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In this supplementary material, we provide additional de-
tails about various solvers for the calibrated as well as par-
tially calibrated case (unknown focal length) that were not
included in the main paper due to a lack of space. More-
over, we discuss the potential “g33 = 0” degeneracy for
partially calibrated camera solvers. This is followed by de-
tails on elimination ideals used for the simplifications of
polynomial systems in both considered cases, as well as the
Macaulay2 code for generating these ideals. The last two
sections provide more details about the synthetic and real
experiments. The supplementary material follows the nota-
tions and conventions used in the main paper.

1. Solver Sizes w/o Variable Transformation
In all proposed solvers (sH52, sH4.52, sH53, sH4.53,
sH5f3, and sHf53) except the sH54 solver, we simplify the
systems of polynomial equations using a variable transfor-
mation followed by an elimination ideal trick. This trans-
formation was described in Sec. 2.2 in the main paper. For
comparison and for showing the usefulness of these steps,
we also studied solvers without the variable transformation.

The elimination ideal trick used to eliminate unknowns
from the ideal I defined by Eq. (9) in the main paper (see
Sec. 2.2 in the main paper) results in 10 constraints (4
for the unknown focal length case) in 12 unknowns from
G and m. These are generators of the elimination ideal
I1 described in the main paper. After a null-space re-
parameterization of G and m using the linear equations (Eq.
(8) in the main paper), we can transform these equations to
10 polynomial equations in 2 unknowns, respectively 3 un-
knowns for the 4.5 point correspondences in the calibrated
case. Such systems can be solved, e.g., using the automatic
generator of Gröbner basis solvers [5, 6].

For the case of calibrated cameras using all linear con-
straints from 5 correspondences, we have to solve a system

of two polynomial equations in two unknowns. Note that
here, similar to the sH52 and sH53 solvers presented in the
main paper, we have an over-constrained system and we are
using only a subset (2 equations) from all 10 constraints
defining the ideal I1. Using the automatic generator [6], we
can create a solver which performs a G-J elimination of a
matrix of size 12× 20 and has up to 8 real solutions for no
more than two points coming from the same camera. For
the configuration where three points are coming from the
same camera, the solver generated using [6] performs a G-J
elimination of a matrix of size 4 × 10 and returns up to 6
real solutions.

For 4.5 point correspondences, the null-space re-
parameterization of G and m results in 10 equations (gen-
erators of I1) in three unknowns. Since we dropped one
constraint from Eq. (8) from the main paper, we now have
a well-defined system of polynomial equations that can be
again solved using the automatic generator [6]. In this case,
we obtain a solver which performs a G-J elimination of a
matrix of size 33 × 49 and returns up to 16 real solutions,
for both the case where no more than two points are com-
ing from the same camera and the case where exactly three
points are coming from the same camera.

For partially calibrated cameras, after the null-space re-
parameterization we obtain 4 polynomial equations in two
variables. The solver generated using [6] has to perform G-
J elimination of a matrix of size 6 × 12 and returns up to 6
real solutions for the case where at most 2 points come from
the same camera. For three points coming from the same
camera we generate a solver that performs a G-J elimination
of a matrix of size 3× 7 and returns up to 4 real solutions.

Note, that all solvers without the variable transformation
are larger and therefore slower than their counterparts that
use the variable transformation.
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2. Solvers using 4.5 Correspondences
When the camera P is calibrated, 5 point correspondences
result in an over-constrained formulation which can be
solved in two ways. The first method is described in the
main paper. This method uses 10 linear constraints from
all 5 point correspondences (Eq. (8) from the main paper).
However, it does not use all constraints resulting from the
structure of the matrices, i.e., all generators of the ideal I ′2.

Here, we describe the second method. This method uses
4.5 point correspondences, i.e., 9 constraints out of the 10
available constraints of the form of Eq. (8) in our main
paper. In this case, we perform the same coordinate sys-
tem transform as the one that we use for the first approach,
i.e., in solvers sH52 and sH53. In this coordinate system
transform, two constraints coming from the first point cor-
respondence result in simple constraints on the matrix G,
i.e., g13 = 0, g23 = 0.

Assuming g33 6= 0, we divide the remaining 7
equations (from Eq. (8) in the main paper) by
g33, leading to 7 equations in 9 unknowns, ε′ =
{g′11, g′12, g′21, g′22, g′31, g′32,m′1,m′2,m′3}. These equations
can be written in matrix form

Cb = 0 , (1)

where C is a 7× 10 coefficient matrix and b is a 10× 1
vectorized form of the set of ε′ ∪ {1}.
sH4.52 solver: In the first case, we assume that no more
than two correspondences come from the same camera Gi.
Now, matrix C in (1) has a three dimensional null-space
{b1,b2,b3}. A solution to b can be obtained as a linear
combination b = γ1b1 + γ2b2 + γ3b3. Using b10 = 1, we
can express γ3 as a linear polynomial in γ1 and γ2. Hence
the variables in ε′ can be parameterized as linear polynomi-
als of γ1 and γ2. This parameterization can be substituted
into the generators of the ideal I ′2 for the calibrated case.
This leads to 5 polynomials ei(γ1, γ2), each of degree 5.
This system has up to 16 solutions. We use the automatic
generator [6] to solve this system, resulting in a solver of
size 11× 27. Similar to the sH52 solver, we next extract the
solution to g33, and then decompose the homography matrix
H to obtain solutions for the relative poses R and t. As men-
tioned in our main paper, we ensure that H is decomposed
such that det(R) = 1.

sH4.53 solver: In this case, we assume that there are three
correspondences coming from the same camera Gi. Let us
assume, w.l.o.g., that the points qi2 and qi3 are observed in
camera G1, i.e., i = 1. This is the same camera that observes
the point q11. The remaining two points can be observed
by one camera Gj 6= G1 or by two different cameras Gj 6=
Gk 6= G1. Our approach in this case is analogous to that of
the sH4.52 solver. We select 9 constraints from Eq. (8) such
that the first three points qi1, qi2 and qi3 contribute only 5

constraints. This ensures that even if these three points are
collinear, the matrix C in (1) has rank 7.

The polynomial system ei(γ1, γ2), i = 1, . . . 5 has up
to 12 solutions. Using the automatic generator [6], we can
generate a solver of size 23 × 35. The next steps extract
the solution to g33, and then decompose the homography
matrix H to obtain solutions for R and t.

3. Unknown Focal Length Solvers
In this case the focal length of the pinhole camera P is un-
known and we assume its calibration matrix to be of the
form K = diag(f, f, 1). Thus. we have 10 DOF, 3 for each
of R, t and ñ, and 1 for f . Therefore, we need 5 2D-2D
correspondences pj ↔ qij , j = 1, . . . 5, to solve this prob-
lem. Without loss of generality, we can assume that the first
point correspondence is observed in camera G1, i.e., i = 1.
For i = 1, we have tG1

= [0, 0, 0]>. Moreover, w.l.o.g.,
we can pre-rotate the local coordinate systems of P and G1
such that p1 = [1, 0, 1]> and q11 = [0, 0, 1]>. This simpli-
fies the equations, and after substituting into Eq. (8) in the
main paper, we have

g13 = −g11, g23 = −g21 . (2)

The remaining four 2D-2D correspondences give us 8 lin-
early independent constraints of the form of Eq. (8) in
the main paper. We assume that g33 6= 0 and divide
these equations by g33. This, together with (2), trans-
forms these equations into non-homogeneous equations in
9 unknowns, i.e., equations containing unknowns ε′ =
{g′11, g′12, g′21, g′22, g′31, g′32,m′1,m′2,m′3}. We can rewrite
these equations in matrix form

Cb = 0 , (3)

where C is a 8× 10 coefficient matrix and b is a 10× 1
vectorized form of the set of ε′ ∪ {1}. Next, we propose
solvers for two different situations, one where a maximum
of two correspondences come from the same camera and
another where three correspondences come from the same
camera. For the case where four correspondences come
from the same camera Gi, this section contains a proof that
such a formulation cannot be solved using just one more
correspondence coming from a camera Gj , j 6= i.

sH5f2 solver: Assuming that no more than two corre-
spondences are coming from the same camera Gi, the ma-
trix C in (3) has a two dimensional null-space {b1,b2}.
A solution to b can be obtained as a linear combination
b = γ1b1 + γ2b2. Using the constraint b10 = 1, we can
express γ2 as a linear polynomial in γ1. Hence the variables
in ε′ can be parameterized as linear polynomials of γ1. Sub-
stituting such a parameterization into the generator e of the
ideal I ′2 (described in Sec. 2.2 in our main paper) yields a



univariate polynomial e(γ1) of degree five. This polynomial
can be efficiently solved using Sturm sequences [3].

The next step is to extract solutions to g33 and f . Writ-
ing G = RK−1 − tm>, we obtain a set of polynomial con-
straints. By variable elimination and substitutions, we ob-
tain the solution to g33, unique up to a sign, which is fixed
by constraining the solution of the plane vector ñ so that the
corresponding 3D point in P is in the front of the camera.
Moreover, using a similar approach we obtain a unique so-
lution to the focal length f . Solutions to G as well as m can
be extracted from the solutions to ε′ and g33. Knowing f ,
we can compute H = GK as well as ñ = Km. Decompos-
ing the homography matrix H leads to set of relative poses R
and t. As mentioned in our main paper, we ensure that H is
decomposed such that det(R) = 1.

sH5f3 solver: If there are three 2D-2D point correspon-
dences coming from the same camera Gi, the situation is
a bit different. Let us assume, w.l.o.g., that the points qi2
and qi3 are observed in camera G1, i.e., i = 1. This is the
same camera that observes the point q11. The remaining
two points can be observed by one camera Gj 6= G1 or by
two different cameras Gj 6= Gk 6= G1. In this case, G-
J elimination of the matrix C in (3) leads to a matrix of a
special form[

I6×6 06×2 06×1 c6×1
02×6 I2×2 d2×1 e2×1

]
b = 0 , (4)

where the indices of the matrices and vec-
tors indicate their sizes. Since b =
[g′11, g

′
12, g

′
21, g

′
22, g

′
31, g

′
32,m

′
1,m

′
2,m

′
3, 1]

>, the first
six rows of (4) directly give us a solution to g′kl. The
last two rows can be used to express m′1,m

′
2 as a linear

function of m′3. Substituting these expressions for m′1,m
′
2

and the extracted solution to g′kl into the polynomial e,
which is the generator of the ideal I ′2 for the unknown focal
length case (described in Sec. 2.2 in our main paper) gives
us a univariate polynomial in m′3 of degree three. The
remaining steps are similar to that of the sHf52 solver.

sH5f4 case: In this case, we have four 2D-2D point cor-
respondences observed by the same camera Gi. In such a
situation, it is impossible to solve for both the focal length
and the scale of the translation using only one additional
correspondence from a camera Gk, k 6= i1. The following
proof is algebraic, i.e., we show that all available constraints
do not define a zero-dimensional ideal. In other words, we
show that the system of equations is under-constrained and
has an infinite number of solutions.

Lemma 3.1. When the focal length of the camera P is
unknown and we have four 2D-2D point correspondences,

1Note that this also holds for k = i. Moreover, in this case, it is not
possible to recover the scale even after fixing the focal length f .

pj ↔ qij , j = 1, . . . , 4, observed by the same camera Gi,
an additional point correspondence pj ↔ qkj , j = 5, ob-
served by a different camera Gk does not provide a sufficient
number of constraints to estimate both the focal length and
the scale of the translation.

Proof. Each point correspondence, pj ↔ qij , leads to an
equation of the form (Eq. (8) in the main paper),

[qij ]×(Gpj + (m>pj)tGi
) = 0 . (5)

Due to the rank-2 skew symmetric matrix [qij ]×, only two
out of the three equations in the matrix equation in (5) are
linearly independent. This means that each point correspon-
dence yields 2 linear homogeneous constraints in the ele-
ments of G and m.

We assume that g33 6= 0 (see Sec. 2.2 in
our main paper) which allows us to divide these
constraints by g33. The resulting variables are
ε′ = {g′11, g′12, g′13, g′21, g′22, g′23, g′31, g′32,m′1,m′2,m′3}
which gives us 11 DOF.

In the main paper (see Sec. 2.2 in the main paper for
details), it was shown that after this variable transformation
there is one additional constraint in variables ε′. This con-
straint e is the generator of the elimination ideal I ′2 that was
created using all available constraints on G and m.

Let us assume without loss of generality that i = 1
and tG1

= [0, 0, 0]>. Hence the first 4 point correspon-
dences give us 8 linearly independent linear constraints in
{g′11, g′12, g′13, g′21, g′22, g′23, g′31, g′32}. This leaves us with 3
DOF, i.e., {m′1,m′2,m′3}.

The two constraints of the form (5) obtained from the
fifth point correspondence coming from camera Gk (k 6=
i = 1), as well as the polynomial e are the only remain-
ing constraints on {m′1,m′2,m′3}. However, in this case,
the two constraints from the fifth point correspondence are
linearly dependent, which we show next.

Let us denote G′ = G/g33 and m′ = m/g33. With this
notation Eq. (5) for the fifth correspondence (i.e., j = 5)
becomes

[qk5]×(G
′p5 + (m′

>
p5)tGk

) = 0 . (6)

However, having extracted the solutions to
{g′11, g′12, g′13, g′21, g′22, g′23, g′31, g′32}, G′ is fixed. Thus
we can rewrite this equation as a1 + λ[qk5]×(tGk

) = 0
where a1 = [qk5]×G

′p5 is a known 3 × 1 vector and
λ = (m′

>
p5) in a linear function in {m′1,m′2,m′3}. This

implies that the fifth correspondence imposes only one
constraint on λ and hence on {m′1,m′2,m′3}.

Altogether with the constraint e we have only two lin-
early independent polynomial equations in three variables
{m′1,m′2,m′3} and hence an under-constrained system of
polynomials that is not solvable.



4. Degeneracy for Focal Length Solvers
To obtain efficient solvers, we performed a variable sub-
stitution that was assuming that entry g33 6= 0 (for more
details, see Sec. 2.2 in the main paper). This substitution
introduces a potential degeneracy into our solvers, i.e., a
degeneracy for homographies with entry g33 = 0. Our cho-
sen coordinate system transformation allowed us to circum-
vent this situation for the calibrated solvers. However, for
the partially calibrated case, this degeneracy can potentially
lead to numerical instabilities of the solver when dealing
with homographies with entry g33 close to zero. Yet, as we
show next, our solvers for partially calibrated cameras are
numerically stable even in situations that are very close to
this degenerate case. Thus, this degeneracy is not an issue
in practice.

To test the numerical stability of our solvers in the close-
to-degenerate case, we created various synthetic scenes by
varying the magnitude of g33 w.r.t. normalized G and grad-
ually bringing it closer to 0. We evaluated the performance
of the proposed solvers sH5f2 and sH5f3 on these scenes. In
Fig. 1, we plot the error in the estimated rotation w.r.t. the
ground truth as the magnitude of g33 gradually approaches
0. For this experiment, we implemented sH5f2 using Sturm
sequences [3]. For sH5f3, we implemented two variants,
one using Sturm sequences and the other one computing
eigenvalues of the companion matrix.

We observe that sH5f2 maintains its stability even as g33
reaches a magnitude close to 10−11. In case of the sH5f3
solver, our implementation based on Sturm sequences be-
gins to experience instability w.r.t. decreasing g33. In con-
trast, our companion matrix-based implementation remains
stable. Since sH5f3 computes the roots of a polynomial of
degree three, there is no a significant difference between
the efficiency of the Sturm-based solver and the companion
matrix-based one. Therefore, we can directly use the com-
panion matrix-based solver that is numerically stable even
in close-to-degenerate situations.

Moreover, the proposed solvers are usually used inside a
RANSAC framework. Thus, after observing numerical in-
stabilities caused by g33 ≈ 0, one can always switch to a
solver that is based on a different variable substitution, i.e.,
a solver which assumes that a different entry gkl 6= 0. Such
solvers have the same structure and solve a similar polyno-
mial of degree 5 respectively 3, as the proposed solvers.

Our assumption that g33 6= 0 helped to create more ef-
ficient solvers. Yet, we have also considered a formulation
where such an assumption is not needed. This formulation
directly eliminates the mentioned degenerate configuration
and it results in solving a system of four polynomial equa-
tions in two unknowns (see Sec. 1). We use the automatic
generator [6] to construct a Gröbner basis solver for this
system of equations which performs a Gauss-Jordan elimi-
nation of a 3 × 7 matrix and an eigenvalue decomposition
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Figure 1. Rotation error in degrees of the proposed unknown focal
length solvers in the close-to-degenerate case, i.e., when g33 → 0.
We implemented solvers sH5f2 and sH5f3 using Sturm sequences
and, also, sH5f3 based on the eigenvalues of the companion ma-
trix.

of a 4 × 4 matrix. Such a solver is slightly slower than the
presented sH5f3.

5. Macaulay2 Code for Elimination Ideals
The elimination ideals I1 and I ′2 considered in Sec. 2.2 of
our main paper have been computed using the computer al-
gebra system Macaulay2 [2].

5.1. Unknown Focal Length Solvers

For the unknown focal length solvers, we use the following
lines of code to generate I1:

R = QQ[g11,g12,g13,g21,g22,g23,g31,g32,g33,
r11,r12,r13,r21,r22,r23,r31,r32,r33,
m1,m2,m3, t1,t2,t3, w ];
-- The rotation matrix
Rot = matrix {{r11,r12,r13},

{r21,r22,r23},
{r31,r32,r33}};

-- The plane vector
M = matrix {{m1,m2,m3}};
-- The translation vector
t = matrix{{t1},{t2},{t3}};
K = matrix {{1_R,0_R,0_R},{0_R,1_R,0_R},

{0_R,0_R,w}};
E = matrix {{1_R,0_R,0_R},{0_R,1_R,0_R},

{0_R,0_R,1_R}};
-- Semi-generalized homography constraint
G = Rot * K - t * M ;

I = ideal(submatrix(G,{0},{0})-g11,
submatrix(G,{0},{1})-g12,
submatrix(G,{0},{2})+g11,
submatrix(G,{1},{0})-g21,
submatrix(G,{1},{1})-g22,



submatrix(G,{1},{2})+g21,
submatrix(G,{2},{0})-g31,
submatrix(G,{2},{1})-g32,
submatrix(G,{2},{2})-g33) +
minors(1,transpose(Rot)*Rot-E)+
minors(1,Rot*transpose(Rot)-E);

-- Eliminate translation and focal length
I1 = eliminate({t1,t2,t3,w}, I);

-- Eliminate rotation matrix
I1 = eliminate({ r11,r12,r13,

r21,r22,r23,
r31,r32,r33}, I1);

betti mingens I1

Referring to Sec. 2.2 in our main paper, we note that each
variable gkl, 1 ≤ k, l ≤ 3 corresponds to the variable
gkl and mk, 1 ≤ k ≤ 3 denotes the variables mk. The
output of this code snippet shows that I1 is generated by
four polynomials, of which three are of degree 4 and one is
of degree 5.

The following code then performs the variable substitu-
tion, where each variable gkl, 1 ≤ k, l ≤ 3 after the vari-
able substitution denotes g′kl and mk, 1 ≤ k ≤ 3 denotes
the variables m′k:

I1prime = sub(I1,
{g11=> g33*g11, g12=> g33*g12,
g21=> g33*g21, g22=> g33*g22,
g31=> g33*g31, g32=> g33*g32,
m1=> g33*m1, m2=> g33*m2,
m3=> g33*m3 });

f0 = factor I1prime_0; f0 = f0#1#0;
f1 = factor I1prime_1; f1 = f1#1#0;
f2 = factor I1prime_2; f2 = f2#1#0;
f3 = factor I1prime_3; f3 = f3#1#0;
I1prime = ideal({f0,f1,f2,f3});
I2prime = eliminate({g33}, I1prime);
e = mingens I2prime
betti mingens I2prime

The output of this code are the generators of the elimination
ideal I ′2, which is in this case only one polynomial e, of
degree 5 of the following form:

e = g11g12m
3
1 + g21g22m

3
1 − g211m

2
1m2−

g221m
2
1m2 + g11g12m1m

2
2 + g21g22m1m

2
2−

g211m
3
2 − g221m

3
2 + g11g12m

2
1m3 + g21g22m

2
1m3+

g31g32m
2
1m3 − g211m1m2m3 + g212m1m2m3 − g221m1m2m3+
g222m1m2m3 − g231m1m2m3 + g232m1m2m3−
g11g12m

2
2m3 − g21g22m

2
2m3 − g31g32m

2
2m3−

g32m
3
1 + g31m

2
1m2 − g32m1m

2
2 + g31m

3
2 .

(7)

5.2. Calibrated Solvers

In the calibrated case, K is the identity matrix and w = 1.
We use the following lines of code to generate I1:

R = QQ[g11,g12,g13,g21,g22,g23,g31,g32,g33,
r11,r12,r13,r21,r22,r23,r31,r32,r33,
m1,m2,m3, t1,t2,t3 ];
-- The rotation matrix
Rot = matrix {{r11,r12,r13},

{r21,r22,r23},
{r31,r32,r33}};

-- The plane vector
M = matrix {{m1,m2,m3}};
-- The translation vector
t = matrix{{t1},{t2},{t3};
E = matrix {{1_R,0_R,0_R},{0_R,1_R,0_R},

{0_R,0_R,1_R}};
K = E;
-- Semi-generalized homography constraint
G = Rot * K - t * M ;
I = ideal(submatrix(G,{0},{0})-g11,

submatrix(G,{0},{1})-g12,
submatrix(G,{0},{2}),
submatrix(G,{1},{0})-g21,
submatrix(G,{1},{1})-g22,
submatrix(G,{1},{2}),
submatrix(G,{2},{0})-g31,
submatrix(G,{2},{1})-g32,
submatrix(G,{2},{2})-g33) +
minors(1,transpose(Rot)*Rot-E)+
minors(1,Rot*transpose(Rot)-E);

-- Eliminate translation and focal length
I1 = eliminate({t1,t2,t3}, I);
-- Eliminate rotation matrix
I1 = eliminate({ r11,r12,r13,

r21,r22,r23,
r31,r32,r33}, I1);

betti mingens I1

The output of this code snippet shows that in the calibrated
case, I1 is generated by ten polynomials, six of which are
of degree 4, three are of degree 5, and one is of degree 6.
The following code then performs the variable substitution
presented in Sec. 2.2 of the main paper:

I1prime = sub(I1,
{g11=> g33*g11, g12=> g33*g12,
g21=> g33*g21, g22=> g33*g22,
g31=> g33*g31, g32=> g33*g32,
m1=> g33*m1, m2=> g33*m2,
m3=> g33*m3 });

f0 = factor I1prime_0; f0 = f0#1#0;
f1 = factor I1prime_1; f1 = f1#1#0;
f2 = factor I1prime_2; f2 = f2#1#0;
f3 = factor I1prime_3; f3 = f3#1#0;



f4 = factor I1prime_4; f4 = f4#1#0;
f5 = factor I1prime_5; f5 = f5#1#0;
f6 = factor I1prime_6; f6 = f6#1#0;
f7 = factor I1prime_7; f7 = f7#1#0;
f8 = factor I1prime_8; f8 = f8#1#0;
f9 = factor I1prime_9; f9 = f9#0#0;
I1prime = ideal({f0,f1,f2,f3,f4,f5,f6,f7,

f8,f9});
I2prime = eliminate({g33}, I1prime);

e = mingens I2prime
betti mingens I2prime

The output of this code are generators of the elimination
ideal I ′2, which is in this case generated by a set of five
polynomials, each of which is of degree 5. For our pro-
posed solvers from 4.5 point correspondences, sH4.53 and
sH4.52, we used all of the 5 polynomials while for the
solvers sH53 and sH52 we used the first polynomial e1,

e1 = g212m1 m2 m3 + g222m1 m2 m3 + g232m1 m2 m3−
g11 g12 m

2
2m3 − g21 g22 m

2
2m3 − g31 g32 m

2
2m3−

g11 g12 m
3
3 − g21 g22 m

3
3 − g31 g32 m

3
3 − g32 m1 m

2
2+

g31 m
3
2 + g32 m1 m

2
3 + g31 m2 m

2
3 −m1 m2 m3 .

(8)

We note that the stability of the solver would be similar ir-
respective of which one of these polynomials is used.

6. Synthetic Experiments
For our synthetic experiments, due to lack of space in the
main paper, we only reported the plots of errors in the esti-
mated rotations (Sec 3.1 in the main paper). The plots of er-
rors in the estimated positions for calibrated solvers, as well
as the plots of errors in the estimated focal lengths and po-
sitions for unknown focal length solvers, are provided here.

The relative error in the estimated position with re-
spect to its ground truth value is computed as tδ = ‖t −
tGT‖/‖tGT‖, and the relative error in the estimated fo-
cal length with respect to its ground truth value as fδ =
|f − fGT |/|fGT |. Here, tGT and fGT respectively de-
note the ground truth value of the position and focal length.
These errors are plotted in Figs. 2 and 3, which show the
performance of the unknown focal length solvers and cali-
brated solvers in terms of numerical stability, solver perfor-
mance in the presence of image noise, solver performance
in the presence of close-to-planar scenes, and stability in the
presence of forward motion and image noise. For both of
the cases, we observe that our proposed solvers have com-
parable numerical stability to the state-of-the-art ones in es-
timating pose and focal length.

7. Details on the Localization Experiments
This section provides implementation details for the local-
ization experiment from Sec. 3.3 of the main paper. In ad-
dition, we present a variation of the setup used in the main

paper, where (a subset) of the top-20 retrieved images in-
stead of the top-10 retrieved images is used.

All solvers (the variants of sH5 and sH4.5, E5+1, and
E4+2) are integrated into the LO-RANSAC [8] implementa-
tion of [9]. We modified the implementation to skip the non-
minimal solver inside the local optimization (LO) stage. We
instead directly perform least-squares refinement of the es-
timated model using a random subset of the inliers of the
best model found so far [8]. After LO-RANSAC, the es-
timated model is refined on all of its inliers using the same
non-linear optimization approach. The non-linear optimiza-
tion is implemented using the Ceres library [1].

For inlier counting and non-linear optimization, we con-
sider a reprojection error: given a 2D-2D match and the
poses of the generalized and the perspective cameras, we
find the closest 3D points on the two lines corresponding
to the viewing rays of the two matching image positions.
The closest points are projected into the other image and we
measure the mean of the two reprojection errors. For inlier
counting, we use an inlier-outlier threshold of 5 pixels.

As mentioned in the paper, we randomly sample 5 cor-
respondences from all available matches for our sH5 and
sH4.5 solvers. We then select the variant that fits the sam-
ple, e.g., sH52 if at most two of the matches in the sample
come from the same image in the generalized camera. In
the case where all matches come from the same image, it is
not possible to recover the translation scale. We thus sim-
ply discard the sample and continue with the next RANSAC
iteration. However, this approach is not applicable to the
E5+1, and E4+2 solvers since they only cover three possi-
ble configurations (5 matches from one camera and 1 from
another; 4 matches from one camera and 2 from another; 4
matches from one camera and 1 each from two other cam-
eras). Moreover, the chance that 4 or more out of the 6
matches in a sample come from the same camera is very
small. Instead, we first randomly select two images for the
E5+1 solver respectively three images for the E4+2 solver
from the generalized camera. We then randomly select 4 / 5
matches from the first and 2 / 1 matches from the other im-
ages when using the E4+2 / E5+1 solver. Note that for the
E4+2, the two additional images can be identical, i.e., the
additional two correspondences might come from the same
camera. For a fair comparison of the tested solvers, we run
RANSAC for a fixed number of iterations.

The solvers can return multiple solutions. Among these,
we only use the solution with the smallest reprojection error
on the minimal sample for inlier counting and discard the
others. This approach significantly accelerates RANSAC
and we did not observe a noticeable drop in performance
for our solvers and the E5+1 solver.

Using the top-20 retrieved images. Tab. 2 in the main pa-
per reports results on the Cambridge Landmarks dataset [4]
when using the top-10 retrieved images. As an extension



-15 -10 -5 0 5
Log

10
 relative focal length error

0

500

1000

Fr
eq

ue
nc

y

sH5f
2

sH5f
3

P5Pf+N
Ef

6+1

Ef
5+2

(a)

0.01 0.1 1 2
Noise  (pixels)

0

5

10

15

R
el

at
iv

e 
fo

ca
l l

en
gt

h 
er

ro
r(

%
)

(b)

0.01 0.05 0.1
Distance of 3D point from plane

0

10

20

30

R
el

at
iv

e 
fo

ca
l l

en
gt

h 
er

ro
r(

%
)

(c)

0.01 0.1 1 2
Noise  (pixels)

0

10

20

30

R
el

at
iv

e 
fo

ca
l l

en
gt

h 
er

ro
r(

%
) Forward motion

(d)

-10 -5 0 5
Log

10
 relative pose error

0

500

1000

Fr
eq

ue
nc

y

(e)

0.01 0.1 1 2
Noise  (pixels)

0

5

10

15

20

R
el

at
iv

e 
po

se
 e

rr
or

(%
)

(f)

0.01 0.05 0.1
Distance of 3D point from plane

0

10

20

30

40

R
el

at
iv

e 
po

se
 e

rr
or

(%
)

(g)

0.01 0.1 1 2
Noise  (pixels)

0

10

20

30

R
el

at
iv

e 
po

se
 e

rr
or

(%
)

Forward motion

(h)
Figure 2. The focal length (top) and position (bottom) errors of solvers considering partially calibrated cameras. Plots (a,e) show the
numerical stability, i.e., histograms of errors, in the noise-free case. Plots (b,f) report the errors in the presence of image noise. Plots (c,g)
show results on close-to-planar scenes. For (d,h), forward camera motion was considered.
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Figure 3. Pose error of solvers considering calibrated cameras. Plot (a) shows the numerical stability, i.e., histogram of errors in the
noise-free case. Plot (b) reports the errors in the presence of image noise. Plot (c) shows results on close-to-planar scenes. For (d), forward
camera motion was considered.

to this experiment, we also use the top-20 retrieved images.
We further experiment with sparsifying the set of retrieved
images: [7,11] first compute the essential matrices between
the perspective image and the images in the generalized
camera. They then use these relative poses to triangulate
the pose of the perspective image. Naturally, larger base-
lines between the images in the generalized camera lead to
more stable triangulations. Thus, [7, 11] report that better
results are obtained when ensuring that the images used to
define the generalized camera have certain baselines. To
analyze whether this also holds for the structure-less local-
ization methods used in this paper, we employ a simple ap-
proach: in the order in which the images were retrieved, we
first select the top-retrieved image. The top-i-th retrieved
image is then selected if it is at least X meters away from
all previously selected images. We experiment with thresh-
olds of X = 1 meters and X = 2 meters.

Tab. 1 shows the results of this experiment. Note that
we are excluding the E4+2 solver as Tab. 2 in the main
paper shows that it performs worse than the other solvers
in terms of pose accuracy and run-times. For complete-
ness, we reprint the part of Tab. 2 corresponding to 1,000
RANSAC iterations. As can be seen, using the top-20 in-
stead of top-10 retrieved images to define the generalized
cameras in general reduces the rotation errors without much
impact on the position errors. Selecting a subset of the top-
20 retrieved images based on the distance threshold X does
not result in better pose estimates than using all top-20 im-
ages. However, it leads to faster run-times as the gener-
alized cameras contain fewer images (typically fewer than
10), resulting in fewer matches. In addition, the results for
subsets of the top-20 retrieved images show that smaller
rotation errors and similar position errors can be achieved
using fewer than 10 images compared to simply using the



King’s College Old Hospital Shop Facade St. Mary Church Avrg. all
Method pos. rot. time pos. rot. time pos. rot. time pos. rot. time pos. rot.

top-10 retrieved images

E5+1 [10] (1k iter.) 0.19 / 0.33 0.34 / 0.48 0.82 0.42 / 1.10 0.75 / 1.78 0.39 0.06 / 0.10 0.29 / 0.44 0.37 0.11 / 0.15 0.38 / 0.55 0.49 0.20 0.44
E4+2 [10] (1k iter.) 0.20 / 0.42 0.35 / 0.60 0.75 0.83 / 2.51 1.55 / 3.88 0.56 0.07 / 0.16 0.32 / 0.70 0.53 0.20 / 0.70 0.71 / 2.17 0.59 0.33 0.73
ours (sH5) (1k iter.) 0.20 / 0.31 0.34 / 0.48 0.33 0.46 / 1.03 0.89 / 2.47 0.16 0.06 / 0.10 0.29 / 0.45 0.16 0.13 / 0.43 0.47 / 1.35 0.20 0.21 0.50
ours (sH4.5) (1k iter.) 0.19 / 0.30 0.33 / 0.46 0.52 0.40 / 1.21 0.74 / 1.91 0.27 0.06 / 0.10 0.29 / 0.44 0.26 0.12 / 0.17 0.40 / 0.59 0.33 0.20 0.44

top-20 retrieved images

E5+1 [10] (1k iter.) 0.17 / 0.26 0.32 / 0.40 1.43 0.41 / 1.05 0.80 / 1.69 0.58 0.06 / 0.09 0.26 / 0.41 0.52 0.10 / 0.14 0.38 / 0.51 0.79 0.19 0.44
ours (sH5) (1k iter.) 0.17 / 0.27 0.33 / 0.41 0.58 0.46 / 1.27 0.91 / 2.31 0.23 0.06 / 0.10 0.26 / 0.45 0.20 0.12 / 0.29 0.44 / 0.84 0.32 0.20 0.49
ours (sH4.5) (1k iter.) 0.16 / 0.26 0.29 / 0.41 0.89 0.33 / 0.73 0.65 / 1.25 0.40 0.05 / 0.09 0.25 / 0.41 0.33 0.11 / 0.15 0.38 / 0.53 0.50 0.16 0.39

top-20 retrieved images, 1 meter minimal distance between selected retrieved images

E5+1 [10] (1k iter.) 0.18 / 0.27 0.33 / 0.42 0.75 0.35 / 0.85 0.74 / 1.37 0.36 0.06 / 0.09 0.28 / 0.41 0.27 0.11 / 0.14 0.40 / 0.53 0.43 0.18 0.44
ours (sH5) (1k iter.) 0.18 / 0.26 0.32 / 0.42 0.31 0.37 / 0.84 0.71 / 1.33 0.14 0.07 / 0.10 0.28 / 0.46 0.12 0.14 / 0.24 0.50 / 0.78 0.17 0.19 0.45
ours (sH4.5) (1k iter.) 0.19 / 0.28 0.35 / 0.43 0.49 0.38 / 0.81 0.67 / 1.37 0.25 0.06 / 0.09 0.27 / 0.41 0.19 0.11 / 0.16 0.40 / 0.56 0.29 0.19 0.42

top-20 retrieved images, 2 meter minimal distance between selected retrieved images

E5+1 [10] (1k iter.) 0.18 / 0.28 0.33 / 0.43 0.50 0.40 / 0.80 0.79 / 1.32 0.22 0.07 / 0.10 0.31 / 0.45 0.19 0.11 / 0.15 0.37 / 0.54 0.30 0.19 0.45
ours (sH5) (1k iter.) 0.19 / 0.29 0.35 / 0.46 0.20 0.44 / 0.95 0.83 / 1.74 0.10 0.08 / 0.12 0.31 / 0.53 0.09 0.15 / 0.57 0.50 / 1.61 0.12 0.22 0.50
ours (sH4.5) (1k iter.) 0.19 / 0.28 0.34 / 0.43 0.33 0.39 / 0.64 0.69 / 1.14 0.18 0.07 / 0.10 0.31 / 0.47 0.16 0.12 / 0.16 0.41 / 0.58 0.22 0.19 0.44

Table 1. Localization results on Cambridge Landmarks [4]. We report the median/mean position (in meters) and rotation (in degrees)
errors, and the mean RANSAC time (in seconds). We also report the average median position and rotation error over all four scenes. We
show results obtained with the top-10 retrieved images (identical to the results in Tab. 2 of the main paper), the top-20 retrieved images,
and subsets of the top-20 retrieved images where there is at least 1 / 2 meter distance between the selected retrieved images (see Sec. 7 for
details). We show results for fixing the number of RANSAC iterations to 1000. Best and second best results are shown in red and blue. We
do not show results for the E4+2 solver for the top-20 retrieved images as it is both slower and less accurate compared to the other solvers.

top-10 retrieved images.
Consistent with the results for the top-10 retrieved im-

ages, our sH4.5 solvers perform similar as the E5+1 solver
on average over all scenes while offering faster run-times.
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