
Supplementary Material
Triggering Failures: Out-Of-Distribution detection by learning from local

adversarial attacks in Semantic Segmentation

1. Implementation details & hyper-parameters
For our implementation, we use Pytorch1 and will release

the code after the review. We share each hyper-parameter in
Table 1. We train ObsNet with SGD with momentum and
weight decay for at most 50 epochs using early-stopping. Ob-
sNet is not trained from scratch as we initialize the weights
with those of the segmentation network. We also use a sched-
uler to divide the learning rate by 2 at epoch 25 and epoch 45.
We use the same data augmentation (i.e. Horizontal Flip and
Random Crop) for training of the segmentation network and
as well as for ObsNet. As there are few errors in the training
of ObsNet, we increase the weight of positive examples in
the loss contribution (Pos Weight in Table 1).

Params CamVid StreetHazards Bdd Anomaly
Epoch 50 50 50
Optimizer SGD SGD SGD
LR 0.05 0.02 0.02
Batch Size 8 6 6
Loss BCE BCE BCE
Pos Weight 2 3 3
LAA shape rand shape rand shape rand shape
LAA type minp(c) maxp(k 6=c) maxp(k 6=c)

epsilon 0.02 0.001 0.001

Table 1: Hyper-parameters to train ObsNet on the different
datasets.

2. Ablation on ObsNet architecture, ε and LAA

One contribution of our work is the ablation we do on the
architecture of the observer network compared to previous
methods. We highlight that the skip connections are essential
for reaching best performance. For the smaller architecture,
instead of keeping the same architecture as the segmentation
network, we design a smaller variant: a convolutional net-
work with three convolutional layers and a fully connected

1A Paszke et al., PyTorch: An Imperative Style, High-Performance Deep
Learning Library, NIPS 2019

Type fpr95tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
MC Dropout 49.3 97.3 90.1 0.463
ObsNet base 54.2 97.1 89.1 0.396
all pixels 53.2 97.1 89.5 0.410
sparse pixels 61.1 97.1 89.2 0.387

minp(c) class pixels 45.6 97.3 90.3 0.428
square patch 47.4 97.3 90.1 0.461
rand shape 44.6 97.6 90.9 0.446
all pixels 51.9 97.1 89.6 0.405
sparse pixels 54.2 97.2 89.6 0.374

maxp(k 6=c)class pixels 46.8 97.2 89.9 0.432
square patch 45.5 97.4 90.5 0.464
rand shape 44.6 97.4 90.6 0.446

Table 2: Ablation on adversarial attacks.

Method fpr95tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Smaller archi. 60.3 95.8 85.3 0.476
w/o skip 81.3 92.0 74.4 0.551
w/o input img 57.0 96.9 88.2 0.455
w/o pretrain 55.7 96.9 88.7 0.419
ObsNet full 54.2 97.1 89.1 0.396

Table 3: Ablation ObsNet without LAA training.

layer. This architecture mimicks the one used by ConfidNet
[10].

Next, we outline most of the experiments we make on
LAA. First, there are two different kinds of setups, we
can either minimize the prediction class (i.e. minp(c)) or
maximize instead a different class (i.e. maxp(k 6=c)), with
p = Seg(x) the class vector, c = maxp the maximum class
prediction and k a random class. Then, we attack with five
different strategies: all pixels in the image, random sparse
pixels, the area of a random class, all pixels in a square
patch and all pixels in a random shape. We show in Table 2
the complete results on CamVid ODD. We can see that that
random shape is the most effective. We use the FSGM
because it’s a well-known and easy-to-use adversarial attack.

1



Method fpr95tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [25] 61.9 96.5 84.4 0.480
Void [6] 79.9 90.7 67.3 0.504
MCDA [1] 65.8 96.3 83.1 0.440
Temp. Scale [19] 61.9 96.6 84.6 0.302
ODIN [32] 58.3 97.2 87.9 0.478
ConfidNet [10] 52.2 97.5 88.6 0.412
Gauss Pert. [15,41] 60.2 96.8 85.6 0.497
Deep Ensemble [30] 55.3 97.5 88.1 0.343
MC Dropout [17] 52.5 97.9 88.5 0.443
ObsNet + LAA 47.7 98.1 90.3 0.370

Table 4: Error detection evaluation on CamVid (best method in
bold, second best underlined).0.5 1 1.5 2 14

75

80

85

90

95

ObsNet+LAA

Deep Ensemble

MC Dropout

Gauss. Pert.

MCP

Void

ConfidNet ODIN

TFLOPs

A
u

R
o
c

0 0.2 0.4 0.6 0.8 1
44

46

48

50

52

54

epsilon

fp
ra

t9
5t

p
r

Ablation on epsilon on CamVid OOD

ObsNet
MC Dropout

1

Figure 1: Evolution of the Fpr at 95 Tpr for different values of
epsilon on CamVid OOD.

Since our goal is to hallucinate OOD objects, we believe
the location and the shape of the attacked region are the
important part.

As shown on Figure 1, we can see that the best ε for the
attack is 0.02 with a random shape blit at a random position
in the image. We can also see that even with a large ε,
ObsNet still achieves reasonable performance.

3. Error detector

The observer is trained to assess whether the prediction
differs from the true class (which is always the case for OOD
regions), so it also tends to assign low confidence scores
for in-domain regions with likely high errors, as shown in
Figure 2. This behavior is not caused by ObsNet, but depends
on the accuracy of the main network at test time and should
lessen with more accurate networks. This effect shows that

our method can be used for error detection, and outperforms
all other methods, as illustrated in Table 4.

4. Additional Experiments: DeepLab v3+
We show on Table 5, the results on BDD Anomaly with

a more recent Deeplab v3+2 with ResNet-101 encoder. Our
methods performs the best, while methods like ConfidNet
do not scale when the segmentation accuracy increases as
they have fewer errors to learn from.

Method fpr95tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [25] 60.3 95.8 81.4 0.228
Void [6] 68.8 90.2 74.0 0.485
MCDA [1] 68.1 95.1 78.8 0.265
ConfidNet [10] 64.5 95.4 80.9 0.254
Gauss Pert. [15,41] 61.4 96.1 82.4 0.186
MC Dropout [17] 60.0 96.0 82.0 0.219
ObsNet + LAA 58.8 96.3 83.0 0.185

Table 5: Evaluation on Bdd Anomaly (best method in bold, second
best underlined), with a DeepLab v3+.

5. CamVid OOD dataset
For our experiments, we use urban street segmentation

datasets with anomalies withheld during training. Unfor-
tunately, there are few datasets with anomalies in the test
set. For this reason we propose the CamVid OOD that will
be made public after the review. To design CamVid OOD,
we blit random animals in test images of CamVid. We add
one different such anomaly in each of the 233 test images.
The rest of the 367 training images remain unchanged. The
anomalous animals are bear, cow, lion, panda, deer, coy-
ote, zebra, skunk, gorilla, giraffe, elephant, goat, leopard,
horse, cougar, tiger, sheep, penguin, and kangaroo. Then,
we add them to a 13th class which is animals/anomalies as
the corresponding ground truth of the test set.

This setup is similar to the Fishyscape dataset [6], without
the constraint of sending a Tensorflow model online for
evaluation. Thus, our dataset is easier to work with. We

2LC Chen et al., Encoder-Decoder with Atrous Separable Convolution
for Semantic Image Segmentation, ECCV 2018

Method fpr95tpr ↓ AuPR ↑ AuRoc ↑ ACE ↓
Softmax [25] 67.5 94.7 82.5 0.529
ConfidNet [10] 58.4 96.4 86.8 0.462
Gauss Pert. [15,41] 61.8 95.8 85.7 0.473
Deep Ensemble [30] 63.9 96.5 86.4 0.468
MC Dropout [17] 52.8 97.2 88.5 0.483
ObsNet + LAA 42.1 97.7 91.4 0.423

Table 6: Error detection evaluation on CamVid with random square
attacks (best method in bold).



present some examples of the anomalies in Figure 3 with the
ground truth highlighted in cyan.

6. Adversarial Attacks Detector
In safety-critical applications like autonomous driving,

we know that the perception system has to be robust to ad-
versarial attacks. Nevertheless, training a robust network is
costly and robustness comes with a certain trade-off to make
between accuracy and run time. Moreover, the task to only
detect the adversarial attack could be sufficient as we can
rely on other sensors (LiDAR, Radar, etc.). Although, in
this work we do not focus on Adversarial Robustness, em-
pirically we note that ObsNet can detect an attack. To some
extent this is expected as we explicitly train the observer to
detect adversarial attacks, thanks to the LAA.

Indeed, our observer can detect the area where the attack
is performed, whereas the MC Dropout is overconfident.
Furthermore, in Table 6, we evaluate the adversarial attack
detection of several methods. We apply a FGSM attack in
a local square patch on each testing image. Once again, we
can see that our observer is the best method to capture the
perturbed area.



Figure 2: Evaluation of the error detection on the test set of CamVid. ObsNet prediction is close to real errors even without OOD objects.

Figure 3: Examples of our dataset with anomalies and the ground truth.


