
Exploring Relational Context for Multi-Task Dense Prediction

Supplementary Material

David Bruggemann, Menelaos Kanakis, Anton Obukhov, Stamatios Georgoulis, Luc Van Gool
ETH Zurich

{brdavid, kanakism, obukhova, georgous, vangool}@vision.ee.ethz.ch

A. Training Details
In this section, we describe the training setup. For consis-

tency, all experiments in the paper were repeated five times
using the pipeline detailed below.

Data augmentation. We augment input images during
training by random scaling with values between 0.5 and 2.0,
random cropping to input size (425× 560 for NYUD-v2—
we use the cropped version of [3]—and padded to 512×512
for PASCAL-Context), random horizontal flipping and ran-
dom color jitter. Image intensities are standardized. Depth
labels are corrected for scaling and surface normal labels are
corrected for horizontal flipping.

Task losses. The total loss of the multi-task network
with parameters θ is a weighted sum of losses (for tasks
n ∈ {1, ..., N}):

Ltotal(θ) =

N∑
n=1

ωnLn(θ) (1)

For semantic segmentation and human parts segmentation
we use a cross-entropy loss (loss weights ωn = 1 and
ωn = 2 respectively), for saliency estimation a balanced
cross-entropy loss (ωn = 5), for depth estimation a L1 loss
(ωn = 1), for surface normal estimation a L1 loss with unit
vector normalization (ωn = 10) and for boundary detection
a weighted cross-entropy loss (ωn = 50). For boundary
detection, the positive pixels are weighted with 0.8 and the
negative pixels with 0.2 on NYUD-v2, while on PASCAL-
Context the weights are 0.95 and 0.05. ωn for each task was
determined through a logarithmic grid search over candidate
values with single-task networks.

The auxiliary predictions An are trained with a cross-
entropy loss using the same loss weights as above. However,
the auxiliary head backpropagation is stopped from updating
parameters of the main network.

Optimization hyperparameters. All backbones are ini-
tialized with ImageNet pretrained weights. We use Stochas-
tic Gradient Descent (SGD) with momentum of 0.9 and
weight decay of 0.0005 to optimize the model parameters.

The initial learning rate is determined through a logarithmic
grid search (..., 0.002, 0.005, 0.01, 0.02, ...), with the option
of having a 10 times higher learning rate for the heads vs.
the backbone. The initial value is decayed during training
according to a ‘poly’ learning rate schedule [1]. For all ex-
periments, we use a minibatch size of 8 and train for 40000
iterations.

Context type search. The architecture distribution pa-
rameters α are initialized with zeros. We use an Adam
optimizer [4] to update them, with learning rate 0.0005 (no
weight decay, no learning rate scheduler). The update occurs
in the same round of backpropagation as the regular model
parameters (single-level optimization). Over the course of
training, the Gumbel-Softmax temperature λ is annealed lin-
early from 1.0 to 0.05 (following [9]). Also, to ensure a fair
candidate context type selection, we disable learnable affine
parameters of the last batch normalization of every context
type attention mechanism.

As discussed in Sec. 3.3, we use entropy (H) regulariza-
tion to control the sampling variance during the architec-
ture search. Specifically, we calculate the mean entropy of
the architecture parameter (α)-distributions over all Context
Pooling (CP) blocks, scale it with a weight ωH , and add it to
the total loss.

Lsearch(θ, α) =

N∑
n=1

ωnLn(θ, α) +
ωH

N2

N2∑
j=1

H(αj) (2)

j indexes the CP blocks. The scaling factor ωH follows a
linear schedule during the search, from -0.02 to 0.06. We
found that this provides an adequate balance between can-
didate exploration and exploitation. For a given CP block
j, architecture search is terminated prematurely if the differ-
ence between the two largest values of αj exceeds 0.3. One
candidate is then sampled using argmax (i.e., αj becomes a
one-hot vector).

After concluding five runs of the architecture search, we
determine the final configuration by choosing the context
type receiving the most votes over the five runs in each CP



Model SemSeg ↑ Depth ↓ Normal ↓ Bound ↑

HRNet18, [7] 33.18 0.667 - -

HRNet18, ours 38.02 0.610 20.94 76.22

HRNet48, [7] 45.70 0.547 - -

HRNet48, ours 45.87 0.540 20.09 77.34

Table B-1. NYUD-v2 single task performances of HRNetV2-W18-
small (HRNet18) and HRNetV2-W48 (HRNet48) models [8]. We
compare the performances obtained using our implementation with
the numbers published in [7].

block. Ultimately, this final configuration is retrained five
times.

B. Implementation Verification
We verify the implementation of our pipeline by com-

paring HRNet single task performances with the numbers
published in [7]. Table B-1 shows that the baselines trained
with our pipeline outperform those of [7].

For implementing the various distillation modules in Ta-
ble 1, we used the code provided by the authors whenever
possible, and otherwise followed the information provided
in the papers closely. For MTI-Net [7], we used the authors’
model code within our pipeline.

Finally, we attempted to reimplement the full PSD [11]
network based on a ResNet-50 backbone (as suggested in
the original paper), but were unable to obtain competitive
results.

C. Relational Context Schematics
Fig. C-1 depicts the different relational context types

used in this work schematically. We use a 1×1Conv-BN-
ReLU layer as the learned non-linear transform. For all con-
texts except global, the similarity function is sim(qi, kj) =

exp(
qik

⊺
j

dk
) (which corresponds to softmax). For the global

context, it is simply sim(qi, kj) = qik
⊺
j .

D. Label Context: Regression Tasks
In this section, we discuss how the label space of regres-

sion tasks can be partitioned into distinct regions for label
context formation, as mentioned in Sec. 3.2.3. Regression
tasks can be easily reformulated as classification tasks by
binning the continuous ground truth values. However, the
discretization scheme has to be tailored towards each task
separately to obtain satisfactory performance.

For depth prediction, our approach is inspired by [5].
Specifically, we divide the range of depth values into 40 log-
arithmic bins, accounting for the fact that the estimation error
for larger depth values is naturally larger. During training,
we learn a classifier to assign the pixels to the bins. During
evaluation, we use a soft-weighted-sum inference: Every bin

Model SemSeg ↑ Depth ↓ Normal ↓ Bound ↑ ∆m [%] ↑

Single task 38.02 0.6104 20.94 76.22 0.00

T -label, GT 46.71 0.5202 18.16 76.06 12.67

S-label, GT 47.71 0.5160 17.87 78.18 14.55

Table E-1. NYUD-v2 comparison of the performance upper bound
of T -label and S-label context, using ground truth (GT) spatial
region maps A(GT )

n (see Sec. 3.2.3).

is represented by its mean depth in log space. A weighted
sum of bins (weight = prediction score) is used as the final
prediction.

For surface normal estimation, we use the triangular cod-
ing technique of [10]. First, a codebook is learned with
k-means. The codewords form a Delaunay triangulation
cover on the unit sphere. Any surface normal can thus be
expressed as a weighted combination of the three codewords
marking its triangle. During training, we learn a classifier to
predict those codeword weights. Following [10], we choose
40 codewords (=̂ 40 classes). Evaluation consists of two
steps: (1) Find the triangle with maximum total probabil-
ity. (2) Use the probabilities of the three codewords of that
triangle to reconstruct the surface normal.

To verify the above discretization schemes, we trained
single task models accordingly, and compare them to the
regression models in Fig. D-1. The figure shows that the
performance of classification—while slightly worse than
regression—is satisfactory for both depth and surface nor-
mal estimation. The same conclusion can be drawn from a
qualitative comparison, shown in Fig. D-2.

E. Label Context: Performance Upper Bound
To estimate the potential of label context for multi-modal

distillation, we conduct experiments using ground truth label
regions. Instead of predicting the spatial maps An from the
input image (see Sec. 3.2.3), we directly use the ground truth
data A

(GT )
n to partition the label space into distinct regions.

This provides an upper bound for the performance of label
context distillation. Table E-1 shows the results for both
T -label and S-label context: The performance increases
greatly (with the exception of T -label context for boundary
detection), confirming that label region grouping is highly
effective for multi-modal distillation.

F. Context Type Search Reliability
We consider the context type selection during architec-

ture search as a rater decision. Since we repeat each run
five times, we can evaluate the intra-rater reliability: The
agreement among the five selected context types in all CP
blocks.

The most intuitive way to quantify agreement is through
percentage agreement (i.e., counting the fraction of times a



Global Context

similiarity

Matrix multiplication

Learned non-linear transform

keys values

query

attention map

target task features source task features

Local Context

similiarity

keys values
query

attention map

target task features source task features

T-Label Context

similiarity

keys values
query

attention map

target task features

source task features

spatial softmax

ATarget

S-Label Context

source task features

spatial softmax

ASource

output output

output

Data flow

normalization normalization

normalization

similiarity

keys values
query

attention map

target task features

output

normalization

Figure C-1. Schematics of the different relational context types. The grids represent individual pixels (channels not shown), the attention
mechanism is shown for one target pixel (framed in red box) respectively. Normalization is applied over all pixels of the attention map. A∗
are the auxiliary predictions, as depicted in Fig. 2a.

Dep
th

Norm
al

0

0.2

0.4

0.6

0.8

R
M

SE

Regression
Classification

0

10

20

30

M
ea

n
an

gu
la

re
rr

or
[◦

]

Figure D-1. Performance com-
parison of single task depth and
surface normal estimation mod-
els, using either a regression or
classification framework. Their
similar performance confirms
that we can exploit the classifica-
tion scheme to form high-quality
label regions for the label con-
text.

pair of runs agree on a decision). However, this measure does
not take into account that agreement may happen purely due
to chance. We thus report also Light’s kappa [6], which is an
agreement score calculated by averaging Cohen’s kappa [2]
over all pairs of runs. Kappa statistics are corrected for
chance agreement, with the drawback that their interpretation
is less intuitive. A value of 0 indicates no agreement, -1
indicates perfect disagreement, and 1 perfect agreement.
We obtain an overall percentage agreement of 71.2% and a
Light’s kappa of 0.48 for the search on NYUD-v2 with a
HRNet18 backbone.

We emphasize that reliability is not strictly necessary
for an effective search algorithm. If there is no dominat-
ing choice of context type (e.g., none of the options lead
to significant performance gain), then even a valid search
algorithm is expected to be unreliable. In such cases, intro-
ducing a tie-breaking auxiliary objective could help promote

Image Ground truth Regression Classification

Figure D-2. Qualitative NYUD-v2 comparison of regression and
classification schemes for depth (top two rows) and surface normal
(bottom two rows) estimation. Classification achieves satisfactory
results on both tasks.

convergence (e.g., a resource loss).

G. How Important is Self-Attention in ATRC?

The permutation testing results of Sec. 4.4 can be utilized
to partly address this question. We conclude there that self-
attention constitutes the most important distillation module
for 3 out of 4 investigated tasks. However, other cross-task
connections contribute significantly too. To investigate fur-



ther, we provide in Table G-1 the performance of ATRC
without self-attention. The multi-task performance ∆m for
this model is 0.87% (vs. 1.56% for the full ATRC), outper-
forming the single task configuration. This confirms that,
even though self-attention is vital according to permutation
testing, the cross-task distillation modules are able to provide
a substantial performance boost on their own.

Distillation module
SemSeg ↑ Depth ↓ Normal ↓ Bound ↑

∆m [%] ↑
mean std. mean std. mean std. mean std.

None (single task baseline) 38.02 0.14 0.6104 0.0041 20.94 0.08 76.22 0.07 0.00

None (multi-task baseline) 36.35 0.26 0.6284 0.0034 21.02 0.06 76.36 0.05 -1.89

ATRC (ours) 38.90 0.43 0.6010 0.0046 20.48 0.02 76.34 0.12 1.56
ATRC (no self-attention) 38.19 0.46 0.6032 0.0038 20.55 0.05 76.22 0.10 0.87

Table G-1. Effect of removing the self-attention blocks on NYUD-
v2 with a HRNet18 backbone. First three lines correspond to the
numbers reported in Table 1.

References
[1] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. TPAMI, 40(4):834–848, 2017.

[2] Jacob Cohen. A coefficient of agreement for nominal scales.
Educational and psychological measurement, 20(1):37–46,
1960.

[3] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra
Malik. Learning rich features from rgb-d images for object
detection and segmentation. In ECCV, 2014.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015.

[5] Bo Li, Yuchao Dai, and Mingyi He. Monocular depth es-
timation with hierarchical fusion of dilated cnns and soft-
weighted-sum inference. Pattern Recognition, 83:328–339,
2018.

[6] Richard J Light. Measures of response agreement for qualita-
tive data: some generalizations and alternatives. Psychologi-
cal bulletin, 76(5):365, 1971.

[7] Simon Vandenhende, Stamatios Georgoulis, and Luc
Van Gool. Mti-net: Multi-scale task interaction networks
for multi-task learning. In ECCV, 2020.

[8] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution representa-
tion learning for visual recognition. TPAMI, 2020.

[9] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:
Stochastic neural architecture search. In ICLR, 2019.

[10] Bernhard Zeisl, Marc Pollefeys, et al. Discriminatively trained
dense surface normal estimation. In ECCV, 2014.

[11] Ling Zhou, Zhen Cui, Chunyan Xu, Zhenyu Zhang, Chaoqun
Wang, Tong Zhang, and Jian Yang. Pattern-structure diffusion
for multi-task learning. In CVPR, 2020.


