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Figure 1: Qualitative examples of our method’s output in comparison to our baselines: HigherHRNet[3] and CenterNet[17].
Best viewed in color and in a screen. Additional results are shown at the end of this document.

Abstract

In this document, we provide: (i) an in-depth analysis of
our results on COCO compared to bottom-up state-of-the-
art methods, (ii) a detailed explanation of our procedure to
match detected centers to ground truth centers, (iii) com-
prehensive training and inference implementation details,
together with our exact architecture, and (iv) qualitative re-
sults of our method’s output and visualizations of attention
activations.

1. Extended COCO Comparison
In Table 1, we provide a detailed comparison of Cen-

terGroup against published bottom-up approaches on the
COCO test-dev dataset. For each method, we specify its
backbone network, grouping procedure, input size, and pa-
rameter count. We observe that most top-performing meth-

ods rely on greedy decoding schemes, which often involve
optimization in the form of solving a sequence of bipartite
matching problems. Alternatively, SPM [13] uses offsets,
but relies on top-down refinement to achieve competitive re-
sults 1, and HGG[6] uses a hierarchical clustering algorithm
that operates on the output of graph network predictions.

CenterGroup outperforms all previous methods with our
proposed attention-based grouping module, which does not
rely on optimization and is end-to-end trainable. Note that
this module only introduces a slight increase in the number
of parameters with respect to HigherHRNet[3], and com-
bined with our keypoint detector, yields a model with sig-
nificantly fewer parameters than other methods.

Regarding performance, we note that the increase in ac-
curacy is most significant for large persons, where our im-

1i.e. it applies a single person pose estimation model over the predicted
poses.
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Method Backbone Grouping Input size # Params AP AP50 AP75 APM APL

w/o multi-scale test

OpenPose* [1] – Greedy decoding w/ optimization – – 61.8 84.9 67.5 57.1 68.2
AE* [12] Hourglass Greedy decoding w/ optimization 512 277.8M 62.8 84.6 69.2 57.5 70.4
PersonLab[14] ResNet152 Greedy decoding 1401 68.7M 66.5 88.0 72.6 62.4 72.3
PifPaf[9] – Greedy decoding w/ optimization – – 66.7 - - 62.4 72.9
HigherHRNet[3, 12] HRNet-W32 Greedy decoding w/ optimization 512 28.6M 66.4 87.5 72.8 61.2 74.2
HigherHRNet[3, 12] HRNet-W48 Greedy decoding w/ optimization 640 63.8M 68.4 88.2 75.1 64.4 74.2
Ours HRNet-W32 Attention 512 30.3M 67.6 88.7 73.6 61.9 75.6
Ours HRNet-W48 Attention 640 65.5M 69.6 89.7 76.0 64.9 76.3

w/ multi-scale test

AE* [12] Hourglass Greedy decoding w/ optimization 512 277.8M 65.5 86.8 72.3 60.6 72.6
SPM* [13] Hourglass Offsets (One-shot) 512 277.8M 66.9 88.5 72.9 62.6 73.1
HGG [6] Hourglass Graph Network + Graclus clustering [4] 512 – 67.6 85.1 73.7 62.7 74.6
PersonLab [14] ResNet152 Greedy decoding 1401 68.7M 68.7 89.0 75.4 66.6 75.8
HrHRNet-W48 [3] HRNet-W48 Greedy decoding w/ optimization 640 63.8M 70.5 89.3 77.2 66.6 75.8
Ours HRNet-W32 Attention 512 30.3M 70.0 89.9 76.6 65.2 77.1
Ours HRNet-W48 Attention 640 65.5M 71.1 90.5 77.5 66.9 76.7

Table 1: Comparison of published bottom-up methods on the COCO2017 test-dev split. * means top-down refinement. w/
optimization refers to the use of bipartite matching solvers during inference.

provement is of 2.1 AP points for single-scale, and 1.3 for
multi-scale, which can be explained by the ability of our
transformer to capture relationships among distant joints in
the image. Overall, it outperforms the current state-of-the-
art method, HigherHRNet[3] by approximately 1.2 AP for
single-scale and 0.6 AP for multi-scale, while having the
exact same backbone and input size, and being 2.5x faster,
which confirms CenterGroup’s increased efficiency.

2. Matching Centers
In order to train our grouping module, we need to deter-

mine which detected centers in the image correspond to a
ground truth pose. As explained in Section 5.4 in the main
paper, this allows us to define a target yccenter for every de-
tected center c ∈ C indicating whether it represents a ground
truth pose (i.e., yccenter = 1) or not (yccenter = 0). These labels
are used to train our center classification module. Moreover,
for those detected centers that do correspond to a ground
truth pose, we obtain the visibility of their corresponding
keypoints as well as the locations of those that are visible
by simply using the annotations of the ground truth center
that the detected center is matched with.

In order to determine correspondences between detected
centers (C) and ground truth centers (P), we compute the
euclidean distance between every c ∈ C and c̄ ∈ P , and
normalize it by the scale of c̄, sc̄:

dist(c, c̄) := exp

(
−||locc − locc̄||2

2sc̄ ∗ k2

)
(1)

where k is a fixed constant set to 0.152, and the scale sc̄
is computed as 0.53 multiplied by c̄’s bounding box height
and width, following [10]. This formula is adapted from
the OKS metric, and simply normalizes distances between 0
and 1 by using a pre-defined standard deviation that depends
on the object size.

With the distances from Equation 1, we define an in-
stance of a bipartite matching problem. For every c ∈ C and
c̄ ∈ P , their corresponding cost cost(c, c̄) := 1− dist(c, c̄),
whenever dist(c, c̄) < 0.5 and ∞ otherwise. We obtain
matches between centers and ground truth centers by solv-
ing the problem with the hungarian algorithm, similarly to
[2]. Note that running this algorithm takes on average sig-
nificantly less than 1ms since the cost matrix is, at most,
of size 20x30, and therefore it adds no significant computa-
tional burden. Additionally, note that this procedure is only
necessary at training time in order define ground truth as-
signments. At test-time, as explained in the main paper, we
do not require any form of optimization.

3. Implementation Details
3.1. Training

We pretrain our backbone and keypoint detection mod-
ule following HigherHRNet [3]. We then randomly initial-
ize our encoding and grouping modules and train our entire
model end-to-end for 27, 000 iterations with batch size 130,

2This number is determined by increasing by 50% the constant that the
COCO dataset uses for hip joints for OKS computation.



which corresponds to approximately 50 epochs on COCO,
and 270 epochs on CrowdPose, and use learning rate lin-
ear warm-up during the first 1, 000 iterations[5]. We use
an Adam optimizer [7] with learning rate set to 1e − 5 for
pretrained layers and 3e − 4 for the remaining parts of the
network, which we drop by a factor of 10 at 10,000 and
20,000 iterations. In addition, use use automatic mixed
precision for training [11], which reduces the memory re-
quirements by approximately half, and allows training on
4 NVIDIA RTX6000 with 24GB of RAM memory in ap-
proximately 24 hours. We observe that our training loss
shows high stability and allows training with mixed preci-
sion without any divergence problems, in contrast to Asso-
ciative Embeddings[12]. For data augmentation, we use the
same techniques as [3], which include random flipping, ro-
tation, scale variation, and generating a random crop of size
512x512, when using an HRNet32 backbone, or 640x640
when using an HRNet48 backbone.

We add one grouping module at the output of every trans-
former encoder block and compute the location, visibility
and center losses, and then average them over the output of
every transformer encoder block. Loss terms are balanced
as follows: the heatmap loss, Lheatmap is weighted by factor
10, the location loss, Lloc is averaged over all visible key-
points in the image and weighted by 0.02, the center and
visibility losses, Lvis and Lcenter, are both weighted by fac-
tor 1. The overall set of weights is determined by ensuring
that each loss term has a comparable magnitude.

3.2. Inference

At inference, we resize images to preserve their aspect
ratio and have their shorter side of size 512 if using a HR-
Net32 backbone, or 640 if using HRNet48. Following [3],
predicted heatmaps are upsampled to full image resolution.
We then extract peaks by applying heatmap Non-Maximum
Suppression (NMS) with a max-pooling kernel of size 5x5
for keypoints and 17x17 for person centers, and select all
peaks that either have score over 0.01 or are within the top-
5 scoring peaks in the heatmap.

For every predicted center c ∈ C, we build its pose by
assigning it the keypoints with highest attention score ac-
cording to the attention score corresponding to every type,
as explained in Section 4.2 in the main paper. Formally,
given center c ∈ C the location of each of its joint types
i ∈ {1, . . . , J} is determined as:

l̂oc
i

c = argmax
k∈K

attni(c, k) (2)

In order to score the resulting poses, we use the predicted

visibility scores for every keypoint, v̂is
i

c, as well as the pre-
dicted probability that center c represents a true positive
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Figure 2: Overview of the architecture of a Transformer
Encoder.

center, ŷccenter, as follows:

scorec =

{
avg

(
{v̂is

i

c | v̂is
i

c ≥ 0.5}Ji=1

)
if ŷccenter ≥ 0.5

ŷccenter otherwise
(3)

Intuitively, since visibility scores are only computed for
those centers such that yccenter = 1 during training (i.e.
matched centers), we only use them whenever our network
predicts centers to represent true pose centers with prob-
ability over 0.5. In that case, the overall pose score is the
average visibility confidence score of keypoints that are pre-

dicted to be visible (i.e., v̂is
i

c ≥ 0.5).
Unlike [12, 13, 1], we do not perform top-down re-

finement, nor ensembling [8], and all results are reported
with flip-testing as it is common practice [15, 12, 14]. For
postprocessing, following [12, 3], keypoint coordinates are
shifted by 0.25 towards the contiguous second maximal ac-
tivation in each heatmap, to account for quantization errors.

3.3. Exact Architecture

Our keypoint detection network is minimally modified
from HigherHRNet, as explained in Section 5.2 in the main
paper. Our newly added modules include an additional
residual block and a multi-layer perceptron (MLP) to gen-
erate initial keypoint and person features, a transformer
encoder and the grouping module. Our transformer en-
coder has 3 blocks, each with input dimension 128, 4 self-
attention heads and MLP hidden dimension set to 512. We
found no significant performance benefits from further in-
creasing the transformer’s size. The architecture of each
transformer encoder block is not modified from the original
one [16], and shown in Figure 2.

All of the MLPs in the grouping module, as well as the
one generating the transformer’s input contain two hidden



Layer Name # Parameters

Keypoint Detection

Backbone 28.5M (63.7M)
Keypoint Heads 110K

Encoding

Residual Block 595K
Initial MLP 33K
Transformer Encoder 594K

Grouping

Multi-Head Attention 420K
MLPcenter 33K
MLPvis 41K

Overall

– 30.3M

Table 2: Parameter count breakdown among components
in each stage of our model’s pipeline. For the backbone,
28.5M refers to a HRNet32 backbone, and 63.7M refers to
a HRNet48. Note that the overall number of parameters of
our proposed encoding and grouping modules combined is
relatively small, at 1.7M.

layers. We detail the number of parameters of each compo-
nent in Table 2. The overall parameter count of our pro-
posed keypoint encoding and grouping module is below
2M, which is relatively small, and only accounts for <6%
(resp. <3%) of the overall count when using an HRNet32
(resp. HRNet48) backbone.

4. Qualitative Results

4.1. Qualitative Examples

In Figure 3, we visualize results produced by our
method in comparison to those from our baselines:
HigherHRNet[3] and CenterNet [17]. As explained
in the main paper, we reimplement CenterNet to use
an HRNet[15] backbone and HigherHRNet’s scale-aware
heatmaps [3] for keypoint heatmap regression for a fair
comparison.

We observe that our method’s performance is robust un-
der severe occlusion and challenging conditions. In com-
parison, CenterNet often fails whenever there is significant
overlap among different poses, as can be seen in rows 1, 4,
5, 6 and 7. Moreover, since it always predicts joint loca-
tions for a given pose regardless of whether they are visible
or not, it often hallucinates joints and produces unfeasible
pose estimates (all rows).

HigherHRNet generally does a better job at grouping,
as can be seen in rows 1, 4, 5, and 6, but this comes at a
significantly increased computational cost of 2.5x inference

time. Moreover, we observe that it tends to miss or assign
very low confidence to large-sized poses (rows 2, 4, 5, 6).

Our method, instead, has a runtime inference time com-
parable to CenterNet’s, due to its fast optimization-free test-
time procedure, and has increased robustness where our
baselines fail. Namely, it performs well in images with
heavy occlusion, and, due to its ability to capture long-
rage connections with our attention mechanism, it does not
struggle with large-sized poses.

4.2. Visualizing Attention Activations

In Figures 4 and 5 we visualize the attention output
scores with which the results in Figure 3 were obtained.
We observe that despite the large amount of keypoints over
which each center attends, particularly in crowded scenes,
attention scores are heavily concentrated over a small sub-
set of keypoints, for each center. Indeed, most attention
scores for a given type have magnitude over 0.95%, which
can be seen from the dark color of most lines. This can be
explained due to our loss formulation: to achieve low train-
ing error, our model must concentrate attention weights in
the most promising keypoint locations, as otherwise it’d in-
cur in large L1 loss values. Overall, Figures 4 and 5 show
how our model is able to consider a large number of center-
keypoint association candidates but still focus on those key-
points belonging to each pose, even in highly challenging
scenarios.
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(a) Input Image (b) HigherHRNet [3] (c) CenterNet[17] (d) Ours

Figure 3: Qualitative examples of our method’s performance in comparison to HigherHRNet[3] and CenterNet[17]. Best
viewed in color and in a screen.



(a) Input Image (b) Center Keypoint Connections (c) Predicted Attention Scores

Figure 4: Visualization of predicted attention scores by our grouping module. In (b) we show all pairwise connections
between detected keypoints and centers classified as true positives. In (c) we show all final attention scores predicted with
attention weight over 0.5 and as visible. The attention weight is color-coded in the color’s intensity. Best viewed in color and
in a screen.



(a) Input Image (b) Center Keypoint Connections (c) Predicted Attention Scores

Figure 5: Visualization of predicted attention scores by our grouping module. In (b) we show all pairwise connections
between detected keypoints and centers classified as true positives. In (c) we show all final attention scores predicted with
attention weight over 0.5 and as visible. The attention weight is color-coded in the color’s intensity. Best viewed in color and
in a screen.


