
Supplementary Material for
Q-Match: Iterative Shape Matching via Quantum Annealing

Marcel Seelbach Benkner1 Zorah Lähner1 Vladislav Golyanik2

Christof Wunderlich1 Christian Theobalt2 Michael Moeller1

1University of Siegen 2MPI for Informatics, SIC

This supplementary material provides a deeper analysis
of the proposed Q-Match approach and more experimental
details. This includes:

• Further analysis of the solution quality for individual QU-
BOs and visualizations of the minor embeddings (Sec. A).

• Derivation of Eq. (6) and proof of Lemma 4.1 from the
main matter (Sec. B).

• A toy example, in which all 2-cycles individually do not
improve the energy (Sec. C).

• More details on calculating Ws and W̃ (Sec. D).

• A list of our solutions to selected QAPLIB problems vs
ground truth (Sec. E).

A. Analysis of the Individual QUBOs
We analyze the quality of the solution of the individual

QUBOs in dependence of the dimension. The success prob-
ability for one QUBO solution is defined as the fraction be-
tween the anneals that ended up in the optimum and the
number of anneals. The success probability averaged over
20 QUBOs per dimension at the first two iterations, i.e.,
computations of (5) for a set of 2-cycles, of one instance
of the FAUST dataset can be seen in Fig. 1. We see that for
increasing dimension the success probability is decreasing
and less runs end up in the ground state. One possible way
to reverse this trend would be to increase the annealing time,
which we left constant at TA = 20µs. We also plotted the
fraction of QUBOs, where the ground state was among the
returned solutions. Leaving the number of anneals constant
this probability declined from 1 for 4 − 24 worst vertices
to 0.4 for 40 worst vertices. To get the optimum for more
instances we performed the experiment with 5000 anneals
for 40 and 50 worst vertices. In this experiment we found
the optimum in 90% or 45% of the cases, respectively.

Note that quantum annealing is a stochastic algorithm.
Therefore a success probability Ps is directly linked with
the amount of time needed to to get the optimum with, e.g.,
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Figure 1. Success probability (left) and the fraction of execu-
tions where the best solution is the optimum (right), for different
problem sizes and number of anneals. The success probability de-
creases with the problem size, and, therefore, more anneals are
necessary. In the left plot the deviation bar is the standard devia-
tion and in the right plot it is the binomial proportion confidence
interval. No lower part of the deviation bar means it goes beyond
zero in the left plot.

99% probability:

T =
ln(1− 99%)

ln(1− Ps)
TA, (1)

where TA is the time for one anneal. We also computed the
binomial proportion confidence interval for the probability
that the optimum of the QUBO is found, with at least one
anneal. If the underlying distribution is binomial, then the
true probability lies within 20% of our estimates in 95% of
cases. If the number of worst vertices is 23 or less the es-
timate is even closer to the true probability. The binomial
confidence interval can be seen in Fig. 1, on the right. In the
left plot of Fig. 1 the standard deviation of the success prob-
ability for averaging over the 20 individual QUBOs is also
depicted. This shows that the success probability strongly
varies for the distinct QUBO instances.
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A.1. Minor Embedding

In most cases, our problems result in fully connected log-
ical qubit graphs. In Figs. 2 and 3, there are illustrations of
the minor embeddings computed by the method of Cai et
al. [3] (used in Leap 2) and visualized by the problem in-
spector of Leap 2 [4]. We plot the average maximum chain
lengths and average numbers of physical qubits in the ob-
tained minor embeddings in Fig. 4.

B. Derivations and Proofs
B.1. Derivation of Eq. (6) in Sec. 4.1

It is stated in the main paper in Eq. (6), that one can
convert the multiplication of cycles from (5) into an additive
structure, i.e., that

P (α) =

(∏
i

cαi
i

)
P0 = P0 +

m∑
i=1

αi(ci − I)P0

holds, where I is the identity.

Proof. Consider the case where we only have a single cycle
c. Now, the following holds:

P (α) = P0 + α(c− I)P0 = (1− α)P0 + αcP0

=

{
P0, for α = 0

cP0, for α = 1
= cαP0.

Independent of P0, we can write:

cα = (1− α)I + αc. (2)

Additionally we can write (6) independent of P0 by apply-
ing the inverse permutation from the right side:

∏
i

cαi
i = I +

m∑
i=1

αi(ci − I).

Now as an induction step we apply c
αm+1

m+1 from the right:

c
αm+1

m+1

(∏
i

cαi
i

)

= c
αm+1

m+1 (I +

m∑
i=1

αi(ci − I))

= ((1− αm+1)I + αm+1cm+1)(I +

m∑
i=1

αi(ci − I))

= I +

m+1∑
i=1

αi(ci − I) + αm+1(cm+1 − I)

m∑
i=1

αi(ci − I)

(3)

We want to use that for two disjoint cycles ck, cl, the
equality (ck − I)(cl − I) = 0 holds. In all the places where
ck has 0 on the diagonal, cl has 1, because they are disjoint.
This leads to the fact that in the rows, where (ck − I) is
non-zero, (cl − I) has zero columns or rows, respectively.
Therefore the last term in (3) vanishes and the statement is
proven.

B.2. Proof of Lemma 4.1

To prove Lemma 4.1, we first show that the statement is
correct for a k-cycle.

Lemma B.1. Let P be a k-cycle. Then, P can be written
as a product of Q and R, where Q and R are permutations
that only consist of disjoint 2-cycles.

Proof. Without loss of generality, let P = (1 2 3...k) be
the k-cycle. This is possible because rearranging rows and
columns does not change the problem. For even k, Q and
R take the following form:

Q = (1 2)(3 k)(4 (k − 1)) . . .
((

1 +
k

2

) (
2 +

k

2

))
,

R = (2 k)(3 (k − 1)) . . .
(k
2

(
2 +

k

2

))
.

It can be easily checked that P = QR holds in this case.
For uneven k, one can choose the following Q and R, and
the same holds:

Q = (1 2)(3 k)(4 (k − 1)) . . .
((k + 1

2

) (
1 +

k + 1

2

))
,

R = (2 k)(3 (k − 1)) . . .
(k − 1

2

(
1 +

k + 1

2

))
.

Next, the following argument gives the proof for Lemma
4.1.

Proof. One can first write the permutation P in cycle nota-
tion. Then, we decompose each cycle individually as it was
shown in Lemma B.1. Note that according to Lemma B.1,
the decomposition of the k-cycle does not require additional
elements in Q or R that do not occur in the cycle.

Permutations like Q or R that only consist of 2-
cycles are called involutions. The fraction of permutations
that are involutions has following asymptotic behavior [9]
(Prop. VIII.2.):

In
n!

=
e−

1
4

2
√
πn

n−n
2 e

n
2 +

√
n

(
1 +O

(
1

n
1
5

))
. (4)

Considering Lemma B.1, a rough estimate is I2n > n!.
For these permutations, in theory, one step of the cyclic
α-expansion would suffice to obtain to the identity (which
could be the optimum w.l.o.g.).
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Figure 2. Illustration of the embedding from the D-Wave Leap 2 problem inspector [4] for using 8, 16, 24, 32 worst vertices. One node
depicts a physical qubits. The inner color shows the measured value in the lowest energy state, while the color of the outer ring shows the
sign of the bias, e.g., the coefficient of the linear term in the optimization problem (2). The edges depict the chains.

Figure 3. Illustration of the embedding from the D-Wave Leap 2 problem inspector [4] for using 40 and 50 worst vertices. One node
depicts a physical qubits. The inner color shows the measured value in the lowest energy state, while the color of the outer ring shows the
sign of the bias, e.g., the coefficient of the linear term in the optimization problem (2). The edges depict the chains.

Note on Classical Optimization: If (8) was submodular,
it would be possible to efficiently solve it by converting it to
a graph cut problem instead of using AQCing. According
to Bach [1], a quadratic function f(x) := xTWx is sub-
modular, if and only if all non-diagonal elements of W are
non-positive. Since W̃ij can have a positive sign, the func-
tion is not submodular and, therefore, cannot be efficiently
optimized. We tried small alternations of W̃ (e.g., chang-
ing the sign of the off-diagonal elements by switching Ci to
−Ci), but did not succeed in making (8) submodular.

B.3. Simulated Annealing vs. Quantum Annealing
for the Subproblems

We also performed Q-Match from Alg. 1 with a sim-
ulated annealing solver from [5] for the subproblems.

The quality of the results for the FAUST dataset and for
QAPLIB can be seen in Figs. 7 and 8. Here we executed the
simulated annealing sampler with 5 sweeps and performed
100 runs. Increasing the number of sweeps further did not
yield qualitatively different results.

In Fig. 5 the processing time for the subproblems is plot-
ted in dependence of the dimension. If one measures the
wall clock time for a query to the D-Wave sampler in the
same way one gets results of the order of seconds. This is
due to the fact that the time the solver takes for the computa-
tion is overshadowed by the time to connect and get access
to the machine. To get this time estimate one can simply
look at dwave ping in ocean. For the QPU access time
we already presented the results in dependence of dimen-
sion in Fig. 6. A more detailed overview of the different
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Figure 4. Average maximal chain length and number of physical
qubits for increasing problem size averaged over 4 instances. The
number of logical qubits increases linearly with the problem size.
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Figure 5. Processing time of the simulated annealing sampler in
dependence of the dimension. For one execution we have 100 runs
and 5 sweeps as parameters. We averaged the measured time over
10 executions.
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Figure 6. Time to compute the minor embedding in dependence
of the dimension of the subproplem. The subproblems stem from
the Q-Match algorithm applied to the Faust dataset. We averaged
the measured time over 5 executions.

runtimes is given in [6].
Since the minor embedding is computed locally one can

directly measure the processing time in dependence of the
dimension. In Fig. 6 this measurement is averaged over
5 instances. The simulated annealing sampler takes here
already an order of magnitude less time. However since we
mostly want to embed a fully connected graph the problem
to find an embedding could be solved beforehand and an
existing embedding can be reused.
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Figure 7. Evaluation of cumulative error [13] (left) and conver-
gence (right) on the FAUST dataset. (Left) We compare against
Simulated Annealing [11] without postprocessing and Functional
Maps [16]. Dashed lines indicate non-quantum approaches. The
results have symmetry-flipped solutions removed, these have an
equivalent final energy for all three methods but are not recog-
nized as correct in the evaluation protocol. (Right) We show the
convergence of the energy over 30 iterations. The larger the set of
worst vertices, the faster our method converges. The dashed grey
line shows the optimal energy.

We also state that the emphasis of this work is not on
benchmarking the subproblems. If one would do this one
could also optimize over the annealing path and could use
further features like the extended J-range for more pre-
cision and spin reversal transformations to mitigate some
systematic errors. Additionally one would also apply for-
mula (1). In this section we only want to provide a rough
overview of the computing time. Preliminary work that
does an in depth optimization of these algorithms con-
firms that quantum annealing is highly promising: In [7]
QUBOs were found where quantum annealing yields a
”time-to-99%- success-probability that is ∼ 108 times faster
than simulated annealing running on a single processor
core”. Reference [12] benchmarks the D-Wave 2000Q on
a broader class of problems and confirms the potential of
this technology.

C. Failure Case for Individually Optimizing
Over the 2-Cycles

We present an example to proof that optimizing over
larger sets of 2-cycles is superior to looking at single 2-
cycles separately, as is done in [11]. We construct a plane
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BO [2]:

a b c d e f g h
Optimum 5426670 3817852 5426795 3821225 5386879 3782044 10117172 7098658

Our (Quantum) 5450757 3828405 5485230 3822190 5403238 3797120 10158673 7152966
Our (Simulated Annealing) 5449653 3836716 5445272 3870067 5398333 3783329 10119061 7130826

ESC16 [8], HAD [10]:

a b c d e f g h i j a b c d e
Optimum 68 292 160 16 28 0 26 996 14 8 1652 2724 3720 5358 6922

Our (Quantum) 70 292 160 16 28 0 26 996 14 8 1652 2748 3750 5358 6922
Our (Simulated Annealing) 68 292 160 16 28 0 26 996 14 10 1686 2730 3734 5376 7068

NUG [15]:

a b c d e f g h i j k l m n
Optimum 578 1014 1610 1240 1732 1930 2570 2438 3596 3488 3744 5234 5166 6124

Our (Quantum) 618 1026 1650 1296 1882 1936 2606 2574 3712 3632 4004 5550 5348 6352
Our (Simulated Annealing) 594 1076 1694 1322 1802 1976 2682 2516 3714 3630 3940 5508 5514 6480

SCR [18], Rou [17]:

a b c a b c
Optimum 31410 51140 110030 235528 354210 725522

Our (Quantum) 35454 58320 114322 251872 373218 754506
Our (Simulated Annealing) 33672 58606 115822 248982 384354 760738

Table 1. Our solutions for exemplary sets of the QAPLIB dataset with different sizes of quadratic assignment problems.

2D-shape where the optimum can be reached with a collec-
tion of 2-cycles but each 2-cycle applied individually results
in a worse energy starting from a specific permutation. Con-
sider the points depicted in Figure 9. If we chose a, b and
ϵ, we can compute the energies of permutations with (9) us-
ing Euclidean distances between the points. Possible values
would be b = 10, a = 1 and ϵ = 0.1.

The shape is almost (but not exactly) symmetric with re-
spect to mirroring along a shifted x-axis (Permutation (1
4)(2 5)(3 6)). In our experiment, the second shape is a copy
of the first with permuted vertices, and we want to find the
correspondence. Let the identity be the optimal solution,
and the current permutation is P0 = (14)(25)(36). Per-
muting any of the three points on the upper {1, 2, 3} to any
of the lower points {4, 5, 6} on the right causes – despite
the correct assignment – a distortion of the (near-) isom-
etry, such that no such 2-cycle improves the cost function
when the assignment of the other points remains unchanged.
However, applying all three correct 2-cycles at once, allows
to pass to the global optimum with a lower energy.

This illustrates that using our cyclic α-expansion itera-
tion step for optimizing over multiple 2-cycles at a time can
have significant advantages over a sequence of simple sin-
gle 2-cycle updates.

D. Calculation of Ws and W̃

Notice that for a given permutation P and a set of cy-
cles C, it is possible to get W̃ without precomputing Ws in
roughly the same time as computing Ws. However, if Ws is
precomputed for a subset of vertices, W̃ can be computed
very efficiently for any set of cycles on this subset. There-
fore, we once calculate the expensive Ws, and then evaluate
several sets of cycles on it to increase the overall efficiency.

D.1. Calculating Ws

If we want to solve a subproblem of (1) we assume that
all correspondences for indices, that are not optimized, stay
fixed. Therefore, it is not sufficient to set Ws to a submatrix
of W , but we have to add the influence of these fixed cor-
respondences. Given a set sM , sN ⊂ {1, . . . , n} of indices

5



2 4 6 8
0

0.5

1

Instance in [2]

R
el

at
iv

e
er

ro
ri

n
%

5 10
0

5

10

15

Instance in [18, 10, 17]

0 5 10
0
2
4
6
8

Instance in [15]

R
el

at
iv

e
er

ro
ri

n
%

2 4 6 8 10
0

10

20

Instance in [8]

AQC
SA

Figure 8. Relative error Eobtained−Eopt
Eopt

of our method in percent-
age for the instances of [2] (upper left), [18] (1-3), [10] (4-8) and
[17] (9-11) (upper right), [15] (lower left) and [8] (lower right) in
QAPLIB. The problem sizes range between 12 and 30, of which
[15] contains the larger ones where we do less well.

Figure 9. Exemplary shape to show that individually applying 2-
cycles does not suffice. Because of the length ϵ the points are only
nearly symmetric along an x-axis. The shape is invariant under the
permutation (13)(46).

which indicate the subproblem of W (in Q-Match, these are
the sets IM , IN ), and a previous permutation P , we calcu-
late Ws as follows:

(Ws)ikjl = Wikjl +
∑

(vM ,vN )∈V

WikvMvN +WvMvN jl.

(5)

Here V ⊂ M × N is the set of correspondences indi-
cated by a permutation P , with removed all tuples in V
which contain entries from sM , sN , i.e., (vM , vN ) ∈ V if
P (vM ) = vN and vM /∈ vM , vN /∈ vN . This results in a
k2×k2 matrix where each entry contains the sum of O(|C|)
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Figure 10. Quantitative experiments comparing our method using
the optimal descriptor initialization (solid lines) with the worst de-
scriptor initialization (dashed lines). (Left) Cumulative geodesic
error (left) and convergence (right) is shown on the FAUST
dataset, otherwise equivalent to Fig. 4. The dashed gray line is
the ground truth value.

basic operations (Wijkl = |d(i, j)−d(k, l)|, where all d(·, ·)
are precomputed), resulting in O(k4|C|). The computation
of each entry can be parallelized.

D.2. Calculating W̃

Since we converted (1) into a QUBO (2), Ws also needs
to be converted into W̃ , i.e., the matrix describing the en-
ergy for the chosen combination of cycles. Since the cycles
are sampled from sM , sN , W̃ can be computed from the
entries of Ws, as we defined in (7) (and repeated here):

W̃ij =

{
E(Ci, Cj) if i ̸= j,

E(Ci, Ci) + E(Ci, P0) + E(P0, Cj) otherwise.
(7)

E(Ci, Cj) can be calculated as two matrix-vector multipli-
cations (1), however, since the vectors are vectorized per-
mutation matrices with exactly k non-zero entries, they can
be written as two sums over k entries. This is a m × m
matrix. Computing every entry separately leads to a com-
plexity of O(m2k). In our setting with 2-cycles, m = 1

2k
holds, therefore, we reach a complexity of O(k3). Note that
usually |C| ≫ k, and calculating W̃ is a lot more efficient
than calculating Ws (see Fig. 6).

E. Exact Solutions on QAPLIB
Since the relative error of the QAP is not invariant un-

der shifts of W , we also report our results on QAPLIB in
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Table 1. Here, it becomes clear again that we reach the op-
timum for virtually all instances in ESC16 and HAD.

F. Non-Optimal Initialization
Due to a sign error in our original experiments on the

FAUST dataset, we ran them with the worst possible de-
scriptor based initialization instead of the best. As expected
the accuracy is not as high and the algorithm converges
slower, but Q-Match does not break completely with a very
bad initialization. We see this as an indicator that finding
high quality solutions for larger subproblems leads to a very
robust pipeline. See Figure 10 for the exact results.
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