
Batch Normalization Increases Adversarial Vulnerability and Decreases
Adversarial Transferability: A Non-Robust Feature Perspective

Supplementary Material

Philipp Benz*

pbenz@kaist.ac.kr

Chaoning Zhang∗

chaoningzhang1990@gmail.com

In So Kweon
iskweon77@kaist.ac.kr

Korea Advanced Institute of Science and Technology (KAIST)

A. Relation to frequency perspective

Our work focuses on the feature perspective [7] to analyze
the model robustness. A Fourier perspective on robustness is
introduced in [15]. With the analysis of corruption analysis
in Sec. 3.2, our explanation from the feature perspective is
“noise corruptions mainly corrupt the NRFs while contrast
and fog mainly corrupt the RFs”. Their explanation from
the frequency perspective can be summarized as: noise cor-
ruptions mainly corrupt the high-frequency (HF) features
while contrast and fog mainly corrupt the low-frequency
(LF). These two explanations align well with each other
in the sense that NRFs are widely recognized to have HF
property, which motivated the exploration of several defense
methods [2, 9]. Moreover, our work is the first to demon-
strate that the model learns the order from RFs to NRFs.
Meanwhile, it has been shown in [14] that the model learns
first LF component then HF component, which aligns well
with our finding by perceiving NRFs having HF properties.

B. Experimental setup

B.1. Setup for training models in Sec. 3.2

The models for CIFAR10 and SVHN used in Sec. 3.2
were trained with SGD with the training parameters listed
in Table A1. The ResNet50 models in Table 1 and Table 2
of the main manuscript were trained for 350 epochs with an
initial learning rate of 0.1, which was decreased by a factor
of 10 at epochs 150 and 250, while the other parameters are
the same as before. For ImageNet, the VGG models were
obtained from the torchvision library, while the ResNet
models are trained with the same parameters as in [6].

*Equal contribution

Table A1. Parameters to train a standard model on CIFAR10/SVHN.
Parameter Value

Learning rate 0.01
Batch size 128

Weight Decay 0.0005
Epochs 300

Learning rate decay epochs 200
Learning rate decay factor 0.1

Table A2. Training parameters for adversarial training for CI-
FAR10/SVHN.

Parameter Value

Learning rate 0.01
Batch size 128

Weight Decay 0.0005
Epochs 150

Learning rate decay epochs 100
Learning rate decay factor 0.1

PGD-variant l2
PGD step size (α) 0.1

PGD perturbation magnitude (ϵ) 0.5
PGD iterations 7

B.2. PGD attack for evaluating the adversarial ro-
bustness

In Table 1, we evaluate the robustness of models with
the l2 and l∞ variants of the PGD-attack [10] and Carlini &
Wagner (CW) attack [1]. For the l2 and l∞ attack we use
ϵ = 0.25 and ϵ = 1/255 for images within a pixel range
of [0, 1], respectively. The attacks are run for 20 iteration
steps and we calculate the step size with 2.5ϵ/steps. For the
CW-attack [1], we follow [16] to adopt the PGD approach
with the CW loss and the same hyper parameters as above.

The robust accuracy values in all figures in Sec. 5 are
obtained with l2-PGD as above, but for 10 iteration steps on
1000 evaluation samples (100 samples per class) to reduce

Figure A1. Trend of LIGS with different perturbations: Gaussian,
Uniform, FGSM, PGD (left to right).

Table A3. Cross-evaluation of the features extracted from source
models on target models with the baseline VGG16 for standard
models.

Target
Source

None BN IN LN GN

None − 45.6 29.6 52.1 45.9
BN 75.3 − 35.8 58.9 54.3
IN 66.1 50.4 − 53.0 61.9
LN 79.4 59.4 37.9 − 63.4
GN 73.3 54.4 43.1 61.3 −

Table A4. Cross-evaluation of the features extracted from source
models on target models with the baseline VGG16 for adversarially
trained models.

Target
Source

None BN IN LN GN

None − 85.0 59.8 75.8 65.9
BN 81.3 − 58.1 73.7 62.5
IN 75.8 78.8 − 69.4 62.9
LN 82.9 84.5 60.0 − 64.8
GN 80.7 83.7 63.8 73.7 −

computation cost.

B.3. LIGS metric

By default, the LIGS values are calculated with ν being
set to Gaussian noise with mean µ = 0 and standard devi-
ation σ = 0.01. In Figure A1 ν is set to either Gaussian
noise, uniform noise in the range of [−0.01, 0, 01], FGSM
with ϵ = 0.01 or l∞-PGD with ϵ = 0.01, 7 step iterations
and a step size of 2.5ϵ/steps.

C. Feature Transferability
In Sec. 3.1 we formulated the conjecture, that BN shifts

the model to rely more on NRFs instead of RFs and pro-
vided empirical evidence for this conjecture. Additional to
the empirical evidence given in Sec. 3.2, we provide one
additional piece of evidence via a feature transferability anal-
ysis. We extract the features out of the trained models as
a new dataset and perform cross-evaluation on the remain-
ing models (details in the supplementary). The results are
shown in Table A3. As a control study, we perform the
same analysis on adversarially trained robust models, see
Table A4. It has been shown in [11] that robust models are
superior to normally trained models for transfer learning,

which demonstrates that RFs can transfer better. Here, we
find that features extracted from robust models (right) can
transfer better than the features extracted from standard mod-
els (left). For the normally trained models, we observe that
the features extracted from the model w/o normalization
transfer better (indicated in bold) than those models with
BN/IN/LN/GN, especially IN. Recognizing the extracted
features have both RF and NRFs, our observation suggests
that the models with normalization rely more on NRFs than
that w/o BN.

C.1. Extracting features as a dataset from a model

To demonstrate feature transferability in Table A3 and
Table A4, we extract features from standard and adversarially
trained models as a dataset. For robust models in Table A4
we follow the adversarial training strategy from [10] with l2-
PGD and we list the parameters in Table A2. We follow the
procedure and hyperparameter choices in [7] and generate
dataset D̂, given a model C:

E(x,y)∼D̂[y · f(x)] =

{
E(x,y)∼D[y · f(x)] if f ∈ FC

0 otherwise,
(A1)

where FC is the set of features utilized by C. The set of
activations in the penultimate layer g(x) corresponds to FC

in the case of DNNs. Thus, to extract the robust features
from C we perform the following optimization:

min
δ

||g(x)− g(x′ + δ)||2. (A2)

The optimization is performed for each sample x from D.
Likewise, x′ is drawn from D but with a label other than
that of x. The optimization process is realized using the l2
variant of PGD. We set the step size to 0.1 and the number
of iterations to 1000 and we do not apply a restriction on the
perturbation magnitude ϵ.

D. Influence of other normalization techniques
on LIGS

In Fig. 1, we show the influence of BN on the robust accu-
racy and LIGS over the model training process. Additionally,
Fig. A2 shows the results of repeating this experiment with
IN, LN, and GN. Similar trends to those of BN are observed.

E. Results on ImageNet with LIGS trend

Fig. A3 shows the influence of normalization for models
trained on ImageNet. It can be observed that the model with
IN always exhibits the lowest accuracy, while the model
with BN has the highest accuracy. Similar to the results on
CIFAR10, BN/IN/LN/GN consistently leads to lower LIGS.

Figure A2. Trend of clean accuracy (top), robust accuracy (middle),
LIGS (bottom) for ResNet18 on CIFAR10 with different normal-
ization techniques (IN, LN, GN) applied.

Figure A3. Comparison of different normalization techniques for
ResNet18 (top) and ResNet50 (bottom) trained on ImageNet.

F. Description of D̂R / D̂NR / D̂rand / D̂det

[7] introduced a methodology to extract feature datasets
from models. In particular the datasets D̂R, D̂NR, D̂rand

and D̂det were introduced, which we will describe here
briefly. D̂R indicates a dataset containing mainly RFs rele-
vant to a robust model, and D̂NR indicates that with standard
model. During the extraction of D̂NR, the magnitude ϵ was
not constraint, thus D̂NR has both RFs and NRFs. D̂rand and
D̂det are datasets consisting of “useful” NRFs represented
through adversarial examples for a standard model. The
target classes of D̂rand were chosen randomly, while the ones

Table A5. Hyperparameters for training the extracted datasets.
Dataset LR Batch size LR Drop Data Aug. Momentum Weight Decay

D̂R 0.01 128 Yes Yes 0.9 5 · 10−4

D̂NR 0.01 128 Yes Yes 0.9 5 · 10−4

D̂rand 0.01 128 Yes Yes 0.9 5 · 10−4

D̂det 0.1 128 Yes No 0.9 5 · 10−4

D̂conflict 0.1 128 Yes No 0.9 5 · 10−4

for D̂det were selected with an offset of t+ 1 to the original
sample ground-truth class. Note that these datasets are la-
beled with the target class for which the adversarial example
was generated. We follow the procedure described in [7] and
extract the datasets from a ResNet50 model. The hyperpa-
rameters used to train a model on one of the above datasets
are listed in Table A5. We use SGD as an optimizer and train
the models for 150 epochs with a learning rate decrease by a
factor of 10 at epochs 50 and 100.

Fig. A4 shows the trends for training ResNet18 on D̂R,
D̂NR and D̂rand. As seen before, the model trained on D̂R

achieves a relatively high LIGS, while the model trained on
D̂rand exhibits relatively low LIGS values. The LIGS values
for the model trained on D̂NR are in the middle of D̂R and
D̂rand, which is expected because D̂NR has RFs and NRFs.

Figure A4. Comparison of D̂R, D̂NR and D̂rand.

Fig. 6 shows the trends for training a ResNet18 on
D̂Conflict, consisting of conflicting features. D̂Conflict dif-
fers from D̂det in that it draws x′ from a robust dataset D̂R

instead of D. The same experiment with D̂det is shown in
Fig. A5. The results resemble those of D̂Conflict. However,
we used D̂Conflict to avoid the influence of the NRFs in D.

Figure A5. Result on D̂det.

G. Evaluating adversarial robustness with
FGSM attack

Motivated by the (local) linearity assumption, [5] pro-
posed the one-step FGSM attack. FGSM efficiently attacks
the model but is not as effective as PGD attack [10] because
the DNN is not fully linear. With iterative nature to overcome
this linearity assumption, PGD is a very strong attack and
de facto benchmark standard for evaluating the adversarial
robustness, due to which PGD is adopted in our work. Here,
we discuss the effect of BN with FGSM. BN reduces the
LIGS value, which indicates the model with BN has low lo-
cal linearity. Since the success of FGSM is highly dependent
on the linearity assumption, the FGSM attack is conjectured
to be less effective on the model with BN than w/o BN. This
conjecture is supported by the results in the supplementary.
As shown in Table A6, we find that with FGSM attack, the
model with BN has higher adversarial robustness than that
w/o BN.

Table A6. Robust accuracy comparison of models with and w/o BN
under FGSM attack.

Network Acc FGSM
4/255

VGG11 (None) 90.06 32.51
VGG11 (BN) 92.48 40.86

VGG16 (None) 91.89 23.26
VGG16 (BN) 93.7 51.28

ResNet50 (None) 92.15 28.23
ResNet50 (BN) 95.6 38.07

H. Additional Transferability Results

In Section 7 we demonstrated that more strong trans-
ferable adversarial examples can be generated for models
without BN. In Table A7 we demonstrate that adversarial
examples generated on adversarially trained models trans-
fer better than normal models. Compared to the ResNet50
model with BN, both adversarially trained models transfer
better for all I-FGSM variants. Except for DI-FGSM, the ad-
versarially trained models do also outperform the RN50 mod-
els without BN. The results for DI-FGSM and TI-FGSM for
CIFAR10 are shown in Table A8. The results resemble the
ones originally presented in Table 4 of the main manuscript.

In Figure 9 of the main manuscript, we demonstrated
that the transferability of adversarial examples generated
for a ResNet18 on CIFAR10 decreases with ongoing model
training. In Figure A6 we provide the complementary result
for a ResNet18 trained on ImageNet. For ResNet18 trained
on ImageNet, we observe a similar trend as on CIFAR10.
The transferability initially increases and then decreases
gradually during training.

Table A7. Influence of BN on the transferability of robustly trained
ResNet50 models. Results on ImageNet with various baselines:
I-FGSM [8], MI-FGSM [3], DI-FGSM [13] and TI-FGSM [4].

Variant BN RN50 DN121 VGG19 RN152 MN-V2 I-V3 Avg

I

Standard Y 100 80.1 71.6 86.2 73.4 34.2 74.2
Standard N 98.6 94.3 87.0 95.5 94.4 72.1 90.3
L2 = 3.0 Y 98.9 98.6 94.6 98.3 98.1 96.5 97.5
L∞ = 4 Y 97.3 95.9 92.5 96.1 96.6 92.7 95.2

MI

Standard Y 100 88.8 81.9 92.8 83.0 50.7 82.9
Standard N 98.9 95.4 88.7 95.5 96.2 78.5 92.2
L2 = 3.0 Y 97.6 97.1 92.9 96.7 97.6 94.8 96.1
L∞ = 4 Y 95.5 94.6 89.9 93.7 95.1 89.3 93.0

DI

Standard Y 100 98.1 96.9 97.9 94.4 59.8 91.2
Standard N 99.4 99.1 95.8 98.1 98.8 90.3 96.9
L2 = 3.0 Y 98.0 97.5 91.9 96.3 97.2 94.3 95.9
L∞ = 4 Y 93.9 93.9 85.8 91.3 94.1 88.6 91.3

TI

Standard Y 100 82.4 75.4 88.6 77.1 40.3 77.3
Standard N 98.7 95.0 87.0 95.7 95.2 77.6 91.5
L2 = 3.0 Y 98.5 98.3 96.2 97.9 98.6 95.8 97.5
L∞ = 4 Y 96.4 96.4 92.8 95.5 97.1 93.9 95.4

Table A8. Influence of BN on the transferability. Results on CI-
FAR10 with two baselines: DI-FGSM [13], TI-FGSM [4].

Source BN AlexN VGG16 RN50 DN RNext WRN Avg

DI

VGG16 Y 28.7 100∗ 91.8 89.7 90.9 90.8 82.0
VGG 16 N 42.0 99.9 99.8 99.1 99.3 99.6 90.0

ResNet18 Y 25.3 80.7 88.1 87.2 91.6 92.1 77.5
ResNet18 N 41.4 99.6 99.7 98.5 99.3 99.1 89.6

TI

VGG16 Y 33.9 100.0 80.8 74.9 80.7 78.8 74.9
VGG 16 N 51.2 99.6 99.3 97.2 98.3 98.4 90.7

ResNet18 Y 26.7 67.7 76.5 73.9 80.5 81.7 67.8
ResNet18 N 53.1 99.1 99.4 97.0 98.7 98.0 90.9

Figure A6. Performance of a substitute ResNet18 (ImageNet)
model measured across different training epochs on 5 black-box
models.

I. Visualization of the optimization landscape
Following [12], we visualize the optimization landscape.

The results on ResNet18 and VGG16 are shown in Fig.A7
and Fig.A8, respectively. On ResNet18, only BN leads
to a more predictive and stable gradient; on ResNet50,
BN/IN/LN/GN lead to a more stable gradient, however,
the effect of IN/LN/GN is significantly smaller than that

Figure A7. Optimization landscape of ResNet18 with and without
normalization. Variation in loss (left); l2 gradient change (center);
β-smoothness (right).

of BN. The results demonstrating the influence of shortcut
are shown in Fig.A9 where the shortcut is found to have a
trivial influence on the gradient stability. The results compar-
ing FixupIni and BN are shown in Fig.A10, where FixupIni
leads to a less stable gradient than BN.

Figure A8. Optimization landscape of VGG16 with and without BN.
Variation in loss (left); l2 gradient change (center); β-smoothness
(right).

Figure A9. ResNet18 shortcut comparison.

Figure A10. Comparison of BN and FixupIni on Resnet20 (top)
and ResNet56 (bottom).

References
[1] Nicholas Carlini and David Wagner. Towards evaluating the

robustness of neural networks. In SP, 2017. 1

[2] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred
Hohman, Siwei Li, Li Chen, Michael E. Kounavis, and
Duen Horng Chau. Shield: Fast, practical defense and vac-
cination for deep learning using jpeg compression. In KDD,
2018. 1

[3] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial attacks
with momentum. In CVPR, 2018. 4

[4] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading
defenses to transferable adversarial examples by translation-
invariant attacks. In CVPR, 2019. 4

[5] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In ICLR,
2015. 4

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
1

[7] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan
Engstrom, Brandon Tran, and Aleksander Madry. Adversarial
examples are not bugs, they are features. In NeurIPS, 2019.
1, 2, 3

[8] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-
sarial machine learning at scale. In ICLR, 2017. 4

[9] Chihuang Liu and Joseph JaJa. Feature prioritization and
regularization improve standard accuracy and adversarial ro-
bustness. In IJCAI, 2019. 1

[10] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In ICLR, 2018. 1, 2, 4

[11] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor,
and Aleksander Madry. Do adversarially robust imagenet
models transfer better? In NeurIPS, 2020. 2

[12] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Alek-
sander Madry. How does batch normalization help optimiza-
tion? In NeurIPS, 2018. 4

[13] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu
Wang, Zhou Ren, and Alan L Yuille. Improving transferability
of adversarial examples with input diversity. In CVPR, 2019.
4

[14] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and
Zheng Ma. Frequency principle: Fourier analysis sheds light
on deep neural networks. arXiv preprint arXiv:1901.06523,
2019. 1

[15] Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus
Cubuk, and Justin Gilmer. A fourier perspective on model
robustness in computer vision. In NeurIPS, 2019. 1

[16] Haichao Zhang and Jianyu Wang. Defense against adversarial
attacks using feature scattering-based adversarial training. In
NeurIPS, 2019. 1

