hyperparameters w1 and
w2 are set to 1.0 and 0.1, respectively.

During the training process, the DEAR model aims to
accurately construct the Dirichlet parameters α by collect-
ing the evidence from human action video training set. In

the inference phase, the probability of each action class is
predicted as p̂k = αk/S while the predictive uncertainty
is simultaneously computed as u = K/S. If an input ac-
tion video is assigned with high uncertainty, which means a
vacuity of evidence to support for closed-set classification,
the action is likely to be unknown from the open testing set.

Compared with existing DNN-based uncertainty estima-
tion method such as Bayesian neural networks (BNN) or
deep Gaussian process (DGP), the advantage of EDL is that
the predictive uncertainty is deterministically learned with-
out inexact posterior approximation and computationally
expensive sampling. These merits enable the EDL method
to be efficient for training recognition models from large-
scale vision data such as the human action videos.

1.3. Hilbert-Schmidt Independence Criterion

Hilbert-Schmidt Independence Criterion (HSIC) is a
commonly-used dependency measurement of two high-
dimensional variables. In practice, we used the unbiased
HSIC estimator in [10] with m samples:

HSICk,l(U, V ) = 1
m(m−3)

[
tr(Ũ Ṽ T ) + 1T Ũ11T Ṽ 1

(m−1)(m−2) −
2

m−21
T Ũ Ṽ T1

]
,

(9)
where Ũ is the kernelized matrix of U with RBF kernel k
by Ũij = (1 − δij)k(ui, uj), {ui} ∼ U and the (1 − δij)
sets the diagonal of Ũ to zeros. Ṽ is defined similarly with
kernel l, and 1 is an all-one vector. The HSIC value is equal
to zero if and only if the two variables are independent.

1.4. Evaluation of Model Calibration

In our main paper, we used the expected calibration er-
ror (ECE) to quantitatively evaluate the model calibration
performance of our proposed EUC method. According
to [7, 4], the basic idea of model calibration is that, if the
confidence estimation p̂ (probability of correctness) is well
calibrated, we hope p̂ represent the true probability of the
case when the predicted label ŷ is correct. Formally, this
can be expressed as

P(ŷ = y|p̂ = p) = p (10)

Since perfect calibration is infeasible due to the finite sam-
ple space, a practical way is to group all predicted confi-
dence p̂ intoM bins in the range of [0,1] such that the width
of each bin is 1/M . Therefore, for the m-th bin, the accu-
racy can be estimated by

acc(Bm) =
1

|Bm|
∑
i∈Bm

I(ŷi = yi) (11)

where Bm is the set of indices of prediction p̂ when it falls
into the m-th bin. ŷi and yi are predicted and ground truth
labels. Besides, the average confidence for them-th bin can



be expressed as

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (12)

To evaluate the mis-calibration error, the ECE is defined as
the expectation of the gap between the accuracy and confi-
dence in M bins for all N samples:

ECE =

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)| (13)

A perfect calibrated model means that ECE=0 and higher
ECE value indicates that the model is less calibrated.

2. Implementation Details
Network Architecture. As presented in our main pa-

per, the proposed DEAR method as well as all other base-
lines are implemented on top of the four recent video action
recognition models, i.e., I3D, TSM, SlowFast, and TPN.
For simplicity, these models use ResNet-50 as the backbone
architecture and the network weights are initialized with the
pre-trained model from the Kinetics-400 benchmark. To
avoid the impact of the validation experiments on the Ki-
netics and Mimetics datasets, the pre-trained model is not
used and we train the model from scratch using the same
hyperparameters.

Specifically, for the I3D model, it is straightforward to
implement our method by replacing the cross-entropy loss
with the proposed EUC regularized EDL loss, and insert-
ing the proposed CED module before the recognition head
(fully-connected layers). For the TSM model, since the ar-
chitecture of TSM is based on 2D convolution where the
output feature embedding is with the size (B,MC,H,W ),
we recover the number of video segments M as the tempo-
ral dimension such that the 5-dimensional tensor with size
(B,C,M,H,W ) could be compatible with our proposed
CED module for contrastive debiasing. For the SlowFast
model, our CED module is inserted after the slow pathway
because the feature embedding of slow pathway is more
likely to be biased since it captures the static cues of video
content. For the TPN model, we used the ResNet-50-like
SlowOnly model as the recognition backbone and the aux-
iliary cross-entropy loss in the TPN head is kept unchanged.

Training and Inference. In the training phase, we
choose the exp function as the evidence function because
we empirically found exp is numerically more stable when
using the proposed EDL loss LEDL. We set the hyperpa-
rameter λ0 to 0.01 in EUC loss LEUC and set λ to 1.0 in
the two CED losses. The weight of LEUC is set to 1.0 and
the weight of the sum of the two CED losses is empirically
set to 0.1. In practice, we found the model performance is
robust to these hyperparameters. We used mini-batch SGD

with nesterov strategy to train all the 3D convolution mod-
els. For all models, weight decay is set to 0.0001 and mo-
mentum factor is set to 0.9 by default. Our experiments are
supported by two GeoForce RTX 3090 and two Tesla A100
GPUs. Since no additional parameters are introduced dur-
ing inference, the inference speed of existing action recog-
nition models is not affected.

Dataset Information. For the UCF-101 and HMDB-51
datasets, we used the split1 for all experiments. For the
MiT-v2 dataset, we only use the testing set for evaluation.
To validate the proposed CED module, we refer to [1] and
select 10 action categories which are included in both Ki-
netics and Mimetics dataset. These categories are canoe-
ing or kayaking, climbing a rope, driving car, golf driving,
opening bottle, playing piano, playing volleyball, shooting
goal (soccer), surfing water, and writing. The recognition
model is trained from scratch on the 10 categories of Ki-
netics training set, and tested on these categories of both
Kinetics and Mimetics testing set.

3. Quantitative Results

Open Set Action Recognition. In addition to the I3D-
based curves of Open maF1 scores against varying open-
ness in our main paper, we also provide the curves for other
action recognition models, including TSM, SlowFast, and
TPN in Fig. 1 and Fig. 2. The figures show that when
HMDB-51 testing set is used as the unknown, the pro-
posed DEAR method significantly outperforms other base-
lines with large margins. When MiT-v2 testing set is used
as the unknown, the DEAR method could achieve the best
performance with relatively low openness.

Out-of-Distribution Detection. From Fig. 3 to Fig. 10,
we provide the out-of-distribution detection results to com-
pare our performance with all baselines listed in the main
paper. Results on both HMDB-51 and MiT-v2 datasets
with I3D, TSM, SlowFast, and TPN are provided. Note
that OpenMax, SoftMax, and RPL are not predicting the
uncertainty score of input sample, we instead use the con-
fidence score (the maximum score of categorical probabil-
ities) to show the OOD detection performance. These fig-
ures show that the uncertainties estimated by the proposed
DEAR method exhibit a more long-tailed and flatten distri-
bution than those estimated by MC Dropout and BNN SVI.

4. Qualitative Results

Open Set Confusion Matrix. In Fig. 11 and Fig. 12, we
provide the confusion matrix results. These figures show
that when HMDB-51 dataset is used as the unknown, the
ratio of mis-classification that classifying the samples from
known classes into unknown (see the bottom-left region in
each sub-figure) is less on TSM and SlowFast models than
that on I3D and TPN models. When MiT-v2 dataset is used
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Figure 1: Open macro-F1 scores against varying Openness. The HMDB-51 testing set is used as the unknown.
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Figure 2: Open macro-F1 scores against varying Openness. The MiT-v2 testing set is used as unknown.

as the unknown, the unknown classes are the dominant test-
ing case and from the bottom-right region, we see that the
proposed method on I3D and SlowFast models shows sig-
nificant advantage (brighter red color) over the method on
TSM and TPN.

Representation Debiasing Examples. In Fig. 13, we
provide examples of three classes, i.e., playing piano, writ-
ing, and golf driving from both the biased dataset Kinet-
ics and the unbiased (out-of-context) dataset Mimetics. We
compare the recognition results of the variants of our pro-
posed DEAR method with and without CED. These ex-
amples show that the CED module could help the DEAR
method to recognize human actions on both the biased and
unbiased datasets. For example, without the CED module,
the model falsely recognizes the golf driving as shooting
soccer goal. The reason could be conjectured that these
video samples of the two classes are similar in the static
background, i.e., large area of green grassland.
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Figure 3: I3D-based Out-of-distribution Detection with HMDB-51 as Unknown. Values are normalized to [0,1] within each distribution.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

D
en

si
ty AUC = 79.94

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(a) SoftMax

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

D
en

si
ty AUC = 77.76

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(b) OpenMax [2]

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

D
en

si
ty AUC = 79.16

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(c) RPL [3]

0.0 0.2 0.4 0.6 0.8 1.0
BALD uncertainty

0

2

4

6

8

10

D
en

si
ty AUC = 79.14

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(d) MC Dropout

0.0 0.2 0.4 0.6 0.8 1.0
BALD uncertainty

0

2

4

6

8

10

D
en

si
ty AUC = 79.50

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(e) BNN SVI [6]

0.0 0.2 0.4 0.6 0.8 1.0
EDL uncertainty

0

2

4

6

8

10

D
en

si
ty AUC = 81.54

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(f) DEAR (full)

Figure 4: I3D-based Out-of-distribution Detection with MiT-v2 as Unknown. Values are normalized to [0,1] within each distribution.
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Figure 5: TSM-based Out-of-distribution Detection with HMDB-51 as Unknown. Values are normalized to [0,1] within each distribu-
tion.
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Figure 6: TSM-based Out-of-distribution Detection with MiT-v2 as Unknown. Values are normalized to [0,1] within each distribution.
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Figure 7: SlowFast-based Out-of-distribution Detection with HMDB-51 as Unknown. Values are normalized to [0,1] within each
distribution.
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(b) OpenMax [2]

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10
D

en
si

ty AUC = 77.42

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(c) RPL [3]
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(d) MC Dropout
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(e) BNN SVI [6]
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Figure 8: SlowFast-based Out-of-distribution Detection with MiT-v2 as Unknown. Values are normalized to [0,1] within each distri-
bution.
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(b) OpenMax [2]
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Figure 9: TPN-based Out-of-distribution Detection with HMDB-51 as Unknown. Values are normalized to [0,1] within each distribu-
tion.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

D
en

si
ty AUC = 81.35

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(a) SoftMax

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

D
en

si
ty AUC = 76.26

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(b) OpenMax [2]

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2

4

6

8

10

D
en

si
ty AUC = 78.21

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(c) RPL [3]

0.0 0.2 0.4 0.6 0.8 1.0
BALD uncertainty

0

2

4

6

8

10

D
en

si
ty AUC = 77.76

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(d) MC Dropout

0.0 0.2 0.4 0.6 0.8 1.0
BALD uncertainty

0

2

4

6

8

10

D
en

si
ty AUC = 75.32

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(e) BNN SVI [6]

0.0 0.2 0.4 0.6 0.8 1.0
EDL uncertainty

0

2

4

6

8

10

D
en

si
ty AUC = 81.80

in-distribution (UCF-101)
out-of-distribution (MiT-v2)

(f) DEAR (full)

Figure 10: TPN-based Out-of-distribution Detection with MiT-v2 as Unknown. Values are normalized to [0,1] within each distribution.
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Figure 11: Confusion Matrices of DEAR using HMDB-51 as Unknown. The x-axis and y-axis represent the ground truth and predicted
labels, respectively. The first 101 rows and columns are known classes from UCF-101 while the rest 51 classes are unknown from HMDB-
51. Values are uniformly scaled into [0,1] and high value is represented by a lighter color (best viewed in color).
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Figure 12: Confusion Matrices of DEAR using MiT-v2 as Unknown. The x-axis and y-axis represent the ground truth and predicted
labels, respectively. The first 101 rows and columns are known classes from UCF-101 while the rest 305 classes are unknown from MiT-v2.
Values are uniformly scaled into [0,1] and high value is represented by a lighter color (best viewed in color).

Kinetics
(Biased)

DEAR (w/o CED) Playing Volleyball (7) Opening Bottle (7) Shooting Soccer Goal (7)
DEAR (full) Playing Piano (X) Writing (X) Golf Driving (X)

Mimetics
(Unbiased)

DEAR (w/o CED) Golf Driving (7) Golf Driving (7) Opening Bottle (7)
DEAR (full) Playing Piano (X) Writing (X) Golf Driving (X)

Figure 13: Examples of Kinetics and Mimetics. The check mark (X) indicates that the predicted label is correct while the cross mark (7)
means that the predicted label is incorrect.


