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1. Implementation Details

As we only use image-based observations, the Inference
model is DCGAN [4], where the encoder is fixed to a three-
layer convolutional neural network with 64 as the hidden
vector size for context variable zc, and the decoder has
the similar structure as encoder but with transposed con-
volutions. In the generation model, the policy network πθ
is a two-headed multi-layer perceptron parameterized by θ
for computing actions and estimating the expected return
values. The transition model in Ext-MGAIL is the Gaus-
sian distribution with mean and variance parameterized by a
multi-layer perceptron. We represent the discriminator as a
multi-layer perceptron with parameters ω that takes as input
a state-action pair and outputs a value between 0 and 1. All
network consisted of 2 hidden layers with [64,32] units in
each layer and Leaky-ReLU as non-linearity function. Dur-
ing training, all model are optimized by Adam optimizer [3]
with the starting learning rate of 1e−4.

2. Experiment on a Second Dataset

To further illustrate the effectiveness of our method, we
experiment on a second dataset [1]. This dataset contains
narrated instruction videos that described five diverse tasks:
1. Change tire, 2. Perform CPR, 3. Repot plant, 4. Make
coffee, and 5. Jump car, where each task has 30 videos with
the dense instructional caption. Table. 1 shows the statisti-
cal comparison of two datasets. Compared with CrossTask,
this dataset has fewer tasks, but the average trajectory length
is three steps longer. We choose this dataset over other in-
structional video datasets because it is challenging for our
method as it contains fewer samples with longer trajectory.

Table 1: Comparsion between two datasets.

Tasks Videos Actions Avg. length

Crosstask 18 2,750 105 6.5
2nd Dataset 5 150 58 9.5

Table 2: Results of Procedure Planning. Both of our mod-
els outperformed the DDN [2], but the performance increase
is smaller than that obtained on the CrossTask; this shows
that for longer sequence, optimizing on the whole trajectory
can marginally improve the performance.

Uniform DDN Int. Ext.

Succ. rate 2.21 18.41 20.19 22.11
T=3 Accuracy 4.07 32.54 39.02 42.20

mIoU 6.09 56.56 60.65 65.93

Succ. rate 1.12 15.97 19.91 17.47
T=3 Accuracy 2.73 27.09 36.31 37.89

mIoU 5.84 47.32 53.84 55.52

Table 3: Results of Walk-through Planning. Our model
outperforms the baseline models by modelling the transition
over whole sequence.

Uniform DDN Int Ext

T=3
Hamming 0.89 0.62 0.31 0.24
Pair acc. 62.60 88.61 90.29 95.59

T=4
Hamming 1.12 0.87 0.64 0.56
Pair acc. 58.55 85.43 87.65 93.76

2.1. Walk-through Planning

The key to successfully perform walk-through planning
is to construct the rank matrix, capturing the transition prob-
ability between the two observations. The results are shown
in Table 3, our two methods outperform the baseline model
even we only have marginal performance in procedure plan-
ning. Explicitly modelling the transition makes our method
focus on capturing the transition between the two adjacent
observations; thus, both models have a better performance
than the walk-through planning experiment on CrossTask.

2.2. Procedure Planning
As shown in Table 2, both of our models outperformed

the DDN [2]. However, the increase of the performance is
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Figure 1: Procedure Planning qualitative results. Procedure Planning qualitative results for Repot Plant. The top row
describes the correct action sequence required to repot the plant. To examine our mode’s robustness, We vary the start and
goal observations to evaluate our method. The results show that our approach is robust to perform planning within different
stages in the video.
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Figure 2: Procedure Planning qualitative results for Make French Strawberry Cake. The top row describes the correct
action sequence required to make a strawberry cake. We evaluate our method by varying the start and goal observations,
respectively. The results show that our approach is robust to perform planning within different stages in the video.

smaller than one obtained on the CrossTask, and the per-
formance between Int-MGAIL and Ext-MGAIL are very
similar. This is due to the fact that optimizing the whole
trajectory is similar to the Monte Carlo tree search– the al-
gorithm needs more samples to find the optimal path for
longer sequence length. However, the new dataset does not
provide sufficient samples to improve the performance over
the longer trajectory. In this case, the performance primar-

ily depends on the network’s ability to capture the one-step
transition. Therefore, using a more robust transition model
(Ext.) will not help here because the small number of sam-
ples can be easily modelled even with the interior model
(Int.). The transition model will degenerate to the first case
(w/o seq) in the ablation study.
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