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We provide supplementary details on our training and
evaluation datasets (Sec. A), further implementation de-
tails (Sec. B), additional qualitative results (Sec. C), addi-
tional experiments (Sec. D), and a broader impact statement
(Sec. E).

A. Dataset details

BSL-1Kiigneq. The training set contains 7 cooking,
9 food-related travel, 1 environment-related travel and 3
lifestyle documentary shows. The test set contains 2 nature
and 2 cooking shows. The 4 test episodes are chosen to eval-
uate the alignment model in different settings: seen/unseen
signer and seen/unseen programme genre (which affects the
number of out-of-vocabulary words) as shown in Tab. A.1.
The signing-aligned subtitles were annotated by one deaf
native BSL signer and a random subset was verified by an-
other deaf native BSL signer, taking around 200 hours for
the 24 episodes. The instruction was to shift the start and
end times of each subtitle to correspond to the signing us-
ing the open-source VIA tool [4]. The process was refined
over several iterations, incorporating annotator feedback. A
handful of subtitles were excluded due to annotation uncer-
tainty.
BSL Corpus [10, 11]. For our task, we employ the Free-
Translation annotation tier, which provides written English
subtitles to accompany portions of the Conversation and
Interview subsets of the corpus. In total, the annotations
cover a total of 227 videos after cropping to include a single
signer. Of these, 141 are sourced from the Interview subset
and 86 videos are sourced from the Conversation subset.
For consistency with prior work, we follow the train, vali-
dation and test partition employed by [, 9]. However, since

“Equal contribution

this partition does not fully span the dataset, we add any
dataset instances that were not present in the partition to the
training set.

BOBSL. The test set contains 36 videos, almost all of which
are factual documentaries related to nature, science and
the environment. There are also a handful of food-related
shows.

#vids. #hours #subs #inst. Vocab. OOV

Train 20 144 138K 128.1K 8.6K \

Test (total) 4 33 20K 18.6K 28K 726
sigherscen, geNCscen 1 07 648 6.1K 1.3K 188
Signerseen» genréynseen 1 0.9 465 4.1K 1.0K 233
signerynseen, EeNICseen 1 0.7 506 56K 1.1K 99
signerynseen, eNICyunsecen 1 1.0 360 28K 882 234

Table A.1: BSL-1Kj;gneq: The test set videos were chosen
to evaluate performance on episodes with either signers or
genre unseen during training.

B. Implementation details

Text embeddings. For the text embeddings, we use a
pretrained BERT model from HuggingFace' with a stan-
dard architecture of 12-layers, 12-heads and 768 model
size. The model is pretrained on BookCorpus® and English
Wikipedia®.

Positional encodings. For the input to the video encoder,
we use 512-dimensional sinusoidal positional encodings as
in [12]. The positional encodings are added to the video
features before feeding to the Transformer.

lhttps://hquingface.co/bertfbasefuncased
Zhttps://yknzhu.wixsite.com/mbweb
3https://en.wikipedia.orq


https://www.robots.ox.ac.uk/~vgg/research/bslalign/
https://huggingface.co/bert-base-uncased
https://yknzhu.wixsite.com/mbweb
https://en.wikipedia.org

Output thresholding. The output of our model is a tempo-
ral sequence of predictions between 0 and 1. For the single-
subtitle SAT model, we consider the start of the subtitle to
be the first time when the prediction is above 7 = 0.5 and
the end of the subtitle to be the last time when the prediction
is above 7 = 0.5 in the search window. When we apply a
global alignment step with DTW to correct for overlapping
subtitles, we no longer use these thresholds, but rather the
temporal sequence of predictions between 0 and 1 using the
method described in the main paper.

Training details. We use the Adam optimiser with a batch
size of 64. We train with a learning rate of 10™° at the
word-pretraining stage, and of 5 x 107° at finetuning with
subtitles. At the word pretraining stage, the model is trained
over 5 epochs. In one epoch of word pretraining, there are
approximately 700K sign instances (including sign spotting
both with mouthings and dictionaries). At this point the
word alignment model obtains a frame-level accuracy of
30.38% and F1@50 of 40.75% on the 1630 sign instances
of the test set episodes. During full-sentence finetuning, the
model is trained over 80 epochs.

C. Additional qualitative analysis

Effect of global alignment with DTW. In Fig. A.1, we
present results before and after the global alignment with
DTW on a long timeline. We observe that the single-subtitle
Transformer model produces overlapping regions between
consecutive subtitles which are resolved after the global
DTW stage. Consequently, we see that the overall duration
of subtitles decreases after DTW (see Fig. A.2). During the
DTW stage, we order subtitles by their predicted order, not
by the original order of S;,4i0. Indeed, in BSL-1K15gneds
1.6% of subtitles in S,; do not respect the original order of
Saudio- On the test set, 1.6% of subtitles in S,,..q switch
position with respect to S,yqi0-

Results on BSL-1K;;4c4. Fig. A.4 demonstrates qualita-
tive results on BSL Corpus.

Results on BSL Corpus. Fig. A.4 demonstrates qualitative
results on BSL Corpus.

Results on BOBSL. Fig. A.5 demonstrates qualitative re-
sults on BOBSL.

D. Additional experiments

We analyse performance on each test set episode and per-
form ablations to evaluate the influence of our data augmen-
tations and the encoding choice for the subtitle text.
Performance on unseen signers/genres. Tab. A.2 shows
the SAT model results by test set episode. Our model tends
to result in larger improvements over the S} .. baseline
for signers seen in the training episodes, but still outper-
forms the S? ;. baseline for unseen signers in unseen gen-
res. More training data would be needed to better generalise

Test episode
signer genre Method frame-acc Fl1@.10 F1@.25 F1@.50

seen seen St .. 45.48 66.92 55.02 31.84
SAT 60.23 71.74 68.47 49.00
seen unseen St .. 64.31 74.84 64.73 34.19
SAT 72.56 81.29 74.19 52.47
unseen seen S .. 56.30 80.79 69.70 44.95
SAT 63.68 80.32 72.40 52.82
unseen unseen St .. 71.84 63.29 53.16 33.76
SAT 74.93 69.76 59.92 34.32

Table A.2: Performance breakdown by test episode: Our
model improves upon the S* .. baseline for all the combi-
nations of seen/unseen for signer and genre. The improve-
ments however are greater in the test episodes where the

signer has been seen during training.

to unseen signers.

Text encoding choice. We experiment with word2vec [8]
encodings for subtitle words instead of BERT as used in the
main paper experiments. We use the pretrained word2vec
model from [7], forming sentence embeddings by max
pooling the encodings of all words over the channel dimen-
sion. In Tab. A.3, we see that this results in lower perfor-
mance compared to using the BERT encodings. We hypoth-
esize that this is due to word2vec using a limited vocabulary,
ignoring word order, and lacking the large-scale pretraining
of the BERT model.

Method frame-acc F1@.10 Fl1@.25 F1@.50

word2vec 67.16 74.59 64.96 42.06
BERT 68.72 77.80 69.29 48.15

Table A.3: Text encoding: We experiment with word2vec
encodings instead of BERT to embed words in the subtitle.

Amount of training data. By increasing the amount of
training data, we improve performance of our model on the
test set. Tab. A.4 shows our results when training on random
subsets of 25%, 50% and 75% of the videos in our training
data. For subset selection, we randomly sample 4 times, and
report the average performance across 4 trainings, as well as
the standard deviation.

#training videos  frame-acc ~ F1@.10 Fl@.25 F1@.50

5 66.62%0-16 75555086 66 04%1-09 43 942081
10 67_40i0,28 75‘74i0.25 66.6Oi0'25 45'4li0.88
15 67.71i0‘23 75‘24;{:0.43 66.29i0'84 46.16i0'66
20 68.72 77.80 69.29 48.15

Table A.4: Amount of training data: We train with a sub-
set of our videos, using 5, 10, or 15 episodes instead of the
total 20 used in the paper. We observe increased perfor-
mance as we increase the training size.
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Figure A.1: DTW: Our SAT model predicts the locations of subtitles independently of each other, and thus there can be over-
laps in subtitle localisations. Using a global alignment step with DTW, we resolve these overlaps and improve performance.

s SAT-DTW
.......... SAT

6 é 10 1‘2 1‘4
Frequency
Figure A.2: Duration before and after DTW: The median
duration of Sg; is 3.3s. Before DTW, the median duration
of our predicted subtitles is 4.1s, but after DTW the median
duration is reduced back down to 3.5s by resolving conflicts
in overlapping subtitles.

Size of the search window 7'. In Tab. A.5, we report the
performance against different choices for input duration T
We conclude that larger search windows generally improve
performance, at the cost of computational complexity. This

Window size frame-acc F1@.10 F1@.25 F1@.50

8 sec 66.98 73.12 64.66 44.13
12 sec 68.63 75.52 67.56 47.29
16 sec 68.51 76.18 68.63 48.10
20 sec 68.72 77.80 69.29 48.15

Table A.5: Search window size 7': We vary T between 50
and 125 frames (corresponding to 8- and 20-second inputs,
respectively). Larger windows tend to perform better, pos-
sibly due to increased contextual information and the fact
that the difference between S,,4i, and the aligned subtitle
Sg4¢ can be in the order of 10s.

might be due to increased supervision, since with larger
windows the training sees more negative examples, as well
as due to better coverage at test time. A too short window
size inhibits recovery of the correct location, if the correct
location falls outside of the window boundaries.

Sensitivity analysis. During inference, we predict the lo-
cation of a subtitle within a 20 second search window sur-
rounding the location of S} ;. . In order to analyse the sen-
sitivity of the choice of search window, we shift the window
by 1s, 3s and 5s at inference time. Tab. A.6 shows that the
choice of window within a margin of a few seconds does



Subtitle text:

“The catfish are still here.”

“The same as African elephants.” IoU: 0.84

Subtitle text:

: S* audio S*audio
Heuristics : " Heuristics
Bull et al. Bull et al.
Ser Sar
Spred : ‘ Spred ]
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IoU: 0.76 IoU: 0.95
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Figure A.3: Qualitative results on BSL-1K;;4rcq: This figure shows short time windows of 5s with shifted audio-aligned

subtitles (S*

audio

), ground truth signing-aligned subtitles (S4¢) and our predicted signing-aligned subtitles (S,,cq). In practice,

we input 20 seconds of video during training and testing as our search window.

Subtitle text:

“I sign and I am proud of sign language.”

Subtitle text:

“It varies, but that'll be the difference between the two people.”

: Sprior
St
Sp;fd : : : : : Spmd
4:59 5:00 5:01 5:02 5:63 5:04  11:53 |l;54 11:55 |l;56 11:57 11258 11;59 12:00
Subtitle text:  “If 1 saw their body language, I would know what they mean.” Subtitle text:  “Like, in the future, they might want to become an interpreter.”

Spred

4:33 4:34 4:35 4:36 4:37 4:38 4:39 4:40

12:27 12:28 12:29 12:31 12:32 12:33 12:34

Figure A.4: Qualitative results on BSL Corpus: This figure shows short time windows of 5s and 7s with shifted and
rescaled subtitles (S;o), ground truth aligned subtitles (S4¢) and our predicted subtitles (S,..q). In practice, we input 20
seconds of video during training and testing for our search window. The shifted and rescaled subtitles (S;,;o,) are created
using a random shift with standard deviation of 3.5s and a random change in length of standard deviation 1.5s.

not have a large impact on the results.

However, if we keep the position of the search win-
dow constant and change the position of the prior estimate
St .dio0» then this has a significant effect on results. Tab. A.7
shows the results of an experiment where we shift the prior
estimate S*_ .. by 1s, 3s and 5s at inference time. The per-
formance degrades when the model is given a worse prior

as input, i.e., shifting S* .. .

Sampling the prior estimate. We consider an alterna-
tive choice of prior where we randomly sample S;,d:0
during training from a Gaussian distribution with sample
mean (3.2s) and standard deviation (3.6s) of the differ-
ence between the start of Sy and Sgugi0. This choice

Shift window frame-acc F1@.10 Fl1@.25 F1@.50

0Os 68.72 77.80 69.29 48.15
Is 68.53 76.99 69.23 47.69
3s 68.53 76.99 68.32 47.90
5s 68.32 76.58 68.42 48.50

Table A.6: Shifting search window: We shift the search
window at inference time by 1s, 3s and 5s. This does not
have a major impact on results.

seems equally valid in comparison to our original prior,
which shifts S;,4:0 by the estimated mean of 3.2s. We
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Figure A.5: Qualitative results on BOBSL: This figure shows short time windows of 7s with shifted audio-aligned subtitles
(St ), ground truth signing-aligned subtitles (S4;) and our predicted signing-aligned subtitles (Sy;.cq).

audio

Shift prior frame-acc F1@.10 F1@.25 F1@.50
0s 68.72 77.80 69.29 48.15
Is 68.26 75.77 67.36 45.67
3s 58.69 58.08 47.80 28.18
5s 46.11 35.49 26.21 12.52

Table A.7: Shifting prior estimate S* ;. : By shifting the
location of the prior ST, ;. at inference time by respectively

Is, 3s and 5s, the performance degrades.

No. heads frame-acc F1@.10 F1@.25 F1@.50
1 66.00 75.35 66.13 44.08
2 68.72 77.80 69.29 48.15
4 67.99 75.50 67.60 46.97

Table A.8: Number of attention heads: We choose 2-head
attention for our final model.

obtain similar results, i.e. a slightly higher frame accuracy
(69.15 vs 68.72), but slightly lower F1 scores ({F1@.10,
F1@.25, F1@.50}={75.42 vs 77.80, 67.61 vs 69.29, 47.59
vs 48.15}).

Number of attention heads. In Tab. A.8, we ablate 1,
2 and 4 attention heads. We conclude that the model with
2-head attention performs best.

E. Broader impact

The World Federation of the Deaf states that there are 70
million Deaf individuals world-wide using more than 200
sign languages.* Unfortunately, many technologies for spo-
ken and written languages do not exist for signed languages.
We hope that our work contributes towards addressing this
imbalance by providing inclusive technologies for signed

4nhttp://wideaf.org/our-work/

languages for several applications, discussed next.

One direct application of our method is an assistive sub-
titling tool for signing vloggers to align their subtitles (this
technology is currently only available for spoken and writ-
ten languages). A second application is to create bilin-
gual written-signed corpora aligned at a sentence or phrase-
like level. Such corpora can be used in contextual or
concordance dictionaries, useful for translation or for lan-
guage learning [5]. Moreover, they can be used as train-
ing data for translation between signing and written text.
For context, note that machine translation—which can now
be performed to an acceptable level in many written lan-
guages to enable cross-lingual access to content—remains
far from human performance for sign languages [6]. To en-
able progress for this task (and others that have been high-
lighted as important by members of Deaf communities), a
key stumbling block is the availability of larger annotated
datasets [2]. Our work aims to take steps towards address-
ing this challenge, since automatic subtitle alignment rep-
resents an important pre-processing step that has been per-
formed manually for existing translation datasets, e.g. [3].
However, scaling manual annotation to larger datasets is
prohibitively expensive (as noted in the submission, align-
ing one hour of video takes approximately 10-15 hours of
annotation time).

We note that there are also potential risks associated with
our contributions. First, there is a chance with any compu-
tational advances in sign language modelling that it leads
to increased surveillance of Deaf communities (and of con-
tent moderation more generally). Second, we note that our
training data, obtained from public broadcast footage, may
not be demographically representative of the population as a
whole, and therefore is susceptible to bias. Additionally, the
videos contain BSL interpreted from English, not original
BSL content. Subtitle alignment may work less effectively
for individuals who are not well-represented in the training
data.
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