
Appendix

A. Additional Ablations

A.1. Fully supervised performance

We report fully supervised performance of Deep-MAC

and Deep-MARC in Table 9.

Model Backbone AP APS APM APL

ShapeMask RF101 37.4 16.1 40.1 53.8

ShapeMask RNF101 40.0 18.3 43.0 57.1

CPMask RF101 39.2 22.2 41.8 50.1

Deep-MAC HG104 39.4 20.5 41.9 54.0

Deep-MARC SN143 42.8 24.3 46.0 60.5

Table 9: Fully supervised instance segmentation performance on COCO

test-dev2017. Backbones include RF=ResNet-FPN, RNF=ResNet-

NAS-FPN, HG=Hourglass, SN=SpineNet. Deep-MAC is trained at

1024 × 1024 resolution with an HG-100 mask-head and Deep-MARC is

trained at 1280×1280 resolution with HG-52 mask-head. Mask heads are

explored in detail in Section 6. We report mAP of coco-testdev2017.

A.2. DeepMAC

A.2.1 Effect of instance and coordinate embedding

Table 10 shows the effects of coordinate embedding and in-

stance embedding on ResNet and Hourglass mask heads.

We notice that the additional embeddings do not make a sig-

nificant difference to the Hourglass model, but coordinate

embedding is required for the ResNet based mask heads to

converge. For uniformity, we have thus used both compo-

nents in all Deep-MAC variants.

Mask Head C I Mask mAP

Overall VOC Non-VOC

ResNet-20 – – –

✓ – – –

✓ 30.9 39.1 28.2

✓ ✓ 31.4 39.1 28.8

HG-20 34.1 39.8 32.2

✓ 34.5 39.9 32.7

✓ 33.6 39.9 31.5

✓ ✓ 34.3 39.8 32.5

Table 10: Effect of Coordinate Embedding (C) and Instance Embedding

(I) on the generalization ability of Deep-MAC on unseen classes. A ‘–’

indicates that the model failed to converge. All models are trained with

masks only from VOC classes at an input image resolution of 512× 512.

Performance is reported with the VOC-Masks-Only setup.

FCN layers Mask mAP

Overall VOC Non-VOC

2 29.1 38.4 26.0

4 30.5 37.5 28.2

Table 11: Effect of using fully connected layers as mask-heads on Deep-

MAC . Performance is reported with the VOC-Masks-Only setup. For

easy reference, the VOC/non-VOC mask mAP values for Resnet-4 and

HG-52 mask-heads are 39.7/26.6 and 39.8/32.5 respectively.

Variant Mask mAP

Class-specific (Proposals + GT) 37.2

Class-agnostic (Proposals + GT) 36.7

Class-agnostic (GT only) 36.4

Table 12: Fully supervised mask mAP of Mask-RCNN variants with a

ResNet-50-FPN backbone.

A.2.2 Effect of using fully connected layers

See Table 11 for experiments with fully connected layers.

We used Glorot normal initialization [13] the mask-head

weights. Based on these results, we see that the fully con-

nected mask-head models, which have full receptive field

with respect to the input tensor, do not offer competitive

performance compared to the HG-based mask-heads. How-

ever, early large receptive fields may still be beneficial to

some extent as these fully connected mask-heads do out-

perform our shallowest convolution-only mask-heads (e.g.

Resnet-4).

A.3. Mask RCNN

Table 12 shows the impact of using groundtruth boxes

(instead using proposals, which is the standard approach)

for training the mask-head of a fully supervised Mask R-

CNN model on COCO. First we see that using a class-

agnostic mask head results in a slightly lower mask mAP

compared to the standard class-specific mask-head. Train-

ing with groundtruth boxes instead of proposals does not

further impact the performance of the class agnostic mask

head significantly.

B. Using Deep-MAC just for its masks for two-

stage training

In this section we show that it is detection quality rather

than mask quality which is now the bottleneck to achieving

even better performance on the partially supervised COCO

task, at least with respect to the mAP metric. With this in-

sight, we use Deep-MAC to label instance masks on classes

where they do not already exist and train a model with better

detection performance on the resulting data.
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Figure 4: Schematic of the Deep-MAC architecture. The top-half is kept identical to CenterNet [55] and the bottom-half uses an RoI crop followed by a

deep mask head. In our experiments, it was crucial to train the mask head with only groundtruth boxes.

Model B.B. Mask mAP

Overall VOC non-VOC

Deep-MAC [R4] HG104 37.8 42.2 36.3

Mask R-CNN RF50 36.1 40.2 34.7

Mask R-CNN SN143 41.9 46.4 40.4

Table 13: Using Deep-MAC generated pseudo labels to train other models.

Deep-MAC is trained as described in Table 9 on pseudo labels and evalu-

ated on the coco-val2017 set. Other models are trained with their de-

fault settings. Backbones(B.B.) include HG=Hourglass, RF=ResNet-FPN,

SN=SpineNet. R4=ResNet-4 mask-heads. For reference, the “teacher”

Deep-MAC model achieves a non-VOC mAP of 35.5% (c.f. Table 8).

B.1. Limited headroom on COCO mask quality.

If, as with the detector-free model from Section 6, we run

the mIOU evaluation on the Deep-MAC model cropping

to groundtruth boxes, we obtain 81.4% which is slightly

better than the detection-free model. To put this number

in perspective, [14] showed that COCO groundtruth masks

achieve 83%-87% mIOU when compared to expert labels.

Thus our finding suggests that remaining headroom on im-

proving segmentation quality is quite limited (we are likely

close to a saturation point). Note that this is not to say that

our models have reached human level performance, since

COCO annotation quality is known to be lower that some

more recent datasets (e.g., LVIS [14]). However, our find-

ing does suggest that future improvements on the partially

supervised task on COCO as measured by mean AP will

be much easier to come by via improvements to detection

quality as opposed to segmentation quality.

B.2. Two stage (selfdistillation style) training for
improved mAP or cheaper models.

To illustrate, we use Deep-MAC just for its masks (and

not its boxes), first segmenting unseen categories and then

training a stronger detection model (Mask R-CNN with

SpineNet [6], which reaches 48.6% box AP compared to

Deep-MAC which reaches 44.1% box AP) in fully super-

vised mode on these pseudo labels. Table 13 (last row)

shows the result of this experiment — specifically, Mask R-

CNN with SpineNet is able to leverage the pseudo labels to

get to a 40.4% non-VOC mask mAP, which is significantly

higher than the original model that generated the pseudo

labels. Thus improving box detection quality leads to a sig-

nificantly increased final non-VOC mAP which is not upper

bounded by the non-VOC mAP of Deep-MAC itself. This is

also the highest performance ever reported on the partially

supervised task by a margin of 6.4% (but only by virtue

of better detection and without improving generalization to

novel classes).

Our recommendation, consequently, is that the commu-

nity should focus on harder tasks either by training with

even fewer mask annotations, or evaluate partially super-

vised performance on LVIS [14] which has more classes

and higher quality masks. As an initial step, we train Deep-

MAC on COCO masks from all 80 categories and evaluate

mIOU on LVIS masks (from the v1-val set) cropping to

LVIS groundtruth boxes. Here our models using ResNet-4

and HG-100 mask-heads achieve 70.3% and 79.9% mIOU

respectively, showing that architecture continues to matter

for strong mask generalization even on LVIS. Comparing

to [14] who report 90-92% mIOU dataset-to-expert agree-

ment, we also see that there is still a gap between Deep-

MAC and human performance (but this is likely at least in

part due to COCO’s lower quality masks).

Another application of two stage training is to train a

cheaper instance segmentation model on masks produced

by Deep-MAC. The first two rows of Table 13 demonstrate

results using a cheaper Mask R-CNN model or Deep-MAC

model with a shallower (4 layer) mask-head. This exper-

iment is particularly interesting in the case of the student



Deep-MAC model with the shallow head since in this two

stage setting, the student trains as if it were being fully

supervised. According to our findings in Section 6, we

should therefore expect it to achieve the same performance

as Deep-MAC with the heavier mask-head (which it does,

and even exceeds). Thus for COCO categories we are able

to leverage the strong mask generalization properties of the

heavier mask-head while retaining the computational bene-

fits of the cheaper mask-head. When running at 1024×1024
resolution on a V100 GPU, Deep-MAC with an HG-100

mask-head takes 232 ms per image, whereas the cheaper

student model with a ResNet-4 mask-head is faster (201

ms per image). Notably, this cheaper student model is on

par with ShapeMask [27] in terms of speed (204 ms) while

achieving a 2.1 % improvement on non-VOC mAP.2

C. Generalizing from a single class

In the majority of our experiments, we assumed the stan-

dard setup of “train-on-VOC, test-on-non-VOC”. In this

section, we restrict further, training on a single “source”

class at a time, in order to better understand when Deep-

MAC can be expected to strongly generalize to a novel

class. In Figure 5a we plot results from this experiment,

training on each of the VOC categories with 512× 512 res-

olution inputs and an Hourglass-52 mask head. We observe

that while some classes lead to strong performance, there

is high variance depending on the source category (ranging

from 12.5% mAP to 27.8% mAP). Notably, a single class

can achieve strong results — as one datapoint, training only

on the chair category with higher resolution 1024×1024 in-

puts yields a non-VOC mask mAP of 31.5, which is compet-

itive with previous high-performance methods (e.g., Shape-

Mask [27]) when trained on all VOC categories.

In some cases it is easy to guess why a class might be a

poor source — on the worst classes, we see that the quality

of groundtruth masks is uneven in COCO. For example, la-

belers were not consistent about excluding objects that were

on but not part of a dining table (see Section E).

For more detailed insight, we ask how training on a spe-

cific source class might generalize to a specific new target

class. For source-target pairs (i, j), Figure 5b visualizes this

relationship via the ratio between mAP on target class j if

we were to train on just the source class i to mAP on target

class j if we were to train on all classes. Here we cluster the

rows and columns by similarity and truncate ratios to be at

most 1.0 for visualization purposes.3

Figure 5b illustrates that some classes (e.g., apple [52],

umbrella [45], stop sign [42]) are universally easy transfer

targets likely due to being visually salient, having consistent

2Inference speed is not reported in CPMask [10]
3It is worth noting in several cases (most notably, hair drier [34]) that it

is better to train on other source classes than it is to include the target class

annotations during training.

appearance and not typically co-occurring with other exam-

ples of their own class. We also see that co-occurrence of

source and target classes does not always lead to improved

ratios (i.e. close to 1). For example, training on car does

not yield strong performance on stop signs [42] or parking

meters [43] and training on person does not yield strong per-

formance on bench [01] or baseball bat [09]. On the other

hand, categories that are similar semantically seem to func-

tion similarly as source categories, and with a few excep-

tions, the source categories cluster naturally into two broad

groups: man-made and natural objects.

It remains an open question why a class might excel as

a source class in general. Intuitively one might think that

person, car or chair categories might be the best because

they have the most annotations and are visually diverse, but

perhaps surprisingly, using the bottle category is the best.

This may be due to the fact that bottles tend to look alike

and appear in groups, forcing the model to make non-local

decisions about mask boundaries. We leave exploration of

this hypothesis for future work.

D. Example images on unknown classes

See Figure 6 for example outputs of Deep-MAC . We

look at the output of our model with user-specified boxes

around object categories that are not in the COCO dataset.

We observe that Deep-MAC generalizes to multiple differ-

ent domains like biological and camera trap images and

does well even in cluttered settings. For this experiment,

we used a model trained with all COCO classes in fully su-

pervised mode.

E. Looking at annotation quality

In Figure 7 we show examples of COCO groundtruth

annotations from the dining table, bicycle and potted plant

categories, the worst three categories to use as source train-

ing categories. The examples illustrate the inconsisten-

cies/inaccuracies in mask annotations for these categories

— for example, annotators were inconsistent about includ-

ing or excluding objects on the dining tables.

F. Mask head architecture details

Details of mask head architectures can be found in Ta-

ble 14, 15, 16 and 17. Figure 8 illustrates the computation

graph of an hourglass mask head.
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[13] toothbrush
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[19] remote
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[25] backpack
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[31] teddy bear
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[35] book
[37] truck
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[45] umbrella
[47] bear
[49] baseball glove
[51] clock
[53] frisbee
[55] traffic light
[57] orange
[59] cake

(b)

Figure 5: (a) Mask mAP on Non-VOC classes when training with masks from only a single source class from the VOC set; (b) Performance on specific

(Non-VOC) target classes when training with masks from only a single class. We visualize performance relative to full supervision.



(a) Photo by Jonathan Farber on Unsplash. (b) Photo by Robert Bye on Unsplash.

(c) Sample from the Snapshot Serengeti dataset. (d) Photo by Chris Briggs on Unsplash.

(e) SEM blood cells image from wikipedia. (f) Photo by Maggie Jaszowska on Unsplash.

Figure 6: Example outputs of Deep-MAC with hand-drawn boxes on unknown classes.



(a) Bicycle: The annotated masks don’t capture the shape correctly, and quite often label parts of the background interspersed with the bicycle frame as foreground.

(b) Dining Table: Inconsistencies in annotated parts of dining tables. Left: Plate and cup with carrots is excluded whereas plate with empty glass is included in the

mask. Center: Some glasses on the dining table are included as part of it whereas some classes aren’t. Right: Chairs are excluded from the dining table mask in the

dining tables near the bottom, whereas they are included in the dining table masks near the top.

(c) Potted plant: Areas of background are included in the foreground masks of potted plants, especially near the leaves.

Figure 7: Example annotations of the 3 worst source classes to train on.



Type Depth # of Blocks Conv Block

Size Channels

ResNet 4 1 32× 32 64

2 32× 32 128

32× 32 128

8 1 32× 32 64

4 32× 32 128

32× 32 128

12 1 32× 32 64

6 32× 32 128

32× 32 128

16 1 32× 32 64

8 32× 32 128

32× 32 128

20 1 32× 32 64

8 32× 32 128

32× 32 128

2 32× 32 128

32× 32 128

ResNet Bottleneck 6 1 32× 32 64

2 32× 32 128

32× 32 512

32× 32 128

9 1 32× 32 64

3 32× 32 128

32× 32 512

32× 32 128

12 1 32× 32 64

4 32× 32 128

32× 32 512

32× 32 128

15 1 32× 32 64

5 32× 32 128

32× 32 512

32× 32 128

21 1 32× 32 64

6 32× 32 128

32× 32 512

32× 32 128

1 32× 32 192

32× 32 384

32× 32 192

Table 14: Architecture details of ResNet and ResNet bottleneck mask heads.



Type Depth # of Blocks Conv Block

Size Channels

ResNet Bottleneck [1/4th] 6 1 32× 32 16

2 32× 32 32

32× 32 128

32× 32 32

12 1 32× 32 16

4 32× 32 32

32× 32 128

32× 32 32

21 1 32× 32 16

6 32× 32 32

32× 32 128

32× 32 32

1 32× 32 48

32× 32 192

32× 32 48

30 1 32× 32 16

5 32× 32 32

32× 32 128

32× 32 32

5 32× 32 48

32× 32 192

32× 32 48

51 1 32× 32 16

6 32× 32 32

32× 32 128

32× 32 32

8 32× 32 48

32× 32 192

32× 32 48

3 32× 32 64

32× 32 256

32× 32 64

Table 15: Architecture details of ResNet bottleneck [1/4th] mask head.



Type Depth # of Blocks Conv Block

Size Channels

Hourglass 10 1 32× 32 64

3 32× 32 128

32× 32 128

1 16× 16 128

16× 16 128

1 32× 32 128

20 1 32× 32 64

3 32× 32 128

32× 32 128

4 16× 16 128

16× 16 128

2 8× 8 192

8× 8 192

1 32× 32 128

32 1 32× 32 64

5 32× 32 128

32× 32 128

4 16× 16 128

16× 16 128

4 8× 8 192

8× 8 192

2 4× 4 192

4× 4 192

1 32× 32 128

52 1 32× 32 64

5 32× 32 128

32× 32 128

4 16× 16 128

16× 16 128

4 8× 8 192

8× 8 192

4 4× 4 192

4× 4 192

4 2× 2 192

2× 2 192

4 1× 1 256

1× 1 256

1 32× 32 128

Table 16: Architecture details of Hourglass mask head (Part 1 of 2).



Type Depth # of Blocks Conv Block

Size Channels

Hourglass 100 1 32× 32 64

9 32× 32 128

32× 32 128

8 16× 16 128

16× 16 128

8 8× 8 192

8× 8 192

8 4× 4 192

4× 4 192

8 2× 2 192

2× 2 192

8 1× 1 256

1× 1 256

1 32× 32 128

Table 17: Architecture details of Hourglass mask head (Part 2 of 2).
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Figure 8: Illustration of the Hourglass 20 mask head computation graph.


