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1. Conical Frustum Integral Derivations
In order to derive formulas for the various moments of

the uniform distribution over a conical frustum, we con-
sider an axis-aligned cone parameterized as (x, y, z) =
φ(r, t, θ) = (rt cos θ, rt sin θ, t) for θ ∈ [0, 2π), t ≥ 0,
|r| ≤ ṙ. This change of variables from Cartesian space
gives us a differential term:

dx dy dz = |det(Dφ)(r, t, θ)|dr dt dθ (1)

=
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The volume of the conical frustum (which serves as the
normalizing constant for the uniform distribution) is:

V =

∫ 2π

0

∫ t1

t0

∫ ṙ
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Thus the probability density function for points uniformly
sampled from the conical frustum is rt2/V . The first mo-
ment of t is:

E[t] =
1

V

∫ 2π

0

∫ t1

t0

∫ ṙ
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The moments of x and y are both zero by symmetry. The
second moment of t is
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And the second moment of x is:
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The second moment of y is the same by symmetry. All cross
terms in the covariance are z, also by symmetry.

With these moments defined, we can construct the mean
and covariance for a random point within our conical frus-
tum. The mean along the ray direction µt is simply the first
moment with respect to t:
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The variance of the conical frustum with respect to t follows
from the definition of variance as Var(t) = E

[
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The variance of the conical frustum with respect to its radius
r is equal to the variance of the frustum with respect to x or



(by symmetry) y. Since the first moment with respect to x
is zero, the variance is equal to the second moment:
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(
3
(
t51 − t50

)
20(t31 − t30)

)
. (22)

Computing all three of these quantities in their given form
is numerically unstable — the ratio of the differences be-
tween t1 and t0 raised to large powers is difficult to com-
pute accurately when t0 and t1 are near each other, which
occurs frequently during training. Using these quantities in
practice often produces 0 or NaN instead of accurate values,
which causes training to fail. We therefore reparameterize
these equations as a function of the center and spread of t0
and t1: tµ = (t0 + t1)/2, tδ = (t1 − t0)/2. This allows us
to rewrite each mean and variance as a first-order term that
is then corrected by higher-order terms, which are scaled by
tδ . This gives us stable and accurate values even when tδ is
small. Our reparameterized values are:
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Note that our multivariate Gaussian approximation of a
conical frustum will be inaccurate if there is a significant
difference between the base and top radii of the frustum,
which will be true for frustums that are very near the cam-
era’s center of projection when the camera FOV is large.
This is highly uncommon in most datasets, but may be an is-
sue if one were to use mip-NeRF in unusual circumstances,
such as macro photography with a fisheye lens.

2. The L Hyperparameter in PE and IPE
IPE features can be viewed as a generalization of PE fea-

tures: γ(x) = γ(µ = x,Σ = 0). Or more rigorously, PE
features can be thought of as “hard” IPE features in which
all points are assumed to have identical isotropic covariance
matrices whose variance has been heuristically determined
by the L hyperparameter: the value of L determines the fre-
quency at which PE features are truncated, just as the Gaus-
sian function of variance in IPE serves as a “soft” truncation
of IPE features. Because the “soft” maximum frequency of
IPE features is determined entirely by the geometry and in-
trinsics of the camera, IPE features do not depend on the L
hyperparameter, and so using IPE features removes the need
for tuning L. This is because in PE the L parameter deter-
mines where the high frequencies in the PE are truncated,
but in IPE those high frequencies are naturally attenuated
by the size of the multivariate Gaussian used as input to the
encoding: the smaller the Gaussian, the more high frequen-
cies will be retained. To demonstrate this, we performed as
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Figure 1: PSNRs for NeRF and mip-NeRF on the test set
of the lego scene, as we vary the positional encoding degree
L. In NeRF, performance decreases due to overfitting for
large values of L, but in mip-NeRF this parameter is effec-
tively removed from tuning — it can just be set to a large
value and forgotten, because IPE features “tune” their own
frequencies automatically.

“sweep” of L in both mip-NeRF and NeRF, and report the
test-set PSNR for a single scene, which is visualized in Fig-
ure 1. We see that in NeRF, there is a range of values for L
in which performance is maximized, but values that are too
large or too small will hurt performance. But in mip-NeRF,
we see that L can be set to an arbitrarily large value and
performance is unaffected. In practice, in all mip-NeRF ex-
periments in the paper we set L = 16, which is a value that
results in the last dimension of all IPE features constructed
during training to be less than numerical epsilon.

3. Hyperparameters
In all experiments in the paper we take care to use ex-

actly the same set of hyperparameters that were used in
Mildenhall et al. [6], so as to isolate the specific contribu-
tions of mip-NeRF as they relate to cone-casting and IPE
features. The three relevant hyperparameters that govern
mip-NeRF’s behavior are: 1) the number of samples N
drawn at each of the two levels (N = 128), 2) the his-
togram “padding” hyperparameter α on the coarse trans-
mittance weights that are used to sample the fine t values
(α = 0.01), and 3) the multiplier λ on the “coarse” com-
ponent of the loss function (λ = 0.1). And though mip-
NeRF adds these three hyperparameters, it also deprecates
three NeRF hyperparameters that are no longer used: 1)
The number of samples Nc drawn for the “coarse” MLP
(Nc = 64), 2) The number of samples Nf drawn for the
“fine” MLP (Nf = 128), and 3) The degree L used for
the spatial positional encoding (L = 10). The α parame-



ter used by mip-NeRF serves a similar purpose as the bal-
ance between Nc and Nf did in NeRF — a larger value of
α biases the final samples used during rendering towards
a uniform distribution, just as a larger value of Nc biases
the final samples (which are the sorted union of the uniform
coarse samples and the biased fine samples) towards a uni-
form distribution. Mip-NeRF’s multiplier λ has no analog
in NeRF, as NeRF’s usage of two distinct MLPs means that
the “coarse” and “fine” losses in NeRF do not need to be
balanced — thankfully, though mip-NeRF adds the need to
tune this new hyperparameter λ, it simultaneously removes
the need to tune the L hyperparameter as discussed in Sec-
tion 2, so the total number of hyperparameters that require
tuning remains constant across the two models.

Before running the experiments in the paper, we briefly
tuned the α and λ hyperparameters by hand on the valida-
tion set of the lego scene. N was not tuned, and was just set
to 128 such that the total number of MLP evaluations used
by mip-NeRF matched the total number used by NeRF.

4. Forward-Facing Scenes
Note that this paper does not evaluate on the LLFF

dataset [5], which consists of scenes captured by a
“forward-facing” handheld cellphone camera. For these
scenes, NeRF trained and evaluated models in a “normal-
ized device coordinates” (NDC) space. NDC coordinates
work by nonlinearly warping a frustum-shaped space into a
unit cube, which sidesteps some otherwise challenging de-
sign decisions (such as how an unbounded 3D space should
be represented using positional encoding). NDC coordi-
nates can only be used for these “forward-facing” scenes;
in scenes where the camera rotates significantly (which is
the case for the vast majority of 3D datasets) NeRF uses
conventional 3D “world coordinates”. One interesting con-
sequence of NDC space is that the 3D volume correspond-
ing to a pixel is not a frustum, but is instead a rectangle —
in NDC the spatial support of a pixel in the xy plane does
not increase with the distance from the image plane, as it
would in conventional projective geometry.

We briefly experimented with a variant of mip-NeRF
that works in NDC space by casting cylinders instead of
cones. The average PSNR achieved by JaxNeRF on this
task is 26.843, and this cylinder-casting variant of mip-
NeRF achieves an average PSNR of 26.838. Because this
mip-NeRF variant roughly matches the accuracy of NeRF,
the only substantial benefit it appears to provide is remov-
ing the need to tune the L parameter in positional encoding.
This result provides some insight into why NeRF works so
well on forward-facing scenes: in NDC space there is lit-
tle difference between NeRF’s “incorrect” aliased approach
of casting rays and tuning the L hyperparameter (which as
discussed in Section 2, is approximately equivalent to using
IPE features with isotropic Gaussians) and the more “cor-

rect” anti-aliased approach of mip-NeRF. In essence, NeRF
is already able to get most of the benefit provided by cone-
casting and IPE features in NDC space, because in NDC
space NeRF’s aliased model is already very similar to mip-
NeRF’s approach. This interplay between scene parameter-
ization and anti-aliasing suggests that a signal processing
analysis of coordinate spaces in neural rendering problems
may provide additional unexpected benefits or insights.

5. Model Details
The primary contributions of this paper are the use of

cone tracing, integrated positional encoding features, and
our use of a single unified multiscale model (as opposed
to NeRF’s separate per-scale models), which together allow
mip-NeRF to better handle multiscale data and reduce alias-
ing. Additionally, mip-NeRF includes a small number of
changes that do not meaningfully change mip-NeRF’s accu-
racy or speed, but slightly simplify our method and increase
its robustness during optimization. These “miscellaneous”
changes, as noted by the “w/o Misc.” ablation in the main
paper, do not significantly affect mip-NeRF’s performance,
but are described here in full for the sake of reproducibility
with the hopes that future work will find them useful.

5.1. Identity Concatenation

In the original NeRF paper, the input to the MLP is not
just the positional encoding of the position and view direc-
tion, but is instead the concatenation of the positional en-
coding with the position and view direction being encoded.
We found this “identity” encoding to not contribute mean-
ingfully to performance or speed, and its presence makes
the formalization of our IPE features somewhat challeng-
ing, so this in mip-NeRF this identity mapping is removed
and the only input to the MLP is the integrated positional
encoding itself.

5.2. Activation Functions

In the original NeRF paper, the activation functions used
by the MLP to construct the predicted density τ and color c
are a ReLU and a sigmoid, respectively. Instead of a ReLU
as the activation function to produce τ , we use a shifted soft-
plus: log(1 + exp(x − 1)). We found that using a softplus
yielded a smoother optimization problem that is less prone
to catastrophic failure modes in which the MLP emits neg-
ative values everywhere (in which case all gradients from τ
are zero and optimization will fail). The shift by −1 within
the softplus is equivalent to initializing the biases that pro-
duce τ in mip-NeRF to −1, and this causes initial τ values
to be small. Initializing the density of the NeRF to small
values results in slightly faster optimization at the beginning
of training, as dense scene content causes gradients from
scene content “behind” that dense content to be suppressed.
Instead of a sigmoid to produce color c, we use a “widened”



sigmoid that saturates slightly outside of [0, 1] (the range
of input RGB intensities): (1 + 2ϵ)/(1 + exp(−x)) − ϵ,
with ϵ = 0.001. This avoids an uncommon failure mode in
which training tries to explain away a black or white pixel
by saturating network activations into the tails of the sig-
moid where the gradient is zero, which may cause optimiza-
tion to fail. By having the network saturate at values slightly
outside of the range of input values, activations are never en-
couraged to saturate. These changes to activation functions
have little effect on performance, but we found that they
improved training stability when using large learning rates
(though all results in this paper use the same lower learning
rates used by Mildenhall et al. [6] for fair comparison).

5.3. Optimization

In all experiments we train mip-NeRF and JaxNeRF us-
ing the default training procedure specified in the JaxNeRF
codebase: 1 million iterations of Adam [2] with a batch size
of 4096 and a learning rate that is annealed logarithmically
from η0 = 5·10−4 to ηn = 5·10−6. We additionally “warm
up” the learning rate using the functionality provided by
JaxNeRF, which does not improve the performance of mip-
NeRF itself, but which we found to improve the stability of
some of the mip-NeRF ablations. To allow our ablations
to be competitive, and to enable a fair comparison across
all models, we therefore use this warm up strategy in all
mip-NeRF and JaxNeRF experiments. Because the warm
up procedure in JaxNeRF is not described in its documen-
tation [1], for the sake of reproducibility we will describe
it here. For the first nw = 2500 iterations of optimization,
we scale the basic learning rate by an additional scale factor
that is smoothly annealed between λw = 0.01 and 1 during
this warm up period. The learning rate at iteration i during
training is:

ηi =(λw + (1− λw) sin((π/2) clip(i/nw, 0, 1)))

× (exp((1− i/n) log(η0) + (i/n) log(ηn))) (24)

See Figure 2 for a visualization.

5.4. View Dependent Effects

We handle viewing directions exactly as was done in
NeRF: the ray direction d is normalized, positionally en-
coded (L = 4), and injected into the last layer of the MLP
after τ is predicted but before c is predicted. This is omitted
from our notation in the main paper for simplicity’s sake.
see Mildenhall et al. for details [6].

6. Supersampling Baseline
In the main paper we presented a generous baseline ap-

proach in which NeRF is trained on only full-resolution
images (thereby sidestepping its poor performance when
trained on multi-resolution data) and then evaluated on our
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Figure 2: The learning rate used in all JaxNeRF and mip-
NeRF experiments.

multiscale Blender dataset by brute-force supersampling:
rendering a full-resolution image that is then downsampled
to match the resolution of the ground truth. This roughly
matches the performance of mip-NeRF, but is 22× slower
and relies on “oracle” scale information that does not exist
for most datasets. Here we explore an alternative super-
sampling baseline, in which we train an extension of NeRF
on the multiscale dataset while supersampling during both
training and evaluation: for every pixel we cast multiple jit-
tered rays (sampled uniformly at random) through the spa-
tial footprint of each pixel, render each ray with the NeRF,
and then use the mean of those rendered values as the pre-
dicted color of that pixel in the loss function. As shown
by the results of this experiment (Table 1) this brute-force
supersampling model not only performs worse than mip-
NeRF even when casting as many as 16 rays per pixel, but
is also significantly more expensive during both training and
evaluation.

7. Alternative Gaussian Positional Encoding
During experimentation we explored alternative ap-

proaches for featurizing the mean and covariance matrix of
the multivariate Gaussians used by mip-NeRF. One such al-
ternative strategy is to simply apply positional encoding to
the mean and to the (signed) square root of the elements of
the covariance matrix, and use the concatenation of the two
as input. Specifically, we compute the positional encoding
of µ with L = 12, and compute the positional encoding
of vec(triu(sign(Σ) ◦

√
|Σ|)) with L = 2. We found that

this approach performs comparably to the IPE features pre-
sented in the main paper, as shown in Table 2. We chose to
advocate for IPE features in the main paper instead of this
concatenation alternative because 1) IPE features are more
compact (thereby reducing model size and evaluation time),
2) IPE features are easy to justify and reason about (as they



PSNR ↑ SSIM ↑ LPIPS ↓ Train Time Test Time
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg. ↓ (hours) (sec/MP) # Params

NeRF + Area, Center, 1× SS 27.471 28.016 27.816 26.657 0.9187 0.9301 0.9365 0.9304 0.1064 0.0924 0.0934 0.1064 0.0362 2.85 2.61 1,191K
NeRF + Area, Center, 4× SS 28.424 29.420 29.863 29.233 0.9297 0.9426 0.9526 0.9547 0.0807 0.0598 0.0530 0.0536 0.0259 17.69 10.44 1,191K
NeRF + Area, Center, 16× SS 31.566 33.116 33.982 32.933 0.9524 0.9660 0.9753 0.9768 0.0537 0.0316 0.0227 0.0216 0.0144 37.18 41.76 1,191K
Mip-NeRF 32.629 34.336 35.471 35.602 0.9579 0.9703 0.9786 0.9833 0.0469 0.0260 0.0168 0.0120 0.0114 2.79 2.48 612K

Table 1: Here we evaluate mip-NeRF against an extension of NeRF in which brute-force supersampling with jittered rays is
used during training and evaluation, on our multiscale Blender dataset (“16× SS” indicates that 16 rays are cast per pixel,
etc). Mip-NeRF is able to outperform this baseline by a significant margin in terms of quality, while also being 13× faster to
train and 16× faster to evaluate.

Multiscale Blender PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓
Integrated PE 34.51 0.973 0.025 0.0113
Concatenated PE 34.40 0.973 0.025 0.0114

Blender PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓
Integrated PE 33.09 0.961 0.043 0.0161
Concatenated PE 33.09 0.961 0.042 0.0160

Table 2: An evaluation of the IPE features against an al-
ternative approach in which the mean and covariance of
the multivariate Gaussian corresponding to a conical frus-
tum are positionally encoded and concatenated. Both ap-
proaches perform comparably on the multiscale and single-
scale Blender datasets.

approximate an expectation of positional encoding features
with respect to a conical frustum), and 3) IPE features have
no hyperparameters (while this concatenation alternative is
sensitive to its two L hyperparameters and the design deci-
sions used when parameterizing Σ).

This experiment with using this alternative to IPE also
provides some insight into the inner workings of mip-NeRF.
While IPE features are insensitive to the off-diagonal el-
ements of Σ, this concatenation alternative should endow
the MLP with the ability to reason about the correlation of
dimensions of the multivariate Gaussian. The fact that this
ability does not improve accuracy may suggest that correla-
tion is not a helpful cue, which contradicted the intuition of
the authors. Additionally, this experiment reinforces the as-
sertions made in the paper that the reason for mip-NeRF’s
improved performance is its explicit modeling of conical
frustums, as opposed to NeRF’s usage of point samples
along a ray. Though it is critical that the geometry of im-
age formation be modeled accurately, there are likely many
effective ways to featurize that geometry.

8. Additional Results

Multiscale Blender Dataset. To demonstrate the relative
accuracy of mip-NeRF compared to NeRF on each indi-
vidual scene in the multiscale Blender dataset, the error
metrics for each individual scene are provided in Table 3.
Mip-NeRF yields a significant reduction in error compared

to NeRF across all scenes. Renderings produced by mip-
NeRF and baseline algorithms compared to the ground truth
can be visually inspected in Figures 3 and 4.
Blender Dataset. Test-set error metrics for each individual
scene in the (single scale) Blender dataset of Mildenhall et
al. [6] can be seen in Table 4. Mip-NeRF yields lower error
rates than NeRF on all scenes and all metrics.
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Average PSNR
chair drums ficus hotdog lego materials mic ship

NeRF (Jax Implementation) [1, 6] 29.923 23.273 27.153 32.001 27.748 26.295 28.401 26.462
NeRF + Area Loss 30.277 24.032 27.149 32.025 27.602 26.533 28.120 26.834
NeRF + Area, Centered Pixels 33.460 25.802 30.400 35.672 31.606 30.155 32.633 30.019
NeRF + Area, Center, Misc. 33.394 25.874 30.369 35.641 31.646 30.184 32.601 30.092
Mip-NeRF 37.141 27.021 33.188 39.313 35.736 32.558 38.036 33.083
Mip-NeRF w/o Misc. 37.275 26.979 33.160 39.357 35.749 32.563 37.997 33.078
Mip-NeRF w/o Single MLP 37.310 26.922 33.045 39.378 35.605 32.635 38.016 33.011
Mip-NeRF w/o Area Loss 35.188 26.063 32.542 37.165 34.319 31.004 35.922 31.636
Mip-NeRF w/o IPE 33.559 25.864 30.499 35.793 31.728 30.272 32.736 30.276

Average SSIM
chair drums ficus hotdog lego materials mic ship

NeRF (Jax Implementation) [1, 6] 0.9436 0.8908 0.9423 0.9586 0.9256 0.9335 0.9580 0.8607
NeRF + Area Loss 0.9488 0.9028 0.9429 0.9622 0.9274 0.9372 0.9592 0.8610
NeRF + Area, Centered Pixels 0.9710 0.9310 0.9705 0.9794 0.9643 0.9670 0.9800 0.8994
NeRF + Area, Center, Misc. 0.9707 0.9318 0.9705 0.9793 0.9646 0.9671 0.9799 0.9004
Mip-NeRF 0.9875 0.9450 0.9836 0.9880 0.9843 0.9767 0.9928 0.9221
Mip-NeRF w/o Misc. 0.9877 0.9448 0.9835 0.9880 0.9842 0.9767 0.9927 0.9227
Mip-NeRF w/o Single MLP 0.9875 0.9432 0.9829 0.9876 0.9836 0.9763 0.9922 0.9211
Mip-NeRF w/o Area Loss 0.9817 0.9371 0.9823 0.9849 0.9792 0.9731 0.9911 0.9175
Mip-NeRF w/o IPE 0.9714 0.9322 0.9713 0.9796 0.9658 0.9678 0.9804 0.9039

Average LPIPS
chair drums ficus hotdog lego materials mic ship

NeRF (Jax Implementation) [1, 6] 0.0347 0.0689 0.0324 0.0279 0.0410 0.0452 0.0307 0.0948
NeRF + Area Loss 0.0414 0.0762 0.0438 0.0365 0.0568 0.0499 0.0444 0.1139
NeRF + Area, Centered Pixels 0.0281 0.0593 0.0264 0.0240 0.0348 0.0330 0.0249 0.0865
NeRF + Area, Center, Misc. 0.0283 0.0586 0.0264 0.0241 0.0346 0.0330 0.0249 0.0850
Mip-NeRF 0.0111 0.0439 0.0135 0.0121 0.0127 0.0186 0.0065 0.0624
Mip-NeRF w/o Misc. 0.0111 0.0436 0.0136 0.0123 0.0127 0.0186 0.0066 0.0620
Mip-NeRF w/o Single MLP 0.0113 0.0443 0.0142 0.0122 0.0132 0.0187 0.0068 0.0628
Mip-NeRF w/o Area Loss 0.0171 0.0503 0.0146 0.0151 0.0163 0.0259 0.0095 0.0665
Mip-NeRF w/o IPE 0.0276 0.0578 0.0259 0.0240 0.0340 0.0320 0.0231 0.0829

Table 3: Per-scene results on the test set images of the multiscale Blender dataset presented in this work. We report the
arithmetic mean of each metric averaged over the four scales used in the dataset.
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Figure 3: Visualizations of the output renderings from mip-NeRF compared to the ground truth, NeRF, and our improved
version of NeRF, on test set images from the 8 scenes in our multiscale Blender dataset. We visualize a cropped region of
each scene for better visualization, and render out that scene at 4 different resolutions, displayed as an image pyramid. The
SSIM for each scale of each image pyramid truth is shown to its lower right, with the highest SSIM for each algorithm at
each scale highlighted in red.
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Figure 4: Additional visualizations of the output renderings from mip-NeRF compared to the ground truth, NeRF, and an
improved version of NeRF presented in this work, on test set images from the 8 scenes in our multiscale Blender dataset, in
the same format as Figure 3.



PSNR
chair drums ficus hotdog lego materials mic ship

SRN [7] 26.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60
Neural Volumes [4] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93
LLFF [5] 28.72 21.13 21.79 31.41 24.54 20.72 27.48 23.22
NSVF [3] 33.19 25.18 31.23 37.14 32.29 32.68 34.27 27.93
NeRF (TF Implementation) [6] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
NeRF (Jax Implementation) [1, 6] 34.17 25.08 30.39 36.82 33.31 30.03 34.78 29.30
NeRF + Centered Pixels 34.88 25.17 31.02 37.13 34.39 30.50 35.38 29.95
NeRF + Center, Misc. 34.94 25.19 31.05 37.15 34.12 30.47 35.33 29.95
Mip-NeRF 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41
Mip-NeRF w/o Single MLP 35.07 25.28 32.52 37.34 34.93 30.38 35.59 30.55
Mip-NeRF w/o Misc. 35.16 25.46 32.96 37.55 35.68 30.69 36.32 30.47
Mip-NeRF w/o IPE 35.10 25.23 31.30 37.17 34.89 30.56 35.75 29.85
Mip-NeRF, Stopped Early 34.21 25.23 30.79 36.89 33.72 29.86 35.02 29.44

SSIM
chair drums ficus hotdog lego materials mic ship

SRN [7] 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757
Neural Volumes [4] 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784
LLFF [5] 0.948 0.890 0.896 0.965 0.911 0.890 0.964 0.823
NSVF [3] 0.968 0.931 0.973 0.980 0.960 0.973 0.987 0.854
NeRF (TF Implementation) [6] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
NeRF (Jax Implementation) [1, 6] 0.975 0.925 0.967 0.979 0.968 0.953 0.987 0.869
NeRF + Centered Pixels 0.979 0.928 0.971 0.980 0.973 0.956 0.989 0.877
NeRF + Center, Misc. 0.979 0.927 0.971 0.980 0.972 0.956 0.989 0.877
Mip-NeRF 0.981 0.932 0.980 0.982 0.978 0.959 0.991 0.882
Mip-NeRF w/o Single MLP 0.980 0.929 0.977 0.981 0.976 0.956 0.989 0.883
Mip-NeRF w/o Misc. 0.981 0.932 0.979 0.982 0.978 0.959 0.991 0.883
Mip-NeRF w/o IPE 0.981 0.929 0.972 0.981 0.975 0.958 0.990 0.878
Mip-NeRF, Stopped Early 0.976 0.927 0.969 0.979 0.969 0.954 0.988 0.869

LPIPS
chair drums ficus hotdog lego materials mic ship

SRN [7] 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299
Neural Volumes [4] 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276
LLFF [5] 0.064 0.126 0.130 0.061 0.110 0.117 0.084 0.218
NSVF [3] 0.043 0.069 0.017 0.025 0.029 0.021 0.010 0.162
NeRF (TF Implementation) [6] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
NeRF (Jax Implementation) [1, 6] 0.026 0.071 0.032 0.030 0.031 0.047 0.012 0.150
NeRF + Centered Pixels 0.022 0.069 0.028 0.028 0.026 0.043 0.010 0.143
NeRF + Center, Misc. 0.022 0.069 0.028 0.028 0.027 0.044 0.011 0.142
Mip-NeRF 0.021 0.065 0.020 0.027 0.021 0.040 0.009 0.138
Mip-NeRF w/o Single MLP 0.022 0.067 0.023 0.028 0.024 0.044 0.011 0.135
Mip-NeRF w/o Misc. 0.021 0.066 0.022 0.026 0.021 0.040 0.009 0.136
Mip-NeRF w/o IPE 0.020 0.068 0.027 0.028 0.024 0.041 0.009 0.142
Mip-NeRF, Stopped Early 0.027 0.074 0.035 0.031 0.035 0.046 0.013 0.155

Table 4: Per-scene results on the test set images of the (single-scale) Blender dataset from Mildenhall et al. [6]


