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We provide additional details and analysis of our approach in this supplementary material. Section 1 provides a derivation
of the closed-form expressions for the steepest-descent steps (8) from the main paper. The linearity of the warping operator
is discussed in Section 2. Our entire inference pipeline is detailed in Section 3. The network architectures employed for
the RAW burst super-resolution and burst denoising tasks are described in detail in Section 4. An analysis of our certainty
predictor W is provided in Section 5. Section 6 contains an additional ablative analysis of our approach. Further qualitative
comparison on the burst super-resolution and denoising datasets are provided in Section 7.

1. Derivation of Steepest-Descent Steps
In this section, we derive the closed-form expressions for the gradient gj = ∇L(zj) of loss (7) in the main paper, as well

as the steepest-descent step lengths αj . Our optimization objective (7) from the main paper is here restated as,

L(z) =

N∑
i=1

‖ri‖22 + λ‖z‖22 (1)

where ri = vi · (E(xi)−G ∗ φmi (z)) .

In the following derivation, we will interchangeably treat the entities in (1) either as 3D feature maps or as corresponding
vectors. By using the chain rule, the gradient of (1) is computed as,
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Here, G∗T denotes the transpose of the convolution operator u 7→ G ∗ u, which is the same as the transpose of the Jacobian
∂G∗u
∂u . Similarly, φT

mi
denotes the transpose of the linear warp operator z 7→ φmi

(z), which corresponds to the transpose of

the Jacobian ∂φmi
(z)

∂z .



Our step length αj is computed by performing an optimal line search αj = argminα L(z
j − αgj) in the gradient

direction gj . Since our loss (1) is convex, it has a unique global minima, which is be obtained by solving for the stationary
point dL(zj−αgj)

dα = 0. By setting u = zj − αgj and applying chain rule, we get
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In equation (11), we have utilized the closed-form expression (7) for gj , while also exploiting the linearity of the warp
operator φ. Using (12), the step length α is obtained as,

αj =
‖gj‖2∑N

i=1 2‖vi ·G ∗ φmi (g
j) ‖2 + 2λ‖gj‖2

(13)

2. Linearity of the Warping Operator
In our work, we assume that the warping operation φm(x) is linear. Note that this assumption holds even in the most

general case, i.e. where the scene motion is given by a pixel-wise optical flow, represented as a pixel-to-pixel mapping
m : R2 → R2. Let x : R2 → Rd be a continuous representation of a d-dimensional feature map (obtained by e.g. bilinear
interpolation, which is itself linear). Then the warping operator can be conveniently expressed as a function composition
φm(x) = x ◦m, i.e. φm(x)(p) = x(m(p)) for any pixel location p ∈ R2. The warping operator φm is hence linear for any
motion m since φm(ax1 + bx2) = (ax1 + bx2) ◦m = ax1 ◦m+ bx2 ◦m = aφm(x1) + bφm(x2) for any scalars a, b ∈ R
and feature maps x1, x2.

3. Inference Pipeline
Here, we detail the inference pipeline used by our multi-frame image restoration approach. Our approach minimizes the

feature space reconstruction loss (7) in the main paper to fuse information from the input images. The entire pipeline is
outlined in Algorithm 1. Given the set of input images {xi}Ni=1, we first pass each image xi through the encoder network
ei = E(xi) to obtain deep image embeddings {ei}Ni=1. For each image, we also compute the scene motion mi w.r.t. to first
image x1, and the certainty values vi used to weigh our feature space reconstruction loss (Sec. 3.3 in main paper). Next, we
estimate the optimal latent encoding ẑ of the output image y which minimizes our reconstruction loss L(z). This is achieved
by using the iterative steepest-descent algorithm (Sec. 3.4 in main paper). First, we obtain an initial latent encoding z0 using
an initializer network P . The initial encoding is then refined by applying KSD steepest-descent steps (Equation 8 in the main
paper) to obtain zKSD . The latent encoding zKSD is finally passed through the decoder network ŷ = D(KSD) to obtain the
prediction ŷ. Note that each step in our inference pipeline is differentiable w.r.t. the parameters of the encoder E, certainty
predictor W , initializer P , feature degradation G, and decoder D networks. This allows us to learn each of these modules
end-to-end from data, as described in Sec. 3.5 in the main paper.

4. Network Architecture
4.1. RAW Burst Super-Resolution

Here, we provide more details about the network architecture employed for the burst super-resolution task in Section 5.1
and 5.3 in the main paper.



Algorithm 1 Inference pipeline

Input: Multiple images {xi}Ni=1, Number of steepest-descent iterations KSD
1: for i = 1, . . . , N do
2: ei ← E(xi) # Map each input image to embedding space

3: mi ← MotionEstimator(xi, x1) # Estimate scene motion for each image w.r.t. the first image

4: vi ←W (ei, e1,mi) # Estimate the certainty values for each image

5:
6: z0 ← P (e1)) # Obtain initial latent encoding

7: for j = 0, . . . ,KSD − 1 do # For every steepest-descent iteration

8: gj ← −2
∑N
i=1 φ

T
mi
G ∗T

(
v2i ·
(
ei −G ∗ φmi

(zj)
))

+ 2λzj # Obtain gradient of loss (7) in main paper w.r.t. z

9: αj ← ‖gj‖22∑N
i=1 2‖vi·(G∗φmi

(gi))‖22+2λ‖gj‖22
# Calculate optimal step-length along gradient direction gj

10: zj+1 ← zj − αjgj # Update latent encoding using the estimated step-length αj

11: ŷ ← D(zKSD) # Decode latent encoding to obtain the output image

Encoder E: The encoder packs each 2 × 2 block in the input RAW image along the channel dimension to obtain a 4
channel input. This ensures translation invariance, while also reducing the memory usage. The packed input is passed
through a convolution+ReLU block to obtain a 64 dimensional feature map. This feature map is processed by 9 Residual
blocks [2], before being passed through a final convolution+ReLU block to obtain a 256 dimensional embedding E(xi) of
the input xi.
Operator G: We use a convolution layer with stride 2 as our feature degradation operator G. The operator takes a 64
dimensional embedding as input to generate a 256 dimensional output, which is compared with the embedding E(xi) of the
input image to compute the feature space reconstruction error.
Initializer P : We use the sub-pixel convolution layer [5] to generate the initial latent encoding z0 of the output image ŷ.
The initializer takes the embedding E(x1) of the first burst image x1 as input and upsamples it by a factor of 2 via sub-pixel
convolution to output z0.
Certainty Predictor W : The certainty predictor takes the embedding of the input images {E(xj)}Nj=1, along with the
motion estimation mi as input. Each image embedding E(xi) is passed through a convolution+ReLU block to obtain the 64-
dimensional feature map ei. The features e1 extracted from the reference image x1 are then warped to i-th image to compute
the residual ei − φmi(e1), which indicates possible alignment errors. Additionally, we pass the modulo 1 of scene motion
mi mod 1 through a convolution+ReLU block followed by a residual block to obtain the 64-dimensional motion features m̃i.
The encoding ei, the residual ei − φmi

(e1), and the motion feature m̃i are then concatenated along the channel dimension
and projected to 128 dimensional feature map using a convolution+ReLU block. The resulting feature map is passed through
3 residual blocks, followed by a final convolution layer to obtain the output ṽi. Certainty value vi for the i-th image is then
obtained as the absolute value |ṽi| to ensure positive certainties.
Decoder D: The decoder passes the encoding ẑ of the output image ŷ through a convolution+ReLU block to obtain a
64-dimensional feature map. This feature map is passed through 5 residual blocks, followed by an upsampling by a factor
of s/s̃ = 4 using the sub-pixel convolution layer [5]. The upsampled 32-dimensional feature map is then passed through 5
additional residual blocks, followed by a final convolution layer which predicts the output RGB image ŷ.

4.2. Burst Denoising

Here, we provide more details about the network architecture employed for the burst denoising task in Section 5.2 and 5.3
in the main paper.
Encoder E: The encoder concatenates the input image xi and the per-pixel noise estimate ni along the channel dimension,
and passes it through a convolution+ReLU block. The resulting 32-dimensional output is processed by 4 residual blocks,
followed by a convolution+ReLU block to obtain a 64-dimensional encoding E(xi, ni) of the input image xi.
Operator G: We use a convolution layer as our feature degradation operator G. The operator takes a 16 dimensional
encoding z of the output image y as input to generate a 64 dimensional output, which is compared with the embedding
E(xi, ni) of the input image to compute the feature space reconstruction error.
Initializer P : We pass the embedding E(x1) of the first burst image x1 through a convolution layer to obtain the initial
output image encoding z0.



Certainty PredictorW : The certainty predictor takes the embedding of the input images {E(xj , nj)}Nj=1, the noise estimate
ni, along with the motion estimation mi as input. Each image embedding E(xi, ni) is passed through a convolution+ReLU
block to obtain the 16-dimensional feature map ei. The features e1 extracted from the reference image x1 are then warped
to i-th image to compute the residual ei − φmi

(e1), which indicates possible alignment errors. In parallel, the per-pixel
noise estimate ni is passed through a convolution+ReLU block, followed by a residual block to obtain 32-dimensional
noise features ñi. Additionally, we pass the modulo 1 of scene motion mi mod 1 through a convolution+ReLU block to
obtain the 8-dimensional motion features m̃i. The encoding ei, the residual ei − φmi(e1), the noise features ñi, and the
motion features m̃i are then concatenated along the channel dimension and projected to 32 dimensional feature map using
a convolution+ReLU block. The resulting feature map is passed through 1 residual blocks, followed by a final convolution
layer to obtain the output ṽi. Certainty value vi for the i-th image is then obtained as the absolute value |ṽi| to ensure positive
certainties.
Decoder D: The decoder passes the encoding ẑ of the output image ŷ through a convolution+ReLU block to obtain a 64-
dimensional feature map. This feature map is passed through 9 residual blocks, followed by a final convolution layer which
predicts the denoised image ŷ.
Motion Estimation in Ours†: In Section 5.2 in the main paper, we report results for a variant of our approach Ours† which
employs a custom optical flow network to find the relative motion between image xi and the reference image x1. We use a
pyramidal approach with cost volume, commonly employed in state-of-the-art optical flow networks [6, 3]. The architecture
of our optical flow network is described here. We first pass both xi and x1 through a convolution+ReLU block to obtain
32-dimensional feature maps. These are then passed through 6 residual blocks. Before each of the first two residual blocks,
we downsample the input feature maps by a factor of 2 using a convolution+ReLU block with stride 2 for computational
efficiency. Next, we construct a feature pyramid with 2 scales, which is used to compute the optical flow. We pass the output
of the last residual block through a convolution+ReLU block to obtain 64-dimensional feature maps f1i and f11 . These feature
maps are then passed through another convolution+ReLU block with stride 2 to obtain lower resolution feature maps f2i and
f21 . Next, we construct a partial cost volume containing pairwise matching scores between pixels in f2i and f21 using the
correlation layer. For efficiency, we only compute matching scores of a pixel in f2i with spatially nearby pixels in f21 within a
7× 7 window. The cost volume is concatenated with the feature map f2i and passed through two convolution+ReLU blocks
with 128 and 64 output dimensions. The output feature map is passed through a final convolution layer to obtain a coarse
optical flow m2

i . This initial estimate is upsampled by a factor of 2 and used to warp the feature map f11 to the i-th image.
We then compute the matching scores between f1i and φm2

i
(f11 ) using a 5 × 5 spatial window. A refined optical flow m1

i is
then obtained using the same architecture as employed for pyramid level 2, without weight-sharing. The estimate m1

i is then
upsampled by a factor of 4 to obtain the final motion estimate mi.

5. Analysis of Certainty Predictor
In this section, we analyse the behaviour of our certainty predictor W . The certainty predictor computes the certainty

values vi for each element in our residual E(xi) − G(φmi
(z)). This allows us to reduce the impact of e.g. errors in motion

estimate mi, by assigning a lower weight for such regions in our MAP objective (7) in the main paper. We analyse the
behaviour of W by manually corrupting the motion estimate mi. Figure 1b shows the channel-wise mean of the predicted
certainty values vi for an input image (Figure 1a), using the estimated scene motion mi. We observe that the mean certainty
values are approximately uniform over the image, with some slight variations according to the image intensity values. Next,
we corrupt the motion estimate mi for the left half of the image by adding a fixed offset of 16 pixels in both directions. The
certainty values predicted using these corrupted motion mi is shown in Figure 1c. As desired, our certainty predictor detects
the alignment errors and assign a lower certainty values to the corresponding image regions (left half of the image).

6. Detailed Ablative Study
In this section, we provide a detailed ablative study analysing the impact different components in our architecture. Our

analysis is performed on the SyntheticBurst super-resolution dataset [1], as well as the grayscale burst denoising dataset [4].
Impact of number of iterations KSD: We analyse the impact of the number of steepest-descent iterations KSD by training
and evaluating our approach with different values of KSD. The results on the SyntheticBurst super-resolution dataset [1] are
provided in Table 1a, while the results on the grayscale burst denoising dataset [4] is shown in Table 1b. Additionally, a
convergence analyses of the steepest-descent steps is provided in Figure 2. The entries with KSD = 0 directly output the
initial encoding z0 predicted by our initializer P to the decoder. Since the initializer only utilizes the first burst image, the
entry KSD = 0 corresponds to the SingleImage baseline included in Table 1 and Table 2 in the main paper. Performing just a



(a) Input Image (b) Certainty Values, Original mi (c) Certainty Values, Corrupted mi

Figure 1: Analysis of our certainty predictor W . The channel-wise mean of the certainty values predicted by W for the input
image (a), using the estimated scene motion mi is shown in (b). Next, we corrupt the motion estimate mi for the left half of
the image by adding a fixed offset of 16 pixels in both directions. The mean certainty values predicted using the corrupted
motion estimate mi is shown in (c). Our certainty predictor can detect the errors in motion estimate mi and assign lower
certainty values to the corresponding image regions.

P KSD PSNR↑ LPIPS↓ SSIM↑
3 39.79 0.073 0.951

X 0 36.29 0.123 0.912
X 1 39.60 0.074 0.950
X 2 39.75 0.074 0.951
X 3 39.82 0.071 0.952
X 4 39.77 0.071 0.951
X 5 39.64 0.072 0.950

(a) SyntheticBurstSR

P KSD Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8 Average

3 39.29 36.42 33.33 28.86 34.47
X 0 35.16 32.27 29.34 25.81 30.65
X 1 39.32 36.48 33.38 29.39 34.64
X 2 39.36 36.49 33.37 29.38 34.65
X 3 39.37 36.51 33.38 29.69 34.74
X 4 39.33 36.46 33.37 29.11 34.57
X 5 39.42 36.54 33.40 28.25 34.40

(b) Grayscale Denoising

Table 1: Impact of initializer P and number of steepest-descent iterations KSD on the SyntheticBurst super-resolution (a) and
grayscale denoising (b) datasets.

single steepest-descent step already provides a large improvement over the SingleImage baseline with a PSNR of 39.60 on the
SyntheticBurst dataset. This demonstrates the fast convergence of the steepest-descent iterations. Both the super-resolution
and denoising performance improves gradually with an increase in KSD, and the best results are obtained with KSD = 3
iterations. Performing more iterations KSD > 3 results in a small decrease in performance, indicating that early-stopping can
act as a regularizer, leading to improved performance.
Impact of initializer P : Here, we analyse the impact of our initializer module P , which computes the initial encoding z0.
We evaluate a variant of our approach which does not utilizes P , instead setting the initial encoding z0 to zeros. The results
on the SyntheticBurst dataset and the grayscale burst denoising dataset are shown in Table 1a and Table 1b, respectively.
Thanks to the fast convergence of the steepest-descent iterations, we observe that the initializer module P only provides a
small improvement in performance.
Impact of downsampling factor s̃ of feature degradation G: We analyse the impact of the downsampling factor s̃ of
operator G on the burst super-resolution task. Results for different values of s̃ on the SyntheticBurst dataset is provided in
Table 2. We observe that using a higher downsampling factor s̃ in operatorG leads to better results. However the improvement
when using a downsampling factor s̃ = 4 compared to s̃ = 2 is relatively small (+0.07dB). Hence, we use s̃ = 2 in our final
version to obtain better computational efficiency.



Figure 2: Convergence analysis of the steepest-descent iterations. We plot our loss (7) in the main paper, w.r.t. the number of
steepest-descent iterations. The loss is averaged over the 300 burst sequences from the SyntheticBurst dataset.

s̃ PSNR↑ LPIPS↓ SSIM↑
1 39.38 0.077 0.948
2 39.82 0.071 0.952
4 39.89 0.071 0.953

Table 2: Impact of downsampling factor s̃ of feature degradation G on the SyntheticBurst dataset.

7. Qualitative Results
In this section, we provide additional qualitative results. A qualitative comparison with BPN [7] on the grayscale [4] and

color [7] burst denoising datasets are provided in Figure 3 and Figure 4, respectively. Figure 5 contains a comparison of
our approach to DBSR [1] on the SyntheticBurst RAW super-resolution dataset. Additional comparison on the real-world
BurstSR dataset [1] is provided in Figure 6.



 Input                   BPN                   Ours                     GT              

Figure 3: Qualitative comparison of our approach with BPN [7] on the grayscale burst denoising dataset [4]. Compared to
BPN, our approach can recover higher frequency details, without oversmoothing the image.



Input                       BPN                       Ours                          GT

Figure 4: Qualitative comparison of our approach with BPN [7] on the color burst denoising dataset [7]. Our approach can
generate clean images without introducing any color artifacts.



    DBSR                         Ours                           GT

Figure 5: Qualitative comparison of our approach with DBSR [1] on the SyntheticBurst super-resolution dataset [1]. Our
approach can better recover high frequency details and generates sharper images.



      DBSR                             Ours                                 GT

Figure 6: Qualitative comparison of our approach with DBSR [1] on the real-workd BurstSR dataset [1]. Note that the ground
truth image and the input burst are captured using different cameras, resulting in a color shift between the network predictions
and the ground truth.
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